调频无线话筒制作教程
调频无线话筒的制作

调频无线话筒的制作
1.选购合适的无线收发器:选择适合自己使用需求的无线收发器,考虑频率范围、功率、灵敏度等因素。
2.选择合适的麦克风:根据自己需要的声音效果和使用场景,选择合适的有源或无源麦克风。
3.连接麦克风和无线收发器:使用音频线将麦克风和无线收发器连接起来,确保连接稳固。
4.安装天线:将无线收发器的天线安装好,确保天线与无线收发器之间的连接牢固。
5.设定频率和信道:根据无线收发器的操作说明,将无线收发器设定到合适的频率和信道。
6.测试无线传输效果:使用设备提供的耳机或扬声器,测试无线传输效果是否正常。
同时,也要测试无线传输的范围和稳定性。
7.进行必要的调整:根据测试结果,对无线收发器的参数进行必要的调整,以获得最佳的无线传输效果。
8.固定和保护设备:确保无线收发器和麦克风的固定,避免在使用过程中发生松动或摔落。
同时,注意保护设备,避免受到撞击和水分侵害。
9.定期维护和保养:定期检查设备工作状况,及时更换电池、修复损坏的线缆等,以保证设备的正常运作。
总之,制作调频无线话筒需要选择合适的无线收发器和麦克风,并进行连接、设定频率和信道,进行无线传输效果测试和必要的调整,最后固定和保护设备,并定期进行维护和保养。
制作一个高质量的调频无线话筒
需要技术和细心的操作,但随着技术的进步和设备的普及,现在已经有许多成品调频无线话筒可供购买和使用。
自制简易调频无线话筒+电路图+详解

自制无线话筒-电路图-制作过程全解本文转载于/hamradio/20081029/134.html本人前后成功制作过四种电路的调频无线话筒,距离从 20米到五面米不等。
这篇文章介绍的是本人初一时制作的第一款调频无线话筒,元器件少,易于调试是这款电路的最大特点,有效距离 20米左右。
读此文章后略觉有些不妥之处,对此进行少量修改红字部分,本意并非不尊重原作者,只是怕读者多走弯路,不敬之处还请谅解。
本文介绍一种简单的无线话筒。
可在调频广播波段实行无线发射。
本机可用于监听、信号转发和电化教学。
由于结构简单、装调容易,所以很适合初学者装置。
一、无线话筒的电路图和工作原理图1是调频无Array线话筒的电路图。
图1无线话筒的电路图驻极体话筒将声音转变为音频电流,加在由晶体管V、线圈L和电容器C1组成的高频振荡器上,形成调频信号由天线发射到空间。
在10米范围内,由具有调频广播波段(FM波段)的收音机接收,经扬声器还原成的声音,实现声音的无线传播。
二、元件的规格和检测方法本机结构简单,包括电池在内,一共才有8只元件。
C1为10PF瓷片电容器C2为10uF电解电容器R为lk 1/8W碳膜电阻k为拨动开关V为高频三极管9018(这个三极管选择十分重要一定要选高频的,9018为超高频三极管频率可达1G 此外也可选8050功率大些想提高发射距离时可考虑,但静噪方面不如9018小)BM为小型驻极体话筒 L为空心线圈。
1.发射极(e)2. 基极(b)3.集电极(c)驻极体话筒灵敏度越高,无线话筒的效果越好。
它的外形和测试方法见图2,对话筒吹气时,万用表指针摆动越大,驻极体话筒越灵敏。
图 2 驻极体话筒检测L 是空心电感线圈。
用直径 0.5毫米的漆包线在元珠笔芯上密绕 10圈(12圈)。
用小刀将线圈两端刮去漆皮后镀锡,可点上一些石蜡油固定线圈然后抽出元珠笔芯,形成空心线圈(如图 3)。
三、焊接电路 图 4是调频无线话筒的印刷电路图。
简易调频无线话筒的设计与制作

天津大学网络教育学院专科毕业论文题目:简易调频无线话筒的设计与制作完成期限:2016年1月8日至 2016年4月20日学习中心:嘉兴专业名称:电气自动化技术学生姓名:兰启发学生学号:************指导教师:***调频无线话筒设计第1章绪论信息传输是人类社会生活的重要内容。
