安徽省合肥市蜀山区七年级(下)期末数学试卷
2017-18学年合肥市蜀山区七年级(下)数学期末试卷及答案

2017-18学年合肥市蜀山区七年级(下)期末试卷满分100分一、单项选择题(共10小题,每小题3分,共30分)1、如果x 的立方根是3,那么x 的值为( ) A.3 B.9 C. 33 D.272、把不等式1-<x 的解集在数轴上表示出来,则正确的是()A .B .C .D .3、下列代数式,能用完全平方式进行因式分解的是( )A.12-xB. 22y xy x ++C. 412+-x x D. 122-+x x 4、下列分式运算结果正确的是( ) A.1-=---yx y x B. 1-=-+y x y x C. y x y x y x -=--22 D. x y yx y x -=+--2)( 5、已知a a 220182=-,则a a 220352--的值是( ) A.4053 B. 4053- C. 17- D.176、下列图形中,由21∠=∠,能得到CD AB //的是( )7、如图半径为1的圆从1的点开始沿着数轴向左滚动一周,圆上的点A 与表示1的点重合,滚动一周后到达点B ,点B 表示的数是( )A .-2πB .1-2πC .-πD .1-π8、如果解关于x 的分式方程5332=---xa x x 时出现了增根,那么a 的值是( ) A.6- B. 3- C. 6 D.39、观察下列等式①2312233-=- ②6523233-=-③12734233-=-④.....20945233-=-根据上述规律判断下列等式错误的是( ) A. 20152016403120152016233⨯-=- B. 20162017403320162017233⨯=--C.20172018201720184035333⨯=+-D. 23340372019201820192018=+-⨯ 10.已知:如图,点E 、F 分别在直线AB 、CD 上,点G 、H 在两直线之间,线段EF 与GH 相交于点O 且有︒=∠+∠180CFE AEF ,21∠=∠-∠AEF ,则图中相等的角共有.....................................................( )A.5对B. 6对C. 7对D.8对二、填空题(共6小题,每小题3分,共18分)11、计算:64643-= .12、一种微型电子元件的半径约为0.000025米,把0.000025用科学计数法可表示为 .13、不等式342132<---x x 的所有自然数解的和等于 .14、如图,将一块含︒45的直角三角板的直角顶点放在直尺的一边上,当︒=∠351时,则2∠的度数是 .15、若关于x 的分式方程3133=--x m x 的解为正数,则m 的取值范围是 . 16、已知:如图,点M 、N 分别在直线AB 、CD 上,若在同一平面内存在一点O ,使︒=∠20OMB ,︒=∠50OND ,则=∠MON .第14题图 第16题图三、解答题(共7小题,共52分)17、化简:)2)(2()3)(1(a a a a +--+-18、解不等式组:⎪⎩⎪⎨⎧-<>-33431x x x19、先化简,再求值:324448222x x x x x -+÷++-,其中8=x .20、如图,在边长为1个单位长度的小正方形组成的8×8网格中,三角形ABC的三个顶点均在格点上,将三角形向左平移3个单位长度、再向下平移2个单位长度得到三角形DEF .(1)画出平移后的三角形DEF ;(2)若点A 向左平移n 个单位长度在三角形DEF 的内部,请直接写出所有符合条件的整数n 的值.21、某种糖果在甲、乙两商场标价相同,“六•一”期间两家商场同时推出优惠活动:甲商场购买此糖果总金额超过50元后,超出50元的部分按八折收费;在乙商场购买此糖果总金超过20元后,超出20元的部分按九折收费,请问顾客购买此糖果总金额在什么范围内到乙场更合算?22、已知:如图,CD 平分ACB ∠,,18021︒=∠+∠A ∠=∠3,求CED ∠的度数.23、南淝河是合肥的母亲河,为改善南淝河河道水质和生态环境,合肥市城建委准备对其中的18公里的河道进行清理,经招投标,由甲、乙两个工程队来完成,已知甲队每天能清理的河道长度是乙队的1.5倍,且甲队清理4500米河道要比乙队少用5天.(1)求甲、乙两工程队每天能清理的河道长度分别是多少米?(2)若甲、乙两队每天清理河道的费用分别是5000元、3000元,因工期影响,两队清理河道的总天数不超过50天,请直接写出如何安排甲乙两队施工的天数,使施工总费用最低?最低费用是多少万元?参考答案一、选择题1~10 DCCDD ABABD二、填空题11、4- 12、5105.2-⨯ 13、3 14、︒80 15、91≠->m m 且 16、︒︒3070或17、18、19、20、21.22、23.。
蜀山期末七年级数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -5B. 0C. 1/2D. -1/22. 下列各数中,有理数是()A. √4B. √9C. √16D. √253. 已知a=3,b=-2,那么a-b的值是()A. 1B. 5C. -5D. -14. 下列各式中,绝对值最小的是()A. |2|B. |-2|C. |0|D. |1|5. 一个数的相反数是它的()A. 等于B. 大于C. 小于D. 负数6. 下列各数中,无理数是()A. √2B. √4C. √9D. √167. 下列各式中,正确的是()A. 2 + 3 = 5B. 2 - 3 = -5C. 2 × 3 = 6D. 2 ÷ 3 = 0.666...8. 下列各数中,质数是()A. 2B. 4C. 6D. 89. 一个等腰三角形的底边长是6cm,腰长是8cm,那么这个三角形的周长是()A. 20cmB. 21cmC. 22cmD. 24cm10. 下列各图形中,是轴对称图形的是()A. 矩形B. 正方形C. 等腰三角形D. 长方形二、填空题(每题3分,共30分)11. -5的相反数是_________,5的倒数是_________。
