数学测试题1综合

合集下载

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。

2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。

4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。

5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。

人教版四年级上册数学第一单元综合测试题(含答案)

人教版四年级上册数学第一单元综合测试题(含答案)

第1单元综合测试一、填空题。

1.太平洋是世界第一大洋,面积约为一亿八千一百三十四万平方千米,南北最宽一万五千五百千米。

一亿八千一百三十四万写作________;一万五千五百写作________。

2.用4、8、5、2、0、0、0七个数字,按要求写出七位数。

(只写一个即可)(1)一个0也不读的数有________(2)只读一个0的数有________(3)只读两个0的数有________(4)三个0都读的数有________(5)最大的七位数是________,省略万位后面的尾数约________万,最小的七位数是________。

3.你能读出下面横线上的数吗?读作:________4.写出下面的数.(1)十五万写作:________(2)八千万八千写作:________5.根据题意填空:(1)一亿三千五百万三千五百,写作________(2)四亿零四万四千,写作________.6.填上>、=或<.(1)27000________27万(2)1500000________150万7.你能写出横线上的数吗?写作:________8.读出下面各数.(按题中数的顺序填写)409600 576006 283600200468 5070820 1637001402860 36000 4060600506070其中:(1)读一个0的有:________(2)读两个0的有:________(3)一个0都不读的有:________9.读出下面的数,然后省略万位后面的尾数求出近似数.507096000读作:________507096000≈________万10.九亿八千万,写作________,省略亿位后面的尾数约是________。

二、选择题。

1.八十六万写作( )A. 86000000B. 860000C. 86000D. 86000002.五万三千零二写作( )A. 53020B. 500302C. 50302D. 530023.3080070读出这个数,下面的哪种读法正确?( )A.三百零八万零零七十B. 三千零八万零七十B.C. 三百零八万七十 D. 三百零八万零七十4.下面各数中一个零也不读出来的数是( )A. 640700B. 604700C. 640070D. 6400075.把“3”写在万位上比把“3”写在百位上多( )A. 9700B. 29700C. 19700D. 279006.“782600 783400”,比较大小,在里应填的符号是()A. >B. <C. =D. ÷7.一个鸡蛋约重60克.照这样推算,100个这样的鸡蛋大约重6千克,10万个这样的鸡蛋大约重6吨,1亿个这样的鸡蛋大约重多少吨?在你认为合适的答案是()A. 60吨B. 600吨C. 6000吨8.个、十、百、千、万、这些都是()A. 数B. 数位C. 计数单位D. 位数三、应用题。

人教新课标四年级上册数学第一单元综合测试题(含答案)

人教新课标四年级上册数学第一单元综合测试题(含答案)

人教版小学数学四年级上第一单元综合测试卷(含答案)一、单选题(共10题;共20分)1.我国的陆地国土面积约为960万平方千米,横线上的数是( )A. 是精确数B. 是近似数2.新华小学四年级同学向希望小学共捐图书1875册横线上的数是( )A. 是精确数B. 是近似数3.下面的键中,()是乘法运算键.A. ×B. +C. ﹣4.100个一百万是()A. 100万B. 1亿C. 1000万5.个位、万位、亿位是几个不同的()A. 数位B. 数级C. 计数单位6.三百二十亿零八十,写这个数时一共要写()个0。

A. 7B. 8C. 97.下面说法正确的是()A. 个位、十位、百位、千位…是计数单位B. 493600省略万后面的尾数约是49C. 604000是由6个十万和4个千组成的8.一个数用四舍五入法省略万后面的尾数约是45万,这个数最大的可能是()A. 454999B. 445999C. 4599999.1枚1元的硬币大约重6克.照这样计算,1000枚1元的硬币大约重6千克,100万枚1元的硬币大约重6吨,1亿枚1元的硬币大约重多少吨?合适的答案是()A. 6吨B. 60吨C. 600吨10.100张纸大约厚1厘米.照这样推算,10000张这样的纸大约厚1米,10亿张这样的纸大约厚多少米?在你认为合适的答案是()A. 100米B. 1000米C. 100000米二、填空题(共8题;共21分)11.写出下面各数.九百六十万________ 一百四十亿________12.我国香港特别行政区的总面积是十亿九千二百万平方米,写作________平方米,改写成用“万”作单位的数是________平方米,省略“亿”后面的尾数写作________平方米。