从古代的烽火到近代的旗语,都是人们寻求快速远距离通信的手段。
直到19世纪电磁学的理论与实践已有坚实的基础后,人们开始寻求用电磁能量传送信息的方法。
通信(Communication)作为电信(Telecommunication) 是从19世纪30年度开始的。
面向21世纪的无线通信,无线通信的系统组成、信道特性、调制与编码、接入技术、网络技术、抗衰落与抗干扰技术以及无线通信的新技术和新应用的发展更是一日千里,简易无线发射网络。
正是这些电路的基础,设计与调试发射电路能使我们快速步入电子设计的大门。
几乎每个电子爱好者都有利用无线电的雄心壮志,不论遥控一架飞机或者与外界通讯,都表达他们发射的期望讯号。
这介绍的一部发射机,十分适用初学者,造价低廉,输出功率不超过5-8mW,发射范围在房屋区可至300米左右,显示其灵敏度和清晰度俱佳,电路设计中最富挑战性的部份就是只需用3V电源和半波天线便有如此的发射能力。
另外,由于电路需要的零件十分之少,故可将之安放在一个火柴盒(比国内-般火柴盒大一些)里,作为窃听器,可谓神不知、鬼不觉,不过,并非限于这方面用途上,可将之安置在婴孩房、闸门或走廊通道,监视实际情况,此外亦可当作为夜间保安装置。
电路之电流损耗少于5mA,用两枚干电池可连续工作80至100小时之间。
电路在正常工作下非常稳定,频率漂移极小,测试:工作8小时之后,仍不需再校接收机。
唯一影响输出频率是电池的状况,当电池老化时,频率有轻微改变。
通过此设计,学习有关FM发送,可了解其优越的地方,特别它产生无噪声的极高质讯号,即使利用低功率发送,也很容易取得良好的范围。
FM调频无线话筒

FM调频无线话筒
本人前些年在商场买了这款无线话筒,拆开解剖电路,绘出此电路。
制作只要按图纸焊接无误,一装即成。
频率FM88—108MHz,发射距离100米左右.
制作: 5T是0.5mm粗漆包线,绕成内径5mm,5圈的线圈。
和所有元件焊接在电路板上,1.5V电源。
调试:打开调频收音机,最好是数字显示的,调到一的没有节目的频率。
通电,对着MIC话筒喊话或打开MP3用耳机线接到调MIC两端做信号源。
5T是调整频率的,线圈拉长或缩短,调到该频率上。
如果有声音,把话筒和收音机拉开距离反复调到最佳效果。
经试验电压加到12V.,接上电视室外天线直线距离能达到1000米左右。
吉林省通化县光华镇程磊制作
2011年9月14日。
实验一调频无线话筒制作

实验一调频无线话筒制作实验目的对于06级同学:1、建立对简单高频电路的感性认识;2、掌握高频电路的制作基础;3、熟悉高频电路的调试和测试方法。
对于07级同学:1、熟悉基本元器件的识别、检测和使用方法;2、熟悉各种测量仪器仪表的使用;3、掌握制作电路的基本方法,熟练焊接;4、掌握电路原理图的识读。
实验原理电路原理如上图所示,驻极体话筒将声音信号转变为电压信号,经电容C6耦合加到三极管基极,本振Q1工作于约88-108MHz频率,频率由振荡线圈L1和电容C2调整,该频率也决定于晶体管结电容、电容器C3及偏压元件,如100Ω射极电阻。
电源接通时,基极电容器C1逐渐充电,而C3则经振荡线圈L1充电,电容C2也充电,线圈产生磁场。
基极电压渐渐上升时,晶体管导通,并将内阻并接在C3两侧。
当电容C1充电至该极的工作电压时,就会发生好几个杂乱的频率,我们假定在靠近工作电压之时基极电压继续上升,电容C3试图阻止射极电压的移动,到电容器内的能量耗尽及再不阻止射级移动之时,基—射极电压降低,晶体管截止,流过线圈的电流也停止,磁场衰减。
磁场衰减,产生一个相反方向的电压,集电极电压反过来上升,并以相反方向电容C2充电,这电压也影响到对C3电容充电,及射极电阻R4上的电压降使到晶体管进入更深的截止。
电容C2充电时,射极电压下跌,晶体管开始导通,电流流入线圈,与衰减磁场对抗。