12. 3/4 + 1/2 = _________,2 - 3/4 = _________。
13. 下列各数中,有理数是_________,无理数是_________。
14. 下列各数中,质数是_________,合数是_________。
15. 一个等腰三角形的底边长是8cm,腰长是10cm,那么这个三角形的周长是_________cm。
16. 下列各图形中,是轴对称图形的是_________。
三、解答题(每题10分,共40分)17. 计算下列各式的值:(1)-3 + 4 - 2(2)5/6 ÷ 2/3(3)√9 × √1618. 解下列方程:(1)2x - 3 = 7(2)5/2 - 3/4 = x19. 一个长方形的长是10cm,宽是6cm,求这个长方形的面积。
安徽省合肥市2023-2024学年七年级下学期期末数学试题(原卷+答案解析)

2023-2024学年度第二学期期末教学质量检测七年数学试题卷一、选择题(本题共10小题,每小题3分,共30分)1.下列四个实数中,是无理数的是()A.3.14B.πC.227D.2.下列各式中,计算正确的是()A.2= B.3252a a a +=C.32a a a÷= D.()2222a b a b =3.关于x 的一元一次不等式1x m -≤的解集在数轴上的表示如图所示,则m 的值为()A.2- B.1- C.1 D.24.如图,给出了过直线AB 外一点P ,作已知直线AB 的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C .同旁内角互补,两直线品行D.过直线外一点有且只有一条直线与这条直线平行5.已知3m n +=,1mn =,则()()1212m n --的值为()A.l -B.2- C.1D.26.把公式U V VR S -=变形为用U ,S ,R 表示V .下列变形正确的是()A.R S V US += V R =C.UV R S=+ V R S=+7.若20.2a =-,212b -⎛⎫=- ⎪⎝⎭,()02c =-,则它们的大小关系是()A.c b a <<B.a b c <<C.a c b <<D.b a c<<8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知//AB CD ,87BAE ∠=︒,121DCE ∠=︒,则E ∠的度数是()A.28︒B.34︒C.46︒D.56︒9.分式方程22312111x x x x --=-+-的解为()A.4x = B.5x =- C.6x =- D.4x =-10.对于实数x ,我们规定[]x 表示不大于x 的最大整数,如[]22=,1=,[]1.52-=-.现对50进行如下操作:12350721−−−→=−−−→=−−−→=第次第次第次,这样对50只需进行3次操作后变为1,类似地,对1000最少进行()次操作后变为1.A.2B.3C.4D.5二、填空题(本题共6小题,每小题4分,共24分)11.我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003用科学记数法表示为______.12.分解因式:3123x x -=______.13.若()()223x x m x x n -+=+-,则m n -=______.14.如图,把一张长方形的纸条ABCD 沿EF 折叠,若∠BFC ′比∠1多9°,则∠AEF 为_____.15.已知2210x x --=,则32231065x x xx x -+--的值等于______.16.已知关于x 的不等式组21,519.22x x a x x +>+⎧⎪⎨+≥-⎪⎩(1)若不等式组的最小整数解为1x =,则整数a 的值为______;(2)若不等式组所有整数解的和为14,则a 的取值范围为______.三、解答题(本题共6小题,共46分)17.计算:()012 3.14π-+-.18.解不等式321132x x ++-<,并将其解集在数轴上表示出来.19.先化简,再求值:21(1)11aa a +÷--,其中2a =-.20.如图,AB //CD .∠1=∠2,∠3=∠4,试说明AD //BE,请你将下面解答过程填写完整.解:∵AB //CD ,∴∠4=()∵∠3=∠4∴∠3=()∵∠1=∠2∴∠1+∠CAF =∠2+∠CAE 即∠BAE =.∴∠3=)∴AD //BE ()21.“端午节”是我国的传统佳节,历来有吃“粽子”的习俗.我市某食品加工厂,拥有A 、B 两条粽子加工生产线.原计划A 生产线每小时加工粽子个数是B 生产线每小时加工粽子个数的45.(1)若A 生产线加工4000个粽子所用时间与B 生产线加工4000个粽子所用时间之和恰好为18小时,则原计划A 、B 生产线每小时加工粽子各是多少个?(2)在(1)的条件下,原计划A 、B 生产线每天均加工a 小时,由于受其他原因影响,在实际加工过程中,A 生产线每小时比原计划少加工100个,B 生产线每小时比原计划少加工50个.为了尽快将粽子投放到市场,A 生产线每天比原计划多加工3小时,B 生产线每天比原计划多加工13a 小时.这样每天加工的粽子不少于6300个,求a 的最小值.22.阅读材料:若满足()()321x x --=-,求()()2232x x -+-的值.