13.最大的八位数是________,比它大1的数是________。

14.把下面的数四舍五入到万位或亿位.960000≈________34999≈________15.一个数的百万位上是6,万位上是5,个位上是8,其余各位上都是0,这个数是________,省略万位后面的尾数约是________。

北师大版初中数学七上第一章综合测试试题试卷含答案1

北师大版初中数学七上第一章综合测试试题试卷含答案1

第一章综合测试一、选择题(本题共10小题,每小题3分,共30分)1.下列立体图形中,为棱柱的是()A.B.C.D.2.下图是由6个大小相同的小正方体搭成的几何体,则从上面看它的形状图为()(第2题)A.B.C.D.3.下图所示的图形绕直线m旋转一周所形成的几何体是()(第3题)A.B.C.D.4.下列各图中,经过折叠能够围成一个正方体的是()A.B.C.D.5.如图,用一个平面去截圆柱体,截面形状不可能是()(第5题)A.B.C.D.6.下图是一个长方体的表面展开图,六个面上分别标有数字1,2,3,4,5,6(数字都在表面),与标有数字6的面相对面上的数字是()A.3B.5C.2D.1(第6题)7.下图所示的正方体盒子的外表面上画有三条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()(第7题)A.B.C.D.8.下图是由六个相同的小立方块搭成的几何体,则下列说法正确的是()(第8题)A.从正面看到的形状图面积最大B.从上面看到的形状图面积最大C.从左面看到的形状图面积最大D.从三个方向看到的形状图面积一样大9.一个几何体由一些小正方体摆成,从正面看与从左面看这个几何体得到的形状图如图所示,从上面看这个几何体得到的形状图不可能是()(第9题)A.B.C.D.10.下图是某一几何体从三个方向看的形状图,则组成这个几何体的小立方块有()(第10题)A.5个B.6个C.7个D.8个二、填空题(本题共8小题,每小题4分,共32分)11.七棱柱有________个面.12.笔尖在纸上快速滑动写出字母C,这说明了________.13.图是一个几何体的表面展开图,这个几何体是________.(第13题)14.下图是由4个大小相同的棱长为1 cm的小正方体搭成的几何体,则从左面看它的形状图的面积为cm.________2(第14题)+=________.15.下图是一个正方体的表面展开图,若正方体标注的相对面上的数字相同,则x y(第15题)16.下图是棱长为2 cm的正方体,过相邻三条棱挖取一个棱长为1 cm的小正方体,则剩下部分的表面积为cm.________2(第16题)17.下图是5个边长相等的小正方形拼成的一个平面图形,小丽手中还有一个同样的小正方形,她想将它与该图中的平面图形拼接在一起,从而可以构成一个正方体的表面展开图,则小丽共有________种拼接方法.(第17题)18.下图是由一些小立方块所搭的几何体从三个方向看得到的形状图,若在所搭的几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(本题共5小题,共58分)19.(本题10分)将如图所示的几何体与它的名称用线连接起来.(第19题)20.(本题10分)如图,将图形沿着虚线进行折叠.(1)写出所能折叠成的几何体的名称:________(2)在所折叠成的几何体中:①有多少条棱?哪些棱的长度相等?②有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?(第20题)21.(本题12分)如图,正方体被竖直截取了一部分.(1)这个正方体的截面形状是________;(2)被截去的那一部分的几何体的名称是________,求该几何体的体积.(友情提示:棱柱的体积=底面积 高)(第21题)22.(本题12分)如图是从正面和从上面看由若干个小立方块所搭成的几何体得到的形状图,这样搭建的几何体最少、最多各需要多少个小立方块?(第22题)23.(本题14分)在平整的地面上,有若干个完全相同的立方块堆成的一个几何体,如图所示.(1)请分别画出从三个方向看这个几何体得到的形状图.(2)如果在这个几何体露出地面的部分喷上黄色的漆,则在所有的小立方块中,有________个立方块只有一个面是黄色,有________个立方块只有两个面是黄色,有________个立方块只有三个面是黄色.(3)若现在你手头还有一些相同的立方块,如果保持从上面和从左面看到的形状图不变,最多可以再添加几个立方块?(第23题)附加题(15分,不计入总分)24.有一个小立方块,在它的各个面上分别标有数字1,2,3,4,5,6,建制、中原和永清三位同学从三个不同角度去观察这个小立方块,观察的结果如图①.(1)请你画出这个小立方块的三种表面展开图,并说明理由(要求把数字标注在表面展开图中).(2)聪明的建制用与图①大小相同的小立方块若干块搭成一个几何体,他从上面观察这个几何体,看到的形状图如图②,小正方形内的数字表示在该位置上小立方块的个数,请画出这个几何体从正面、左面看到的形状图.第一章综合测试答案一、 1.【答案】B 2.【答案】D 3.【答案】D 4.【答案】C 5.【答案】B 6.【答案】C 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 二、 11.【答案】9 12.【答案】点动成线 13.【答案】圆锥 14.【答案】2 15.【答案】18 16.【答案】24 17.【答案】4 18.【答案】22 三、19.【答案】如下图所示:20.【答案】(1)直六棱柱.(2)①该六棱柱有18条棱,底面棱的长度相等,侧面棱的长度相等;②该六棱柱有8个面,底面是形状、大小完全相同的六边形,侧面是形状、大小完全相同的长方形. 21.【答案】(1)长方形 (2)直三棱柱因为这个直三棱柱的底面是一个直角三角形,直角三角形的两条直角边长分别为()541cm -=(cm ),()532cm -=,所以这个直三棱柱的底面积为21221cm ⨯÷=(),所以这个直三棱柱的体积为3155cm ⨯=(). 22.【答案】搭这样的几何体最少需要54211++=(个)小立方块,最多需要96217++=(个)小立方块. 23.【答案】如图所示:(2)2 3 2(3)最多可以再添加7个小立方块.24.【答案】解:(1)由3个小立方块上的数字可知,与写有数字1的相邻面上的数字是2,3,4,6,所以数字1相对面上的数字为5;与写有数字3的相邻面上的数字是1,2,4,5,所以数字3相对面上的数字为6;故数字4相对面上的数字为2,画图如图1(画法不唯一).图1(2)从正面、左面看到的形状图如图2.图2。