线圈上电压反转,形成集电极电压下降,这个变化通过电容C2传送到射极上,结果晶体管进入导通,把C2电容短路,周期再开始重复。
所以,Q1在此形成一个振荡,产生88-108MHz的信号。
放大后的音频信号经电容C6耦合加到三极管基极,改变振荡频率,产生所需的FM讯号。
电容C2和电感L1构成谐振选频电路,谐振频率就是电路的发射频率;发射频率经电容C5耦合至天线,要注意的是C5不能太大,否则电路非常容易受外界环境影响,导致振荡频率不稳。
元件选择各元件参数均在原理图中标注,电源VCC电压典型值为6V,实测4-7V均可工作。
调频无线话筒

并将空心线圈均匀地拉长至14mm,在空 心线圈的第8圈处焊出一个抽头引出端,将空 心线圈分为8:3两部分。最后做好的电感L如图:
五、电路板上元器件安装
从元件面插入电路板,从铜箔面将其焊牢。 晶体管和电容的引脚应该适当剪短。
安装和焊接电感L时,应注意保持长度和形状不变, 以免电感量误差过大。
通信电子线路课程设计
调频无线话筒的设计
一、工作原理
调频无线话筒是一种可以将声音或者歌 声转换成88~108MHz的无线电波发射出去, 距离可以达到30~50m,用普通调频收音机 或者带收音机功能的手机就可以接收。
将声音调制到高频载波上,可以用调幅 的方法,也可以用调频的方法。 与调幅相比,调频具有保真度好,抗干 扰性强的优点,缺点是占用频带较宽。 调频的方式一般用于超短波波段。
晶体管T1和其周围的电路构成高频振荡器, 振荡频率由L、C4、C5、T1的结电容决定。
加至T1管基极的音频信号电压,会使c-b 结电容随它变化,从而实现调频。 C4可改变中心频率的选择(88~108MHz)。 T1输出调频信号,通过C7耦合到T2管的 基极,经过T2管放大后从天线辐射出去。T2管 构成高频放大器,还有缓冲作用,隔离了天线 对高频振荡器的影响,使振荡频率更加稳定。
四、元器件识别
用到的元器件和材料: 晶体管、电阻器、电容器、微调电容器、驻 极体话筒、电池卡子、绝缘导线。 1. 晶体管(9018) 两个,一个作高频 振荡,另一个作高频 放大。 外形和管脚如图:
2.绕线电感L 把铜线绕在一根直径约为4.5mm的圆 柱体上,密绕11圈(如图,一次性筷子的粗 细)
1. 连接驻极体话筒和电源开关 用两小段裸铜丝焊接在驻极体话筒BM背 面的引出端上作为引脚。两个引出端有正、负 之分,安装焊接时注意不要搞错。
高频电子技术任务8 调频无线话筒的制作
图8-3
调频信号的波形图
知识链接一
角度调制原理
二、调相信号分析
根据调相波定义,载波信号的瞬时相位随调制信号 线性变化, 即 φp(t) = ωct+kpUΩmcosΩt (8-13)
式中, kp为与调相电路有关的比例常数,单位是rad/v 。令 Δφp(t) = kpUΩmcosΩt则表示瞬时相位中与调制信号成线性变化的部分,称为瞬 时相位的相位偏移量,简称相移。用mp表示最大相移, 则
m f u (t ) max k f Um (8-4)
Δωm表示瞬时角频率偏离中心频率的ωc最大值。习惯上把最大频偏Δωm称为 频偏。
根据瞬时相位与瞬时角频率的关系可知,对式(8-3)积分可得调频波的瞬时相
位
f (t ) (t )dt f u (t ) dt ct f 0 u (t )dt 0 0 c
(8-7)
以上分析表明,在调频时,瞬时角频率的变化与调制信号成线性关 系,瞬时相位的变化与调制信号积分成线性关系。 将式(8-2)分别代入式(8-3)、(8-5)、(8-7)得 瞬时角频率
(t ) c k f Um cos t c m cos t (8-8)
瞬时相位
(t ) ct
k f U m
sin t ct m f sin t
(8-9)
调频信号数学表达式
知识链接一