解:设3x a -=,2x b -=,则()()321ab x x =--=-,()()321a b x x +=-+-=,所以()()()222223223x x a b a b ab -+-=+=+-=.请仿照上例解决下面的问题:(1)问题发现:若x 满足()()3510x x --=-,求()()2235x x -+-的值;(2)类比探究:若x 满足()()22202320242025x x -+-=.求()()20232024x x --的值;(3)拓展延伸:如图,正方形ABCD 和正方形MFNP 重叠,其重叠部分是一个长方形,分别延长AD ,CD ,交NP 和MP 于H 、Q 两点,构成的四边形NGDH 和MEDQ 都是正方形,四边形PQDH 是长方形.若10AE =,20CG =,长方形EFGD 的面积为200.求正方形MFNP 的面积.附加题(本题5分,计入总分,但总分不超过100分)23.有一组数据:记13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,…,()()2112n n a n n n +=++.123n n S a a a a =+++⋅⋅⋅+,则10S =______.答案解析一、选择题(本题共10小题,每小题3分,共30分)1.下列四个实数中,是无理数的是()A.3.14B.πC.227D.【答案】B 【解析】【分析】本题考查无理数,根据无限不循环小数叫做无理数,进行判断即可.【详解】解:在3.14,π,22711=中,π是无理数,故选B .2.下列各式中,计算正确的是()A.2=B.3252a a a +=C.32a a a ÷= D.()2222a b a b =【答案】C 【解析】【分析】利用最简二次根式,合并同类项,同底数幂的除法,幂的乘方,掌握相关定义是解题的关键.【详解】解:A.=,选项错误,不符合题意;B.3a 与2a 不是同类项,,选项错误,不符合题意;C.32a a a ÷=,选项正确,符合题意;D.()2242a ba b =,选项错误,不符合题意.故选:C .3.关于x 的一元一次不等式1x m -≤的解集在数轴上的表示如图所示,则m 的值为()A.2-B.1-C.1D.2【答案】D 【解析】【分析】本题考查了解一元一次不等式,先求得1x m ≤+,再根据数轴得13m +=,进而可求解,熟练掌握一元一次不等式的解法是解题的关键.【详解】解:1x m -≤,解得:1x m ≤+,由数轴得:13m +=,解得:2m =,故选D .4.如图,给出了过直线AB 外一点P ,作已知直线AB 的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线品行D.过直线外一点有且只有一条直线与这条直线平行【答案】A 【解析】【分析】由平行线的画法可知,∠2与∠1相等,根据图形判断出∠2与∠1的位置关系,由此可得答案.【详解】解:由平行线的画法可知,∠2与∠1相等,且∠2与∠1是一对同位角,所以画法的依据是:同位角相等,两直线平行.故选A .【点睛】本题考查的是平行线的原理,熟练掌握平行线的判定方法是解答本题的关键.5.已知3m n +=,1mn =,则()()1212m n --的值为()A.l- B.2- C.1D.2【分析】本题考查了多项式乘以多项式.由多项式乘以多项式进行化简,然后代入计算,即可得到答案.【详解】解:∵3m n +=,1mn =,∴()()21212421n m mnm n =--+--()124m n mn =-++,12341=-⨯+⨯1=-;故选:A .6.把公式U V VR S -=变形为用U ,S ,R 表示V .下列变形正确的是()A.R S V US += V R =C.UV R S=+ V R S=+【答案】D 【解析】【分析】本题考查解一元一次方程,将V 作为未知数,解方程即可.【详解】解:U V VR S-=,∴SU SV RV -=,∴()SU R S V =+,∴US V R S=+,故选D .7.若20.2a =-,212b -⎛⎫=- ⎪⎝⎭,()02c =-,则它们的大小关系是()A.c b a <<B.a b c <<C.a c b<< D.b a c<<【答案】C 【解析】【分析】本题考查有理数的乘方运算,负整数指数幂,零指数幂,根据有理数的乘方,负整数指数幂,零指数幂将a 、b 、c 算出结果,再比较大小.解题的关键是掌握有理数乘方的运算法则.【详解】解:2040.2.0a =-=-,4b =,1c =,∵0.0414-<<,8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知//AB CD ,87BAE ∠=︒,121DCE ∠=︒,则E ∠的度数是()A.28︒B.34︒C.46︒D.56︒【答案】B 【解析】【分析】延长DC 交AE 于F ,依据//AB CD ,87BAE ∠=︒,可得87CFE ∠=︒,再根据三角形外角性质,即可得到E DCE CFE ∠=∠-∠.【详解】解:如图,延长DC 交AE 于F ,//AB CD ,87BAE ∠=︒,87CFE ∴∠=︒,又121DCE ∠=︒ ,1218734E DCE CFE ∴∠=∠-∠=︒-︒=︒,故选B .【点睛】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.分式方程22312111x x x x --=-+-的解为()A.4x =B.5x =- C.6x =- D.4x =-【答案】D 【解析】【分析】本题考查解分式方程,将分式方程转化为整式方程,求解后,进行检验求出分式方程的解,即可.