高中数学选修一综合测试题重点易错题(带答案)

高中数学选修一综合测试题重点易错题(带答案)

高中数学选修一综合测试题重点易错题单选题1、已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左焦点为F,点F到双曲线C的一条渐近线的距离为12a,则双曲线C的渐近线方程为()A.y=±12x B.y=±2xC.y=±4x D.y=±14x 答案:A分析:首先根据题意得到d=√b2+a2=b=12a,从而得到ba=12,即可得到答案.由题知:设F(−c,0),一条渐近线方程为y=bax,即bx−ay=0.因为d=√b2+a2=b=12a,所以ba=12,故渐近线方程为y=±12x.故选:A2、已知正方体ABCD−A1B1C1D1的棱长为a,则平面AB1D1与平面BDC1的距离为()A.√2a B.√3a C.√23a D.√33a答案:D分析:建立空间直角坐标系,用空间向量求解由正方体的性质,AB1∥DC1,D1B1∥DB,AB1∩D1B1=B1,DC1∩DB=D,易得平面AB1D1∥平面BDC1,则两平面间的距离可转化为点B到平面AB1D1的距离.以D为坐标原点,DA,DC,DD1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,则A (a,0,0),B (a,a,0),A 1(a,0,a ),C (0,a,0),B 1(a,a,a ),D 1(0,0,a ) 所以CA 1⃑⃑⃑⃑⃑⃑⃑ =(a,−a,a ),BA ⃑⃑⃑⃑⃑ =(0,−a,0),AB 1⃑⃑⃑⃑⃑⃑⃑ =(0,a,a ),B 1D 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(−a,−a,0).连接A 1C ,由CA 1⃑⃑⃑⃑⃑⃑⃑ ⋅AB 1⃑⃑⃑⃑⃑⃑⃑ =(a,−a,a )⋅(0,a,a )=0,CA 1⃑⃑⃑⃑⃑⃑⃑ ⋅B 1D 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(a,−a,a )⋅(−a,−a,0)=0,且AB 1∩B 1D 1=B 1,可知A 1C ⊥平面AB 1D 1,得平面AB 1D 1的一个法向量为n ⃑ =(1,−1,1), 则两平面间的距离d =|BA ⃑⃑⃑⃑⃑ ⋅n⃑ |n ⃑ ||=√3=√33a . 故选:D3、已知两圆分别为圆C 1:x 2+y 2=49和圆C 2:x 2+y 2−6x −8y +9=0,这两圆的位置关系是( ) A .相离B .相交C .内切D .外切 答案:B分析:先求出两圆圆心和半径,再由两圆圆心之间的距离和两圆半径和及半径差比较大小即可求解. 由题意得,圆C 1圆心(0,0),半径为7;圆C 2:(x −3)2+(y −4)2=16,圆心(3,4),半径为4, 两圆心之间的距离为√32+42=5,因为7−4<5<7+4,故这两圆的位置关系是相交. 故选:B.4、已知直线斜率为k ,且−1≤k ≤√3,那么倾斜角α的取值范围是( ) A .[0,π3]∪[π2,3π4)B .[0,π3]∪[3π4,π)C.[0,π6]∪[π2,3π4)D.[0,π6]∪[3π4,π)答案:B分析:根据直线斜率的取值范围,以及斜率和倾斜角的对应关系,求得倾斜角α的取值范围. 解:直线l的斜率为k,且−1≤k≤√3,∴−1≤tanα≤√3,α∈[0,π).