角度调制原理
uFM Ucm cos(ct m f sin t )
(8-10)
式中,
mf
k f U m
m f m F
(8-11)
为调频波的最大相移,又称调 频指数。mf 值可大于1 。 如图8-3所示,给出了调制信 号、瞬时频偏、瞬时相偏、对应的 波形图 。
无线调频话筒的设计与制作
方案论证
方案一:
方案二
设计制作无线话筒的方案很多。如图所示为设计总方案框图。通过话筒 把声音转换成音频电信号经放大器放大后,采用调频调制的方式,由 高频振荡器调制出高频调制信号,并由天线以电磁波的形式发射。
其发射信号频率在87~108MHz范围内,这正是调频收音机接收的范围。 该调频范围调频台少,可避免电台的相互干扰,同时该频段外界其他 干扰也较少,还可以直接用调频收音机作为接收机,以方便制作
原理图框
声音信号 采集电路 声音信号 放大电路 高频振荡调 频电路 高频功率 放大电路
无线发射 电路
电路图以及工作原理
图为调频无线话筒的具体原理图,该调频话筒,具有使用电压低、受话 灵敏、制作简易的特点,能拾取距话筒3m以外的轻微讲话声;有效距 离50m左右,可用作电话教学的无线话筒等。
外界声波通过话筒MIC转变为音频电压信号,经C1耦合至由VT1组 成的微音放大电路放大后,经C2加至电容三点式高频振荡器振荡管 VT2基极,使其c-b结电容变化,振荡频率随之变化,实现频率调制。 调制后的高频信号经C7耦合到发射天线ANT,并向外辐射。L1、C4为 调谐回路,改变L1的匝数与间距可改变工作频率。 MIC选用小型驻极体话筒。三极管VT1用β>60的超高频管,如9018、 3DG56、3DG80等、C1、C2为电解电容,其余为高频瓷介电容。电阻 均为1/8碳膜电阻。L1用0.4~0.6mm漆包线在圆珠笔芯上绕7~8圈脱胎 而成。ANT采用0.5m长的软铜线作尾拖天线。
1u 1 1 1 1 1 1
2
实物正反面
仿真结果
位号 名称 规格 数量 R1 电阻 10k 1 R2 电阻 82k 1 R3 电阻 12k 1 R4 电阻 15k 瓷片电容 10p C5 瓷片电容 20P C6 瓷片电容 12P T1 三极管 9018 T2 三极管 9013 MIC 话筒 铜丝 天线
一种调频无线话筒的制作
一种调频无线话筒的制作
本文介绍一种调频无线话筒的制作,采用晶体稳频,能够很好地解决三点式振荡发射机带来的频率漂移现象。
整机电路图如附图所示.整个电路由音频放大和高频振荡两大部分组成。
音频放大电路中的R2、R3、V1构成集电极负反馈放大器.对驻极体话筒输出的微弱信号进行放大。
V2和外围元件构成并联型晶体振荡器,L2和C5谐振在晶体的三倍频上。
如果选用30MHz的晶体.那幺发射的中心频率为
90MHz。
L1为高频扼流圈.一方面为了防止后面的高频信号窜入音频放大区造成干扰,另一方面用来给变容管D1提供静态偏置电压。
经过一级音频放大后的信号直接加在变容二极管的两端,这样一来.振荡频率就随着音频信号的强度在中心频率附近变化。
当然,由于晶体振荡器的Q值很高,这种直接调频的方法获得的频偏是很小的。
如果要获得较大的频偏,可以选用振荡频率较低的晶体配合倍频电路来实现。
本电路中变容管选用BB910.笔者是从调频收音机上拆下来的。
MIC为驻极体话筒,三极管V1采用普通的小功率三极管,如9014、BC547等.V2采用高频小功率三极管9018。
晶振采用标称频率为30MHz或32.768MHz的晶体。
如果能买到三倍频后频率能落到88MHz~108MHz的其他频率的晶体.也是可以的。
L1用市售的色码电感,电感量在几微亨到几十微亨之间均。
调频(FM)无线话筒制作3例
