数学家高斯传记

合集下载

数学名人故事:数学神童高斯(通用12篇)

数学名人故事:数学神童高斯(通用12篇)

数学名人故事:数学神童高斯(通用12篇)故事在现实认知观的基础上,对其描写成非常态性现象。

是文学体裁的一种,侧重于事件发展过程的描述。

以下是小编收集整理的数学名人故事:数学神童高斯(通用12篇),仅供参考,希望能够帮助到大家。

数学名人故事:数学神童高斯篇11.八岁的高斯发现了数学定理高斯念小学的时候,有一次老师在教完加法后,想要休息一下,便出了一道题目要同学们算算看。

题目是:1+2+3+……+97+98+99+100=?老师心想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了。

原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?高斯告诉大家,把1加至100与100加至1排成两排相加。

也就是说:1+2+3+4+……+96+97+98+99+100100+99+98+97+96+……+4+3+2+1=101+101+101+……+101+101+101+101共有一百个101相加,但算式重复了两次,所以把10100除以2便得到答案5050。

从此,高斯小学的学习远远超越了其他同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!2.高斯用尺规作正17边形(两千年数学难题)1796年的一天,在德国哥廷根大学,一个19岁的青年吃完晚饭,开始做导师单独布置给他的每天例行的两道数学题。

像往常一样,前2道题目在2 个小时内顺利地完成了。

但青年发现今天导师给他多布置了一道题。

第三道题写在一张小纸条上,是要求只用圆规和一把没有刻度的直尺做出正17边形。

他也没有多想,就做了起来。

然而,青年感到非常吃力。

开始,他还想,也许导师特意给我增加难度吧。

但是,随着时间一分一秒地过去了,第三道题竟毫无进展。

青年绞尽脑汁,感到自己学到的数学知识对解开这道题没有什么帮助。

困难激起了青年的斗志:我一定要把它做出来!他拿起圆规和直尺,在纸上画着,尝试着用一些超常规的思路去解这道题.。

当窗口露出一丝曙光时,青年长舒了一口气,他终于做出了这道难题!见到导师时,青年感到有些内疚和自责。

数学王子高斯:广为流传的故事

数学王子高斯:广为流传的故事

数学王子高斯:广为流传的故事
故事一:高斯的出身:高斯于1777年4月30日出生于不伦瑞克。

高斯是一对普通夫妇的儿子。

他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。

在她成为高斯父亲的第二个妻子之前,她从事女佣工作。

他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师(关于高斯父亲的职业有很多版本)。

他曾说,他能够在脑袋中进行复杂的计算。

故事二:在高斯三岁时,他爸爸正要给工人发薪水的时候,小高斯站了起来说:“爸爸,你弄错了。

”然后他说了另外一个数目.原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱.重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆.(高斯曾回忆说:我在学说话前就会计算了。


故事三:也是高斯最出名的故事,在高斯10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=?
这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正把数字一个一个地相加.可这时,却传来了高斯的声音:“老师,我已经算好了!” (看到这我忽然想起我上初中时,数学竞赛班中,老师把竞赛题目写了一黑板,我还在努力的做第二个题目,我的同桌就站起来说出了所有题的答案,还一个不错,你不服天分是不行的,这是赤裸裸的智商碾压,你有过吗?)
老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050。