∴α∈[0,π3]∪[3π4,π).故选:B.5、过点P(√3,−2√3)且倾斜角为135∘的直线方程为()A.3x−y−4√3=0B.x−y−√3=0C.x+y−√3=0D.x+y+√3=0答案:D分析:由倾斜角为135∘求出直线的斜率,再利用点斜式可求出直线方程解:因为直线的倾斜角为135∘,所以直线的斜率为k=tan135°=−1,所以直线方程为y+2√3=−(x−√3),即x+y+√3=0,故选:D6、如图,下列各正方体中,O为下底面的中心,M,N为顶点,P为所在棱的中点,则满足MN∥OP的是()A.B.C.D.答案:A分析:根据给定条件,建立空间直角坐标系,再对每一个选项逐一分析,利用空间位置关系的向量证明推理作答.在正方体中,对各选项建立相应的空间直角坐标系,令正方体棱长为2,点O (1,1,0), 对于A ,M (0,0,2),N (2,0,0),P (2,0,1),MN ⃑⃑⃑⃑⃑⃑⃑ =(2,0,-2),OP ⃑⃑⃑⃑⃑ =(1,-1,1),MN ⃑⃑⃑⃑⃑⃑⃑ ∥OP ⃑⃑⃑⃑⃑ =0,MN ∥OP ,A 是;对于B ,M (2,0,2),N (0,2,2),P (0,2,1),MN ⃑⃑⃑⃑⃑⃑⃑ =(-2,2,0),OP ⃑⃑⃑⃑⃑ =(-1,1,1),MN ⃑⃑⃑⃑⃑⃑⃑ ∥OP ⃑⃑⃑⃑⃑ =4≠0,MN 与OP 不垂直,B 不是;对于C ,M (0,2,2),N (0,0,0),P (2,1,2),MN →=(0,-2,-2),OP →=(1,0,2),MN ⃑⃑⃑⃑⃑⃑⃑ ∥OP ⃑⃑⃑⃑⃑ =-4≠0,MN 与OP 不垂直,C 不是;对于D ,M (2,2,2),N (0,2,0),P (0,0,1),MN⃑⃑⃑⃑⃑⃑⃑ =(-2,0,-2),OP ⃑⃑⃑⃑⃑ =(1,0,1),MN ⃑⃑⃑⃑⃑⃑⃑ ∥OP ⃑⃑⃑⃑⃑ =-4≠0,MN 与OP 不垂直,D 不是.故选:A7、已知直线l 经过点P(1,3),且l 与圆x 2+y 2=10相切,则l 的方程为( ) A .x +3y −10=0B .x −3y +8=0C .3x +y −6=0D .2x +3y −11=0 答案:A分析:直线l 经过点P(1,3),且l 与圆x 2+y 2=10相切可知k l =−1k op,再使用点斜式即可.直线l 经过点P(1,3),且l 与圆x 2+y 2=10相切,则k l =−1k op=−13−01−0=−13,故直线l 的方程为y −3=−13(x −1),即x +3y −10=0. 故选:A.8、已知边长为2的等边三角形ABC ,D 是平面ABC 内一点,且满足DB:DC =2:1,则三角形ABD 面积的最小值是( )A .43(√3−1)B .43(√3+1)C .4√33D .√33答案:A分析:建立直角坐标系,设D(x,y),写出A,B,C 的坐标,利用DB:DC =2:1列式得关于x,y 的等式,可得点D 的轨迹为以(53,0)为圆心,以43为半径的圆,写出直线AB 的方程,计算|AB |和点D 距离直线AB 的最小距离d −r ,代入三角形面积公式计算.以BC 的中点O 为原点,建立如图所示的直角坐标系,则A(0,√3),B (−1,0),C (1,0), 设D (x,y ),因为DB:DC =2:1,所以(x +1)2+y 2=4(x −1)2+4y 2,得(x −53)2+y 2=169,所以点D 的轨迹为以(53,0)为圆心,以43为半径的圆,当点D 距离直线AB 距离最大时,△ABD 面积最大,已知直线AB 的方程为:√3x −y +√3=0,|AB |=2,点D 距离直线AB 的最小距离为:d −r =|5√33+√3|2−43=4√33−43,所以△ABD 面积的最小值为S △ABD =12×2×(4√33−43)=43(√3−1).