【详解】解:22312111x x x x --=-+-,去分母得:()()23121x x x ---=+,解得:4x =-;经检验,4x =-是原方程的解;故选D .10.对于实数x ,我们规定[]x 表示不大于x 的最大整数,如[]22=,1=,[]1.52-=-.现对50进行如下操作:12350721−−−→=−−−→=−−−→=第次第次第次,这样对50只需进行3次操作后变为1,类似地,对1000最少进行()次操作后变为1.A.2B.3C.4D.5【答案】C 【解析】【分析】本题考查了估算无理数的大小,解决本题的关键是明确[]x 表示不大于x 的最大整数.[]x 表示不大于x 的最大整数,依据题目中提供的操作进行计算即可.【详解】解:1234100030521→=→=→=→=第次第次第次第次,∴对1000最少进行4次操作后变为1,故选:C .二、填空题(本题共6小题,每小题4分,共24分)11.我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003用科学记数法表示为______.【答案】7310-⨯【解析】【分析】本题考查用科学记数法表示较小的数.绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000003用科学记数法表示为7310-⨯.故答案为:7310-⨯.12.分解因式:3123x x -=______.【答案】()()322x x x +-【解析】【分析】本题考查因式分解,先提公因式,再利用平方差公式法因式分解即可.【详解】解:()()()3231322342x x x x x x x ==+---;故答案为:()()322x x x +-.13.若()()223x x m x x n -+=+-,则m n -=______.【答案】5-【解析】【分析】本题考查多项式乘多项式,根据多项式乘以多项式的法则,将等式左边展开,根据恒等式,求出,m n 的值,代入代数式进行计算即可.【详解】解:()()()222222223x x m x mx x m x m x m x x n -+=+--=+--=+-,∴232m n m -==,,∴510m n ==,,∴5-=-m n ;故答案为:5-14.如图,把一张长方形的纸条ABCD 沿EF 折叠,若∠BFC ′比∠1多9°,则∠AEF 为_____.【答案】123°.【解析】【分析】∠EFC =x ,∠1=y ,则∠BFC ′=x ﹣y ,根据“∠BFC ′比∠1多9°、∠1与∠EFC 互补”得出关于x 、y 的方程组,解之求得x 的值,再根据AD ∥BC 可得∠AEF =∠EFC .【详解】设∠EFC =x ,∠1=y ,则∠BFC ′=x ﹣y ,∵∠BFC ′比∠1多9°,∴x ﹣2y =9,∵x+y =180°,可得x =123°,即∠EFC =123°,∵AD ∥BC ,∴∠AEF =∠EFC =123°,故答案为123°.【点睛】本题考查了平行线的性质及折叠问题,解题的关键是学会利用参数,构建方程组解决问题.15.已知2210x x --=,则32231065x x x x x -+--的值等于______.【答案】1【解析】【分析】本题考查已知式子的值,求代数式的值,根据2210x x --=,得到221x x =+,整体代入代数式进行求值即可.【详解】解:∵2210x x --=,∴221x x =+,∴()3223106321106x x x x x x x -+=+-+2263106x x x x=+-+249x x=-+()4219x x=-++849x x=--+4x =-,252154x x x x x --=+--=-,∴32231064154x x x x x x x -+-==---;故答案为:1.16.已知关于x 的不等式组21,519.22x x a x x +>+⎧⎪⎨+≥-⎪⎩(1)若不等式组的最小整数解为1x =,则整数a 的值为______;(2)若不等式组所有整数解的和为14,则a 的取值范围为______.【答案】①.1②.23a ≤<或10a -≤<【解析】【分析】本题考查一元一次不等式组的整数解问题,根据题意判断出1a -的取值范围是解题关键.根据题意可求不等式组的解集为1,5x a x >-⎧⎨≤⎩,再分情况判断出的取值范围,即可求解.【详解】解:解不等式组21,51922x x a x x +>+⎧⎪⎨+≥-⎪⎩得1,5x a x >-⎧⎨≤⎩,(1)∵不等式组的最小整数解为1x =,∴011a ≤-<,∴12a ≤<,则整数a 的值为1,故答案为:1;(2)∵不等式组所有整数解的和为14,若整数解为: 2345、、、,112,a ∴≤-<解得:23a ≤<,若整数解为:1012345-、、、、、、,211,a ∴-≤-<-解得:10a -≤<,综上,整数a 的值为23a ≤<或10a -≤<,故答案为:23a ≤<或10a -≤<.三、解答题(本题共6小题,共46分)17.计算:()012 3.14π-+-.【答案】0【解析】【分析】本题考查实数的混合运算,先计算零指数幂,负整数指数幂和开方运算,再进行加减即可.【详解】解:原式11122=+-0=.18.解不等式321132x x ++-<,并将其解集在数轴上表示出来.【答案】34x >-,数轴见解析【解析】【分析】本题考查了解一元一次不等式及在数轴上表示解集,先根据一元一次不等式的一般解法求得解集,再根据解集在数轴上表示的方法即可求解,熟练掌握一元一次不等式解法的一般步骤是解题的关键.