高斯数学家的故事3篇

高斯数学家的故事3篇

高斯数学家的故事第一篇:青年时期的高斯高斯,全名卡尔·弗里德里希·高斯。

他出生于1777年4月30日,是一个有天赋的数学家。

他的父亲是个贫穷的花匠,但他音乐造诣很高,因此给了高斯很好的音乐启蒙教育。

高斯自小就表现出了惊人的数学才能,他在父亲的授课下很快掌握了算术和初步代数。

高斯的父亲始终希望自己的儿子成为一名著名的数学家,因此他在高斯还很年轻的时候就为他安排了去Göttingen大学学习数学的机会。

高斯在这所著名大学学习了四年,期间他接受了学术大师们的指导,发表了一些重要的论文,并逐渐形成了自己的数学风格。

高斯在青年时期就创造了许多数学成就,这些成就使他成为了数学领域里的重要人物。

在他的第一篇著名论文“代数曲线上点的计数”,中,高斯发现了解决多项式方程的通用方法。

这个方法使其成为了代数几何中最早的数学分支之一。

他还研究了算术和分析,在微积分和差分方程方面有了许多重要的发现。

高斯注重数学实践,曾经领导一支项目小组,把天文观测和制图带入了新的高度,开发了一种适用于某些问题的航空望远镜。

这种设备在当时是一项非常先进的技术。

尽管高斯的天赋使他成为了一名值得敬佩的数学家,但他并没有将自己的才能浪费在自我陶醉之中。

相反,他非常关心一般大众的教育问题,他的一些贡献,比如广播学习模型,将教育从实体课堂中解放出来,使它成为每个人都可以获得的东西。

高斯在他的职业生涯中,对数学的发展作出了巨大的贡献,他的优秀才能和实际贡献在历史上占据了令人难以置信的位置。

然而,他最值得我们敬佩的地方,可能更多是他对教育的关爱和辛勤劳动。

第二篇:高斯的重要贡献高斯是19世纪最杰出的数学家之一,他在数学领域的工作涉及许多分支,包括几何学、代数学、与计算和概率论等领域。

下面是高斯在数学领域中的重要贡献:1.高斯分布:这个分布以高斯的名字命名,也称为正态分布。

它被广泛应用于自然科学、社会科学、工程、统计学、计算机科学等领域。

数学家高斯的故事

数学家高斯的故事

数学家高斯的故事⑴ 数学家高斯的小故事从一加到一百高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。

高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。

在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。

」然后他说了另外一个数目。

原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。

重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。

高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。

七岁时高斯进了 St. Catherine小学。

大约在十岁时,老师在算数课上出了一道难题:「把1到100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。

这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。

但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静*** 着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。