300m FM无线话筒电路概述:这里向各位介绍的一部袖珍发射机,十分适合初学者,电路简单易制,造价低廉,输出功率不超过8mW,发射范围在房屋区可至300米左右,用一部普通的FM收音机接收,显示其灵敏度和清晰度俱佳,电路设计中最富挑战性的部份就是只用3V电源和半波天线便有如此的发射能力.电路的电流损耗少于5mA,用两枚干电池可连续工作80至100小时.电路在正常工作下非常稳定,频率漂移极小.测试:工作8小时之后,仍不需再校接收机.唯一影响输出频率是电池的状况,当电池老化时,频率有轻微改变.工作原理:从电路图可见,该电路分两级,一级音频放大器和一级RF振荡器.驻极体话筒内实际藏有一枚FET,如您喜欢的话,可视之为一级,FET将话筒前振膜之电容变化放大,这就是驻极休话筒很灵敏的原因.音频放大级乃由其射极晶休管Q1担任,增益20~50,将放大的讯号送往振荡级之基极.振荡级Q2工作于约88MHz,这频率是由振荡线圈(共5圈)和?47pF电容器调整的,该频率也决定于晶体管,18pF回输电容器及还有少数偏压元件,例如470Ω射极电阻和22K基极电阻.电源接通时,1nF基极电容器通过22K电阻逐渐充电,而18pF则经振荡线圈的470Ω电阻充电,但更加之快,47pF电容也充电(其两端虽仅得小的电压),线圈产生磁场.基极电压渐渐上升时,晶体管导通,并有效地将内阻并接在18pF两侧.当1nF电容充电至该极的工作电压时,就会发生好几个杂乱的周波,故我们假定讨论在靠近工作电压之时基极电压继续上升,18nF电容试图阻止射极用压的移动,到电容器内的能量耗尽及再不阻止射级移动之时,基一射极电压降低,晶体管截止,流人线圈的电流也停止,磁场衰溃.磁场衰溃,产生一个相反方向的电压,集极电压反过来从原本的2.9V上升至超过3V,并以相反方向47pF电容充电,这电压也影响到对18pF电容充电,及470Ω射极电阻上的电压降使到晶休管进入更深的截止.18pF电容充电时,射电压下跌,并跌到某一晶休管开始导通,电流流入线圈,与衰溃磁场对抗.线圈上之电压反转,形成集极电压下降,这个变化通过18pF电容传送到射极上,结果晶休管进入更深的导通,把18pF电容短路,周期再开始重复,故此,Q2在此形成一个振荡,产生88MHz的交流讯号.放大后之音频讯号经0.1uF电容溃入到Q2之基极,改变振荡频率,产生所需的FM电磁波.制作过程:现在将所有零件放在工作桌上,逐个零件分清楚其数值,然后分类按次序排列好,这佯做很有条理,避免焊错零件.锡线方面最好采用特细0.6lmm的树脂(松香)锡线,因其身细,焊接起来很快并易上锡, 15~20 W小型电烙铁已足够,使用前用海绵将烙铁咀抹干净,唯一须自制的是线圈,需用一段22号BS(Ф0.5mm)或24号BS(Фm.71mm)的漆包铜线或者包锡铜线,在3mm直径的线圈架上绕5圈,如在中型螺丝起子上绕亦可,然后将圈与圈之间分隔开的5.5mm左右.到最后调整频率的时候,就要接着将线圈前后压缩或者拉长,改变输出频率.如您的线圈用漆包线做的话,须把线的两头上的漆皮剥掉,然后上一点锡.电路调试:所有零件都焊接完毕后,最好先用肉眼检视一切焊接点,是否有假焊,或者焊料用得太多而造成与临近短路,彻底查清楚后,才可进行校准和测试性能,测试步骤是加一条短的天线(5~10cm长)于底板的A点上调谐-部FM收音机于整个波段上,寻找该信号.最好令发射机与收音机保持一定距离,以防止检拾到任何谐波或者侧波.如收音机未能检到载波,表示频率可能太低,将振荡线圈稍为拉长,及再次尝试.如果采用包锡铜线绕制线圈,注意圈与圈之间不应彼此碰到.如采用漆皮铜线,则须要知道圈的连通性,可用万用表之低阻挡去量度它,或者量度电路电流,应约4~6mA.一旦检到载波,话筒的负载电阻R1决定灵敏度,可将之减至10k或者加至47k,视所需求的灵敏度而定.要确定发射之频率完全远离开您本地任何FM广播电台,因为电台发出之信号强大.将线圈压缩,频率便降低;将之拉长,频率便上升,这样免用到微调电容,节省本机的造价,不过,如您喜欢亦可用微调电容.顺道一提, C4最好用一枚39pF陶瓷电容,将另一个10pF或22pF微调电容并于共上,这样可更仔细调整电路.用线圈调整很容易偏离FM波段.理论上,用感器也应调节至维持调谐电路的L/C比,但我们需要的范围很小,故并没有限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调频无线话筒制作教程