故选:A多选题9、对抛物线y =4x 2,下列描述正确的是( ) A .开口向上,准线方程为y =-116B .开口向上,焦点为(0,116) C .开口向右,焦点为(1,0) D .开口向右,准线方程为y =-1 答案:AB分析:根据抛物线方程写出焦点、准线方程,并判断开口方向即可. 由题设,抛物线可化为x 2=y4,∴开口向上,焦点为(0,116),准线方程为y =−116. 故选:AB10、已知直线l 1:x −y −1=0,动直线l 2:(k +1)x +ky +k =0 (k ∈R ),则下列结论正确的是( ) A .存在k ,使得l 2的倾斜角为90∘B .对任意的k ,l 1与l 2都有公共点C.对任意的k,l1与l2都不重合D.对任意的k,l1与l2都不垂直答案:ABD分析:当k=0时可判断A;直线l1与l2均过点(0,−1)可判断B;当k=−12时可判断C,由两直线垂直斜率乘积等于−1可判断D,进而可得正确选项.对于A:当k=0时,直线l2:x=0,此时直线l2的倾斜角为90∘,故选项A正确;对于B,直线l1与l2均过点(0,−1),所以对任意的k,l1与l2都有公共点,故选项B正确;对于C,当k=−12时,直线l2为12x−12y−12=0,即x−y−1=0与l1重合,故选项C错误;对于D,直线l1的斜率为1,若l2的斜率存在,则斜率为−k+1k≠−1,所以l1与l2不可能垂直,所以对任意的k,l1与l2都不垂直,故选项D不正确;故选:ABD.11、已知F为椭圆C:x24+y22=1的左焦点,直线l:y=kx(k≠0)与椭圆C交于A,B两点,AE⊥x轴,垂足为E,BE与椭圆C的另一个交点为P,则()A.1|AF|+4|BF|的最小值为2B.△ABE面积的最大值为√2C.直线BE的斜率为12k D.∠PAB为钝角答案:BC分析:A项,先由椭圆与过原点直线的对称性知,|AF|+|BF|=4,再利用1的代换利用基本不等式可得最小值94,A项错误;B项,由直线与椭圆方程联立,解得交点坐标,得出面积关于k的函数关系式,再求函数最值;C项,由对称性,可设A(x0,y0),则B(−x0,−y0),E(x0,0),则可得直线BE的斜率与k的关系;D项,先由A、B对称且与点P均在椭圆上,可得k PA⋅k PB=−b2a2=−12,又由C项可知k PB=k BE=12k,得k PA⋅k AB=−1,即∠PAB=90°,排除D项.对于A,设椭圆C的右焦点为F′,连接AF′,BF′,则四边形AF′BF为平行四边形,∴|AF|+|BF|=|AF|+|AF′|=2a=4,∴1|AF|+4|BF|=14(|AF|+|BF|)(1|AF|+4|BF|)=14(5+|BF||AF|+4|AF||BF|)≥94,当且仅当|BF|=2|AF|时等号成立,A 错误;对于B ,由{x 24+y 22=1y =kx 得x =√1+2k 2,∴|y A −y B |√1+2k 2,∴△ABE 的面积S =12|x A ||y A −y B |=4|k|1+2k 2=41|k|+2|k|≤√2,当且仅当k =±√22时等号成立,B 正确;对于C ,设A(x 0,y 0),则B(−x 0,−y 