【详解】解:去分母,得:()()236321x x +-<+,去括号,得:26663x x +-<+,移项得:263x x -<,合并得:43x -<,解得:34x >-,把34x >-在数轴上表示为:19.先化简,再求值:21(1)11a a a +÷--,其中2a =-.【答案】a +1,﹣1【解析】【分析】先把分式进行化简,然后把2a =-代入计算,即可求出答案.【详解】解:21(1)11a a a +÷--21111a a a a+--=⨯-(1)(1)1a a a a a-+=⨯-1a =+;当2a =-时,原式211=-+=-.【点睛】本题考查了分式的加减乘除运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简.20.如图,AB //CD .∠1=∠2,∠3=∠4,试说明AD //BE ,请你将下面解答过程填写完整.解:∵AB //CD ,∴∠4=()∵∠3=∠4∴∠3=()∵∠1=∠2∴∠1+∠CAF =∠2+∠CAE即∠BAE =.∴∠3=)∴AD //BE ()【答案】∠BAE ;两直线平行,同位角相等;∠BAE ;等量代换;∠CAD ;∠CAD ;等量代换;内错角相等,两直线平行【解析】【分析】根据平行线的性质得出∠4=∠BAE ,求出∠3=∠BAE ,求出∠3=∠CAD ,根据平行线的判定得出即可.【详解】∵AB ∥CD ,∴∠4=∠BAE (两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE (等量代换),∵∠1=∠2,∴∠1+∠CAF =∠2+∠CAE ,即∠BAE =∠CAD ,∴∠3=∠CAD (等量代换),∴AD∥BE(内错角相等,两直线平行),故答案为:∠BAE;两直线平行,同位角相等;∠BAE;等量代换;∠CAD;∠CAD;等量代换;内错角相等,两直线平行【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.21.“端午节”是我国的传统佳节,历来有吃“粽子”的习俗.我市某食品加工厂,拥有A、B两条粽子加工生产线.原计划A生产线每小时加工粽子个数是B生产线每小时加工粽子个数的4 5.(1)若A生产线加工4000个粽子所用时间与B生产线加工4000个粽子所用时间之和恰好为18小时,则原计划A、B生产线每小时加工粽子各是多少个?(2)在(1)的条件下,原计划A、B生产线每天均加工a小时,由于受其他原因影响,在实际加工过程中,A生产线每小时比原计划少加工100个,B生产线每小时比原计划少加工50个.为了尽快将粽子投放到市场,A生产线每天比原计划多加工3小时,B生产线每天比原计划多加工13a小时.这样每天加工的粽子不少于6300个,求a的最小值.【答案】(1)A、B生产线每小时加工粽子各是400、500个;(2)a的最小值为6.【解析】【分析】(1)首先根据“原计划A生产线每小时加工粽子个数是B生产线每小时加工粽子个数的45”设原计划B生产线每小时加工粽子5x个,则原计划A生产线每小时加工粽子4x个,再根据“A生产线加工4000个粽子所用时间与B生产线加工4000个粽子所用时间之和恰好为18小时”列出方程,再解即可;(2)根据题意可得A加工速度为每小时300个,B的加工速度为每小时450个,根据题意可得A的加工时间为(a+3)小时,B的加工时间为(a+13a)小时,再根据每天加工的粽子不少于6300个可得不等式(400-100)(a+3)+(500-50)(a+13a)≥6300,再解不等式可得a的取值范围,然后可确定答案.【详解】(1)设原计划B生产线每小时加工粽子5x个,则原计划A生产线每小时加工粽子4x个,根据题意得4000400018 45x x+=,∴x=100,经检验x=100为原分式方程的解∴4x=4×100=400,5x=5×100=500,答:原计划A、B生产线每小时加工粽子各是400、500个;(2)由题意得:(400﹣100)(a+3)+(500﹣50)(a+13a)≥6300,解得:a≥6,∴a 的最小值为6.【点睛】此题主要考查了分式方程和一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系和等量关系,列出方程和不等式.22.阅读材料:若满足()()321x x --=-,求()()2232x x -+-的值.解:设3x a -=,2x b -=,则()()321ab x x =--=-,()()321a b x x +=-+-=,所以()()()222223223x x a b a b ab -+-=+=+-=.请仿照上例解决下面的问题:(1)问题发现:若x 满足()()3510x x --=-,求()()2235x x -+-的值;(2)类比探究:若x 满足()()22202320242025x x -+-=.求()()20232024x x --的值;(3)拓展延伸:如图,正方形ABCD 和正方形MFNP 重叠,其重叠部分是一个长方形,分别延长AD ,CD ,交NP 和MP 于H 、Q 两点,构成的四边形NGDH 和MEDQ 都是正方形,四边形PQDH 是长方形.若10AE =,20CG =,长方形EFGD 的面积为200.求正方形MFNP 的面积.【答案】(1)24(2)1012-(3)正方形MFNP 的面积为900【解析】【分析】本题考查完全平方公式,整体思想:(1)利用题干给定的方法,结合完全平方公式进行求解即可;(2)利用题干给定的方法,结合完全平方公式进行求解即可;(3)根据题意,用字母来代替DE 和DG 的长度,通过化简,来得到要求的面积.