每一个电子爱好者都有电子制作的经历,从开始时的不断失败到逐渐得心应手,其中的滋味是圈外人所无法领会的。
其实有很多朋友很想进入电子制作的大门,但是苦于找不到入门的方法而在门外徘徊电子技术的实践性极强,通过组装、调试制作套件是快速入门的好办法,电子制作实验室网站准备利用网站这个多媒体平台,将制作套件的全过程用文字、图片等形式展现出来,最大限度的提高制作的成功率,并且在制作的过程中穿插一些基本的元件知识,帮助初学者完成制作。
这里我们精心挑选的几个品种已经在很多学校中推广使用,学生们反映这些小制作趣味性强,能学到知识,而且可以把学生多余的精力引到正轨上去,或许还是一门以后能谋生的技艺。
无线话筒原理分析篇:
下面的就是调频无线话筒的电路图,电路非常简洁,没有多余的器件。
高频三极管V1和电容C3、C5、C6组成一个电容三点式的振荡器,对于初学者我们暂时不要去琢磨电容三点式的具体工作原理,我们只要知道这种电路结构就是一个高频振荡器就可以。
三极管集电极的负载C4、L组成一个谐振器,谐振频率就是调频话筒的发射频率,根据图中元件的参数发射频率可以在88~108MHZ之间,正好覆盖调频收音机的接收频率,通过调整L的数值(拉伸或者压缩线圈L)可以方便地改变发射频率,避开调频电台。
发射信号通过C4耦合到天线上再发射出去。
R4是V1的基极偏置电阻,给三极管提供一定的基极电流,使V1工作在放大区,R5是直流反馈电阻,起到稳定三极管工作点的作用。
这种调频话筒的调频原理是通过改变三极管的基极和发射极之间电容来实现调频的,当声音电压信号加到三极管的基极上时,三极管的基极和发射极之间电容会随着声音电压信号大小发生同步的变化,同时使三极管的发射频率发生变化,实现频率调制。
话筒MIC可以采集外界的声音信号,这里我们用的是驻极体小话筒,灵敏度非常高,可以采集微弱的声音,同时这种话筒工作时必须要有直流偏压才能工作,电阻R3可以提供一定的直流偏压,R3的阻值越大,话筒采集声音的灵敏度越弱。
电阻越小话筒的灵敏度越高,话筒采集到的交流声音信号通过C2耦合和R2匹配后送到三极管的基极,电路中D1和D2两个二极管反向并联,主要起一个双向限幅的功能,二极管的导通电压只有0.7V,如果信号电压超过0.7V就会被二极管导通分流,这样可以确保声音信号的幅度可以限制在正负0.7V
之间,过强的声音信号会使三极管过调制,产生声音失真甚至无法正常工作。
CK是外部信号输出插座,可以将电视机耳机插座或者随身听耳机插座等外部声音信号源通过专用的连接线引入调频发射机,外部声音信号通过R1衰减和D1、D2限幅后送到三极管基极进行频率调制。
所以这个套件不但可以做一个无线话筒,而且还可以做一个电视机无线耳机使用。
电路中发光二极管D3用来指示工作状态,当调频话筒得电工作时就会点亮,R6是发光二极管的限流电阻。
C8、C9是电源滤波电容,因为大电容一般采用卷绕工艺制作的,所以等效电感比较大,并联一个小电容C8可以使电源的高频内阻降低,这个电路非常常见。
电路中K1和K2其实是一个开关,它有三个不同的位置,拨到最左边时断开电源,最右边是K1、K2接通做调频话筒使用,中间位置是K1接通,K2断开,做无线转发器使用,因为做无线转发器使用是话筒不起作用,但是话筒会消耗一定的静态电流,所以断开K2可以降低耗电、延长电池的寿命。
无线话筒动手实践篇:。