0),E(x 0,0), 故直线BE 的斜率k BE =0+y 0x 0+x 0=12⋅y 0x 0=12k ,C 正确;对于D ,设P(m,n),直线PA 的斜率额为k PA ,直线PB 的斜率为k PB , 则k PA ⋅k PB = n−y 0m−x 0⋅n+y 0m+x 0=n 2−y 02m 2−x 02,又点P 和点A 在椭圆C 上,∴m 24+n 22=1①,x 024+y 022=1②,①−②得n 2−y 02m 2−x 02=−12,易知k PB =k BE =12k ,则k PA ⋅12k =−12,得k PA =−1k ,∴k PA ⋅k AB =(−1k )⋅k =−1,∴∠PAB =90°,D 错误. 故选:BC.小提示:椭圆常用结论:已知椭圆x 2a 2+y 2b 2=1(a >b >0),AB 为椭圆经过原点的一条弦,P 是椭圆上异于A 、B 的任意一点,若k PA ,k PB 都存在,则k PA ⋅k PB =−b 2a 2. 填空题12、设a∈R,若直线l经过点A(a,2)、B(a+1,3),则直线l的斜率是___________.答案:1分析:利用直线的斜率公式求解.解:因为直线l经过点A(a,2)、B(a+1,3),=1,所以直线l的斜率是k=3−2a+1−a所以答案是:113、已知圆x2+y2+2x−4y−5=0与x2+y2+2x−1=0相交于A、B两点,则公共弦AB的长是___________.答案:2分析:两圆方程相减可得公共弦所在直线方程,利用垂径定理即可得解.解:由题意AB所在的直线方程为:(x2+y2+2x−4y−5)−(x2+y2+2x−1)=0,即y=−1,因为圆x2+y2+2x−1=0的圆心O(−1,0),半径为r=√2,所以,圆心O(−1,0)到直线y=−1的距离为1,所以|AB|=2√2−12=2.所以答案是:214、直线y=kx+2(k>0)被圆x2+y2=4截得的弦长为2√3,则直线的倾斜角为________.答案:60∘分析:由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k,然后利用斜率等于倾斜角的正切值求解.∵直线y=kx+2(k>0)被圆x2+y2=4截得的弦长为2√3,所以,圆心O(0,0)到直线kx−y+2=0的距离d=√22−(√3)2=1,=1,解得k=√3(k>0).即√k2+1设直线的倾斜角为θ(0∘≤θ<180∘),则tanθ=√3,则θ=60∘.因此,直线y=kx+2(k>0)的倾斜角为60∘.所以答案是:60∘.解答题15、设直线l 的方程为(a +1)x +y −3+a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求a 的值; (2)若l 不经过第三象限,求a 的取值范围. 答案:(1)0或3 (2)[−1,3]分析:(1)通过讨论−3+a 是否为0,求出a 的值即可; (2)根据一次函数的性质判断a 的范围即可.(1)当直线l 过原点时,该直线l 在x 轴和y 轴上的截距为零, ∴a =3,方程即为4x +y =0; 若a ≠3,则3−a a+1=3−a ,即a +1=1,∴a =0,方程即为x +y −3=0, ∴a 的值为0或3.(2)若l 不经过第三象限,直线l 的方程化为y =−(a +1)x +3−a , 则{−(a +1)≤03−a ≥0 ,解得−1≤a ≤3,∴a 的取值范围是[−1,3].。