【小问1详解】解:设3,5x a x b -=-=,则:352a b x x +=-+-=,∵()()3510x x --=-,∴10ab =-,∴()()22222221024a b a b ab +=+-=-⨯-=,即:()()223524x x -+-=;【小问2详解】设20232024,a x b x ==--,则:202320241a x x b +=-+-=,∵()()22202320242025x x -+-=,∴222025a b +=,∴()()2222120252024ab a b a b =+-+=-=-,∴1012ab =-,即:()()202320241012x x --=-;【小问3详解】设AD x=则10ED AD AE x =-=-,20DG CD CG x =-=-,()()1020200EFGD S DE DG x x =⨯=--=矩形,()()1020FN FG GN ED DG x x ⎡⎤=+=+=-+-⎣⎦,()()221020MFNP S FN x x ⎡⎤==-+-⎣⎦正方形,设10x a -=,20x b -=,则200ab =,()102010a b x x -=---=,()()2224104200900MFNP S a b a b ab =+=-+=+⨯=正方形,∴正方形MFNP 的面积为900.附加题(本题5分,计入总分,但总分不超过100分)23.有一组数据:记13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,…,()()2112n n a n n n +=++.123n n S a a a a =+++⋅⋅⋅+,则10S =______.【答案】9588【解析】【分析】本题主要考查了有理数的混合运算,数字规律探索,根据题意找出数字变化的规律是解题关键.通过探索数字变化的规律进行分析计算即可.【详解】解:()()2112n n a n n n +=++()()()()11212n n n n n n n n +=+++++()()()11221n n n n =++++111111222n n n n ⎛⎫=-+- ⎪+++⎝⎭,∴1012310S a a a a =++++ 1111111111111112321334224111221012⎛⎫⎛⎫⎛⎫=-+-+-+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1111111111111112334111221322421012⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111111111···212213241012⎛⎫=-+-+-++- ⎪⎝⎭11111112122121112⎛⎫=-++-- ⎪⎝⎭9588=,故答案为:9588.。
2017-2018学年安徽省合肥市蜀山区七年级(下)期末数学试卷(解析版)

2017-2018学年安徽省合肥市蜀山区七年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,共30分)1.如果x的立方根是3,那么x的值为()A.3B.9C.D.272.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.3.下列代数式,能用完全平方公式进行因式分解的是()A.x2﹣1B.x2+xy+y2C.x2﹣x+D.x2+2x﹣14.下列分式运算结果正确的是()A.B.C.D.5.已知2018﹣a2=2a,则2035﹣a2﹣2a的值是()A.4053B.﹣4053C.﹣17D.176.在下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.7.如图,半径为1的圆从表示1的点开始沿着数轴向左滚动一周,圆上的点A与表示1的点重合,滚动一周后到达点B,点B表示的数是()A.﹣2πB.1﹣2πC.﹣πD.1﹣π8.如果解关于x的分式方程=5时出现了增根,那么a的值是()A.﹣6B.﹣3C.6D.39.观察下列等式①23﹣13=32﹣2②33﹣23=52﹣6③43﹣33=72﹣12:④53﹣43=92﹣20…请根据上述规律,请判断下列等式错误的是()A.20163﹣20153=40312﹣2016×2015B.20173﹣20163﹣40332=2017×2016C.40352﹣20183+20173=2018×2017D.2018×2019﹣20183+20193=4037210.已知:如图,点E、F分别在直线AB、CD上,点G、H在两直线之间,线段EF与GH相交于点O,且有∠AEF+∠CFE=180°,∠AEF﹣∠1=∠2,则在图中相等的角共有()A.5对B.6对C.7对D.8对二、填空题(共6小题,每小题3分,共18分)11.计算:﹣=.12.一种微型电子元件的半径约为0.000025米,把0.000025用科学记数法可表示为.13.不等式的所有自然数解的和等于.14.如图,将一块含45°的直角三角板的直角顶点放在直尺的一边上,当∠1=35°时,则∠2的度数是.15.若关于x的分式方程的解为正数,则m的取值范围是.16.已知:如图,点M、N分别在直线AB、CD上,且AB∥CD,若在同一平面内存在一点O,使∠OMB=20°,∠OND=50°,则∠MON=.三、解答题(共7小题,共52分)17.(6分)化简:(a﹣1)(a+3)﹣(2﹣a)(2+a)18.(6分)解不等式组:19.(7分)先化简,再求值:,其中x=8.20.(7分)如图,在边长为1个单位长度的小正方形组成的8×8网格中,三角形ABC的三个均在格点上,将三角形ABC向左平移3个单位长度、再向下平移2个单位长度得到三角形DEF.