考完后,老师一张张地检查着石板。

大部分都做错了,学生就吃了一顿鞭打。

最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。

)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为101的数目,所以答案是50×101=5050。

由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

高斯小传

高斯小传

数学王子——高斯“如果我们把18世纪的数学家们想象为一系列的高山峻岭,那么最后一座使人肃然起敬的峰巅便是高斯”。

高斯是18、19世纪之交的最伟大的德国数学家,他的贡献遍及纯数学和应用数学的各个领域,成为世界数学界的光辉旗手。

人们欣赏他的天才,尊称他为“数学王子”。

并被誉为历史上伟大的数学家之一,和阿基米德、牛顿、欧拉同享盛名。

他的形象已经成为数学告别过去,走向现代数学时代的象征。

【人物介绍】高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。

高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于哥廷根。

幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。

1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。

从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。

高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。

他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。

1792年,15岁的高斯进入卡罗林学院。

在那里,高斯开始对高等数学作研究。

独立发现了二项式定理的一般形式、数论上的“二次互反律”、“质数分布定理”、及“算术几何平均”。

1795年高斯进入格丁根大学。

1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。

5年以后,高斯又证明了形如"Fermat素数"边数的正多边形可以由尺规作出。

1855年2月23日清晨,高斯于睡梦中去世。

【生平事迹】高斯是一对普通夫妇的儿子。

他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。

诚实和坚持不懈的努力渐渐使他能过得稍微舒适一些,但他的境况从来没有宽裕过。

数学家高斯的故事字左右

数学家高斯的故事字左右

数学家高斯的故事字左右数学家高斯的故事卡尔·弗里德里希·高斯,被誉为数学史上最伟大的数学家之一。

他经历了一次又一次的困境与挑战,却始终坚定地追求着数学的理解与普及。

在他的一生中,有许多故事,令人感到敬佩与惊叹。

少年天才高斯生于1777年,在德国的布伦瑞克城。

他的父亲是一位待遇不错的花匠,母亲则是一个勤奋的主妇。

从小,高斯便展现出了惊人的天才。

他能够在母亲教他初等算术之后,自己发现规律与算法,甚至发明了一种算数漂亮术。

一天,高斯的老师要给班上每个学生一道算术题,让他们一个接一个算,高斯却在不到几秒钟的时间里就算出了答案。

当时的老师有些震惊,便问他:你是怎么算的?高斯回答道:“一个接一个地算,这么麻烦。

”初出茅庐高斯14岁时,由于家庭的经济困难,他不得不辍学去帮助父亲工作。

但他并没有放弃学习,仍然自学了许多数学内容。

在顺便帮一位商人算帐时,他不仅发现了一个错误,还向商人解释了如何正确的计算。

商人感激不已,为他支付了去大学的费用,这样高斯才有了接受更高等教育的机会。

他在18岁时,发表了一篇著名的论文,证明了所有的正多边形都可以用规则的直尺和圆规来画出来。

这个成果让许多数学家为之震惊,并赞誉他是一个天才。

这一成就使高斯开始为世人所知。

冲破壁垒当时,数学界最大的问题是一类叫做“五次方程”的方程式,许多数学家仿佛陷入了无法解决的困境。

而高斯,通过坚定的信念与非凡的数学才华,却在21岁时解决了这个难题。

他发现了一个公式,可以用来计算出任何五次方程的解,这成为了他在数学史上的里程碑。

此后,高斯又开始着手解决其它的难题。

他在研究椭圆函数的过程中,发现了一些日后被用来解决通信密码的数学原理。

他在研究未知数的最小化问题时,也发现了最小二乘法,这个方法被广泛用于科学研究之中。

高斯的贡献不仅在于他独特的思维,也在于他为数学的普及做出的巨大贡献。

过程的重要性高斯的研究中,最令人钦佩的是他对过程的重视。

他一直认为,数学研究最重要的不在于发现答案,而是在于探索方法,以及理解数学规则的本质。

高斯简介及主要事迹(3篇)

高斯简介及主要事迹(3篇)

第1篇一、高斯简介卡尔·弗里德里希·高斯(Carl Friedrich Gauss,1777年4月30日-1855年2月23日),德国数学家、物理学家、天文学家。

高斯是数学史上最伟大的数学家之一,被誉为“数学王子”。

他的研究成果涵盖了数学的各个分支,对现代数学的发展产生了深远的影响。

二、高斯的主要事迹1. 数论领域的贡献(1)证明了代数基本定理:高斯在1801年发表的论文《算术研究》中,证明了代数基本定理,即每一个非零的复系数多项式都有至少一个复根。

这一成果为复数理论的发展奠定了基础。

(2)提出了高斯整数:高斯在1801年的论文中,首次提出了高斯整数的概念,即形如a+bi的数,其中a、b为整数,i为虚数单位。

高斯整数在数论研究中具有重要的地位。

(3)解决了二次互反律:高斯在1801年发现了二次互反律,即对于任意的两个整数m和n,当n不等于0且m的奇偶性与n的奇偶性相同时,存在整数x和y,使得m^2 = nx^2 + ny^2。