初一数学综合试题及答案

初一数学综合试题及答案

初一数学综合试题及答案一、选择题(每题3分,共30分)1. 下列各数中,最小的数是()A. -3B. 0C. 2D. 52. 计算下列式子的结果,正确的是()A. \( 3^2 = 6 \)B. \( (-2)^3 = -8 \)C. \( 2^3 = 8 \)D. \( (-3)^2 = -9 \)3. 如果 \( a \) 和 \( b \) 是两个非零数,且 \( a \div b = 3 \),那么\( a \) 和 \( b \) 的比值是()A. 1:3B. 3:1C. 1:1D. 3:44. 一个数的相反数是它本身,这个数是()A. 0B. 1C. -1D. 25. 一个角的补角是它的余角的两倍,这个角的度数是()A. 30°B. 45°C. 60°D. 90°6. 下列哪个选项是正确的不等式()A. \( 3x > 2x + 1 \)B. \( 2x - 1 < 2x \)C. \( 5x \leq 5 \)D. \( 4x = 4x + 1 \)7. 一个数的绝对值是5,这个数可能是()A. 5B. -5C. 5 或 -5D. 08. 下列哪个图形是轴对称图形()A. 等边三角形B. 圆C. 正方形D. 所有选项都是9. 一个数的平方是16,这个数是()A. 4B. -4C. 4 或 -4D. 010. 一个数的立方是-8,这个数是()A. 2B. -2C. 8D. -8二、填空题(每题4分,共20分)11. 计算 \( 2^4 \) 的结果是 _______。

12. 如果 \( x = 3 \),那么 \( 2x + 1 \) 的值是 _______。

13. 一个角的补角是 \( 180° - \) 这个角的度数,如果这个角是\( 60° \),那么它的补角是 _______。

14. 如果 \( a \) 和 \( b \) 是两个数,且 \( a + b = 10 \) 且 \( a - b = 2 \),那么 \( a \) 和 \( b \) 的值分别是 _______ 和 _______。