(1)画出平移后的三角形DEF;(2)若点A向左平移n个单位长度在三角形DEF的内部,请直接写出所有符合条件的整数n的值.21.(8分)某种糖果在甲、乙两商场标价相同,“六•一”期间两家商场同时推出优惠活动:甲商场购买此糖果总金额超过50元后,超出50元的部分按八折收费;在乙商场购买此糖果总金超过20元后,超出20元的部分按九折收费,请问顾客购买此糖果总金额在什么范围内到乙场更合算?22.(8分)已知:如图,CD平分∠ACB,∠1+∠2=180°,∠3=∠A,∠4=35°,求∠CED的度数.23.(10分)南淝河是合肥的母亲河,为改善南淝河河道水质和生态环境,合肥市城建委准备对其中的18公里的河道进行清理,经招投标,由甲、乙两个工程队来完成,已知甲队每天能清理的河道长度是乙队的1.5倍,且甲队清理4500米河道要比乙队少用5天.(1)求甲、乙两工程队每天能清理的河道长度分别是多少米?(2)若甲、乙两队每天清理河道的费用分别是5000元、3000元,因工期影响,两队清理河道的总天数不超过50天,请直接写出如何安排甲乙两队施工的天数,使施工总费用最低?最低费用是多少万元?2017-2018学年安徽省合肥市蜀山区七年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,共30分)1.【分析】根据立方根的定义求出即可.【解答】解:∵x的立方根是3,∴x=33=27,故选:D.【点评】本题考查了立方根的定义,能熟记立方根的定义是解此题的关键.2.【分析】根据数轴上表示不等式解集的方法进行解答即可.【解答】解:∵此不等式不包含等于号,∴可排除B、D,∵此不等式是小于号,∴应向左化折线,∴A错误,C正确.故选:C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.3.【分析】直接利用完全平方公式分解因式即可得出答案.【解答】解:A、x2﹣1=(x+1)(x﹣1),不能用完全平方公式分解因式,故此选项错误;B、x2+xy+y2,不能用完全平方公式分解因式,故此选项错误;C、x2﹣x+=(x﹣)2,能用完全平方公式分解因式,故此选项正确;D、x2+2x﹣1,不能用完全平方公式分解因式,故此选项错误;故选:C.【点评】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.4.【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=﹣,不符合题意;B、原式不能约分,不符合题意;C、原式==x+y,不符合题意;D、原式=﹣=﹣(x﹣y)=y﹣x,符合题意,故选:D.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.5.【分析】由2018﹣a2=2a知﹣a2﹣2a=﹣2018,代入原式=2035+(﹣a2﹣2a)计算可得答案.【解答】解:∵2018﹣a2=2a,∴﹣a2﹣2a=﹣2018,则原式=2035+(﹣a2﹣2a)=2035﹣2018=17,故选:D.【点评】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.6.【分析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【解答】解:A、∠1=∠AEF,∠2=∠EFD,∠AEF于∠DFE是内错角,由∠1=∠2能判定AB ∥CD,故本选项正确;B、∠1、∠2是内错角,由∠1=∠2能判定AD∥BC,故本选项错误;C、由∠1=∠2不能判定AB∥CD,故本选项错误;D、∠1、∠2是四边形中的对角,由∠1=∠2不能判定AB∥CD,故本选项错误;故选:A.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.7.【分析】因为圆从原点沿数轴向左滚动一周,可知AB=π,再根据数轴的特点及π的值即可解答.【解答】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴AB之间的距离为圆的周长=2π,A点在数轴上表示1的点的左边.∴A点对应的数是1﹣2π.故选:B.【点评】本题考查的是数轴的特点及圆的周长公式.圆的周长公式是:L=2πr.8.【分析】分式方程去分母转化为整式方程,由分式方程有增根求出a的值即可.【解答】解:去分母得:2x+a=5x﹣15,由分式方程有增根,得到x﹣3=0,即x=3,代入整式方程得:6+a=0,解得:a=﹣6,故选:A.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.【分析】根据题意找出数字的变化规律,根据规律计算,判断即可.【解答】解:观察等式可以得到规律:(n+1)3﹣n3=(2n+1)2﹣n(n+1),20163﹣20153=40312﹣2016×2015,A正确,不符合题意;20173﹣20163=40332﹣2017×2016,∴20173﹣20163﹣40332=﹣2017×2016,B错误,符合题意;40352﹣20183+20173=2018×2017,C正确,不符合题意;2018×2019﹣20183+20193=40372,D正确,不符合题意;,故选:B.【点评】本题考查的是有理数的混合运算、数字的变化规律,掌握有理数的混合运算法则、正确找出数字的变化规律是解题的关键.10.【分析】依据∠AEF+∠CFE=180°,即可得到AB∥CD,依据平行线的性质以及对顶角的性质,即可得到图中相等的角.