这一成果为解决丢番图方程奠定了基础。

2. 几何学领域的贡献(1)非欧几何的萌芽:高斯在1827年发表了论文《关于曲面的一般研究》,提出了非欧几何的基本思想。

他认为,几何学的研究对象不仅仅是平面,还包括曲面。

这一观点为后来的非欧几何发展奠定了基础。

(2)最小二乘法:高斯在1795年提出了最小二乘法,这是一种处理数据误差和不确定性问题的数学方法。

最小二乘法在统计学、物理科学等领域有着广泛的应用。

3. 天文学领域的贡献(1)高斯-塞德尔迭代法:高斯在1809年提出了高斯-塞德尔迭代法,这是一种求解线性方程组的迭代方法。

该方法在数值计算中具有重要的地位。

(2)地球椭球形的计算:高斯在1821年计算出了地球椭球形的参数,为后来的地球物理研究和地理信息系统的发展提供了重要的数据基础。

4. 物理学领域的贡献(1)电磁学:高斯在电磁学领域的研究成果为麦克斯韦方程组的建立奠定了基础。

高斯巧解数学题的名人故事

高斯巧解数学题的名人故事

高斯巧解数学题的名人故事高斯巧解数学题的名人故事约翰·卡尔·弗里德里希·高斯,德国著名数学家、物理学家、天文学家、几何学家,大地测量学家。

接下来由小编为大家整理出高斯巧解数学题的名人故事,希望能够帮助到大家!高斯是德国杰出的数学家、物理学家,近代数学的奠基人之一。

高斯上小学后,对数学很感兴趣。

有一天,数学老师白尔脱又有点不大高兴。

他一走进教室,就板着脸对同学们说:“今天德课是你们自己算题,谁先算完,谁就先回家吃饭。

”说着,就在黑板上写下了这样一个题目:1+2+3+4+5+6+......+100=?同学们立刻拿出练习本,低头认真地算起来。

白尔脱呢?则坐在一旁看起小说来了。

谁知他刚看了一页,小高斯就举手报告老师说:“老师,这道题我算完了。

”“算完了?”白尔脱没好气地挥挥手,“你算得这样快,准会算错,再算算看吧~!”“不会错的',我检查过了,还验算了一遍。

”高斯理直气壮的说。

白尔脱走到高斯座位前,拿起他的练习本一看,答案是“5050”,显然一点不错。

“你是怎么算的?”白尔脱惊奇地问道。

高斯一板一眼地回答说:“我发现这个题目一头一尾挨次的两个数相加,都是101,总共50个101,所以答案就是50x101=5050。

”“真妙啊!”白尔脱兴奋地拍了一下桌子,接着大声地对全体同学说:“真没想到,你们当中竟会出现数学神童!”从此,白尔脱完全改变了对农村孩子高斯地看法。

他尤其喜欢高斯灵活聪明、刻苦学习地态度,在学习中,他经常对高斯进行个别辅导。

在白尔脱地精心培养下,高斯对数学地兴趣越来越浓,造诣越来越深,十七岁时,他就发现了数论中的二次互反律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学家:高斯高斯(C.F.Gauss,1777.4.30-1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。

父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。

迪德里赫后来娶了罗捷雅,第二年他们在成长过程中,幼年的高斯主要是力于母亲和舅舅。

高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。

弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。

他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。

若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。

正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。

七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。

高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。

同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,後来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最後的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。

经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之後,Bartels也没有什麽东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。

数学老师看了高斯的作业後就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。

罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。

他性格坚强、聪明贤慧、富有幽默感。

高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。

当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。

罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。

然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。

在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。

1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。

数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。

在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。

不过,这很可能是一个不真实的传说。

据对高斯素有研究的著名数学史家E.T.贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+ (100899)当然,这也是一个等差数列的求和问题(公差为198,项数为100)。

当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。

E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。

高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。

数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。

一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。

贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。

而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。

高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。

他特意从汉堡买了最好的算术书送给高斯,说:"你已经超过了我,我没有什么东西可以教你了。

"接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。

经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。

这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。

布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。

1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。

1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大家,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。

1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时─虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。

公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。

所有这一切,令高斯十分感动。

他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。

1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。

慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。

由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。

彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。

公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。

现在,高斯又在他的生活中面临着新的选择。

为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。

1807年,高斯赴哥丁根就职,全家迁居于此。

从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。

洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。

同时,这也标志着科学研究社会化的一个良好开端。

高斯的学术地位,历来为人们推崇得很高。

他有"数学王子"、"数学家之王"的美称、被认为是人类有史以来"最伟大的三位(或四位)数学家之一"(阿基米德、牛顿、高斯或加上欧拉)。

人们还称赞高斯是"人类的骄傲"。

天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。

高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。

从研究风格、方法乃至所取得的具体成就方面,他都是18─19世纪之交的中坚人物。

如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。

随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。

作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。

勤奋好学,善于观察分析是高斯成功的秘诀!再加上他自身的天赋。

刻苦的探索,持之以恒的工作态度。

使他成为了人类历史上最伟大的数学家之一。

有人曾形容高斯“能从九霄云外的高度按照某种观点掌握星空和和深奥数学的天才”。

而他本人却说:“假如别人和我一样刻苦和持续地思考数学真理,他们会做出同样的发现。

”1855年2月23日,哥廷根大学的巨人高斯走完了他的人生旅程,终年78岁。

由于他的广泛成就显得光彩夺目,人们尊他为数学家之“王”。

德国著名的数学家F.克莱因曾说;“如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个使人肃然起敬的颠峰便是高斯————那样一个在广泛丰富的领域充满了生命的新元素。

”高斯的一生,是典型的学者的一生。

他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。

相关文档
最新文档