人教版四年级上册数学《第一单元综合测试题》含答案

人教版四年级上册数学《第一单元综合测试题》含答案

人教版数学四年级上学期第一单元达标测试卷一、填空题。

1、五百零四万零九百是()位数,其中“5”、“4”、“9”分别在()位、()位和()位,这个数写作(),省略万后面的尾数是()。

2、一个九位数,最高位是5,百万位是8,个位是l,其余各位都是0,这个数写作( ),四舍五入到亿位约是( )。

3、三个千万,三个十万,三个千和八个一组成的数是(),约是()万。

4、比99999多1的数是(),比1000少1的数是()。

5、在5和3之间添( )个0,就成为五十亿零三。

6、最小的自然数是( ),与最小的六位数相邻的自然数是( )和( )。

7、把9999、10001、10000和10100按从小到大的顺序排列是:()<()<()<()。

8、比最大的四位数多1的数是(),比最小的五位数少1的数是(),它们的差是(),和是()。

二.判断。

(对的在括号里打“√”,错的打“×”)1.一个一万、一个一千和一个十组成的数是10000100010。

…………()2. 2001103 〉 20万。

………………………………………………()3.五千八百万零九十写作5800095。

…………………………()4.与“十万”相邻的两个计数单位分别是百万位和万位。

………()5. 9080000千克改写成用“万”作单位的数是908千克。

………()6.读404000时,一个零也不读。

……………………………………()三、在里填上“>”“<”或“=”。

6012006000120 5010000克501千克402万402000 500千米500000米四. 选择。

1、九万零四写作:()A、90004B、90040C、 9000402、下面各数中,一个零也不读的数是:A、 340570B、4078000C、2050003、用2个2和3个0可以组成()个不同的五位数。

A、 3B、4C、54、由8个亿,80个万和800个一组成的数是()A、880800B、 80800800C、 8008008005、个、十、百、千、万……是()A、计数法B、数位名称C、计数单位6、在49□438≈50万的括号里填上合适的数。

人教新课标四年级上册数学第一单元综合能力测试卷(含答案)

人教新课标四年级上册数学第一单元综合能力测试卷(含答案)

第一单元综合能力测试卷一、填空题1.一个八位数,它的最高位是( )位,这一位的计数单位是( )。

最小的八位数是( ),最大的八位数是( )。

2.在数位顺序表中,右起第4位是( )位,第7位是( )位,第10位是( )位。

3. 1206840000是( )位数,最高位是( )位,这个数读作( ),将它改写成用“万”作单位的数是( ),省略亿位后面的尾数求近似数约是( )。

4. 10个十万是( ),10个( )是1亿,比1亿少二百万的数是( ),读作( )。

5.一个数百万位和千位上的数都是5,其他各位上的数字为0,这个数是( ),省略万位后面的尾数求近似数约是( )。

6.把425变成四亿二千五百万,5后面添( )个0。

7. 99998后面连续的四个数是( ),( ),( ),( )。

8.在5505500,5550500,5050505,5055005,5050550中,一个0也不读的是( ),只读一个0的是( ),读两个0的是( ),读三个0的是( )。

9.省略万位后面的尾数后是19万,这个数最大是( ),最小是( )。

10. 一个九位数,千万位上是8,这个九位数的近似数最小是( )亿,最大是( )亿。

二、判断题1. 428690省略万位后面的尾数,428690=43万。

( )2.个级包括个位,十位,百位,千位。

( )3.一千亿是最大的自然数。

( )4.两个计数单位之间的进率是10。

( )5.在读数时,从高位到低位读。

( ) 6. 42000100,这个数只读一个0。

( )7.读0最多的最小八位数是10101010。

( )8. 540000,这个数的计数单位是万。

( )9.读两级数时,中间的“0”都不读。

( )10.在数字1和2之间添5个0,就组成一百万零二。

( )三、选择题1.一个六位数,最高位与千位上都是6,其余各位上都是0,把它四舍五入到万位后是( )。

A.60万 B.61万 C.70万 D.71万2.由3个百万、4个万组成的数是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档