【解答】解:∵∠AEF+∠CFE=180°,∴AB∥CD,∴∠AEF=∠DFE,∠CFE=∠BEF,∵∠AEF﹣∠1=∠2,∠AEF﹣∠1=∠AEG,∴∠AEG=∠2,∴∠1=∠EFH,∠BEG=∠CFH,∴GE∥FH,∴∠G=∠H,又∵∠EOG=∠FOH,∠EOH=∠GOF,∴图中相等的角共有8对,故选:D.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.二、填空题(共6小题,每小题3分,共18分)11.【分析】首先计算开立方和开平方,然后再计算有理数的加减即可.【解答】解:原式=4﹣8=﹣4.故答案为:﹣4.【点评】此题主要考查了实数运算,关键是正确进行开立方和开平方.12.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 025=2.5×10﹣5.故答案为:2.5×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的自然数数即可.【解答】解:2(x﹣2)﹣3(1﹣x)<8,2x﹣4﹣3+3x<8,2x+3x<8+4+3,5x<15,x<3,∴不等式的所有自然数解的和为0+1+2=3,故答案为:3.【点评】本题考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.【分析】利用平行线的性质以及三角形外角性质,即可得到∠2 的度数.【解答】解:如图,由平行线的性质,可得∠3=∠2,∵∠1=∠4=35°,∠A=45°,∴∠3=∠A+∠4=80°,∴∠2=80°,故答案为:80°.【点评】本题考查了平行线的性质,解答本题的关键是掌握:两直线平行,同位角相等.15.【分析】解分式方程求出方程的解,由分式方程的解为正数求出m的范围即可.【解答】解:解方程,得:x=,∵方程的解为正数,∴>0且≠3,解得:m>﹣1且m≠9,故答案为:m>﹣1且m≠9.【点评】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.16.【分析】分两种情况:点O在AB,CD之间,点O在AB上方,过O作OP∥AB,依据平行线的性质,即可得到∠MON的度数.【解答】解:分两种情况:当点O在AB,CD之间时,过O作OP∥AB,则OP∥CD,∴∠OMB=∠POM=20°,∠OND=∠PON=50°,∴∠MON=∠POM+∠PON=20°+50°=70°;当点O在AB上方时,过O作OP∥AB,则OP∥CD,∴∠OMB=∠POM=20°,∠OND=∠PON=50°,∴∠MON=∠PON﹣∠POM=50°﹣20°=30°;故答案为:70°或30°.【点评】本题主要考查了平行线的性质,解决问题的关键是作平行线,利用平行线的性质以及角的和差关系进行计算.三、解答题(共7小题,共52分)17.【分析】先计算多项式乘多项式、平方差公式,再合并同类项即可得.【解答】解:原式=a2﹣a+3a﹣3﹣22+a2=2a2+2a﹣7.【点评】考查了平方差公式和多项式乘多项式,属于基础计算题,熟记计算法则解题即可.18.【分析】先分别求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式1﹣x>3,得:x<﹣2,解不等式<,得:x>12,所以不等式组无解.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:====,当x=8时,原式==.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.【分析】(1)根据平移的定义作出三顶点分别平移得到对应点,再顺次连接可得;(2)根据所作图形可得.【解答】解:(1)如图所示,△ABC即为所求;(2)由图知,n=3或4.【点评】本题考查了利用平移变换作图,准确找出对应点的位置是解题的关键,熟悉网格结构对解题也很关键.21.【分析】分别求出两家商场购物需要的钱数,然后列出不等式求解即可.【解答】解:顾客购买此糖果总金额为x元,①当20<x≤50时,甲商场消费金额:x元;乙商场消费金额:20+(x﹣20)×0.9=2+0.9x(元).2+0.9x﹣x=2﹣0.1x<0,此时,在乙商场消费合算;②当x>50时,甲商场消费金额:50+(x﹣50)×0.8=0.8x+10(元);乙商场消费金额:20+(x﹣20)×0.9=0.9x+2(元)依题意得:0.8x+10>0.9x+2解得x<80故x的取值范围是20<x<80.综合①②知,当顾客购买此糖果总金额在80元内到乙场更合算.【点评】考查了一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.22.【分析】根据角平分线定义求出∠ACB,求出EF∥AB,根据平行线的性质得出∠3=∠EDB,求出∠A=∠EDB,根据平行线的判定得出DE∥AC即可.【解答】解:∵∠4=35°,CD平分∠ACB,∴∠ACB=2∠4=70°,∵∠1+∠2=180°,∠2+∠EFD=180°,∴∠1=∠EFD,∴EF∥AB,∴∠3=∠EDB,∵∠A=∠3,∴∠A=∠EDB,∴DE∥AC,∴∠ACB+∠CED=180°,∵∠ACB=70°,∴∠CED=110°.【点评】本题考查了平行线的性质和判定和角平分线定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.23.【分析】(1)设乙工程队每天能清理的河道长度是x米,则甲工程队每天能清理的河道长度是1.5x米,根据他们清理4500米河道的时间差是5天列出方程;(2)设安排甲队施工的天数是a天,乙施工的天数是b天,根据总天数不超过50天列出不等式并解答.【解答】解:(1)设乙工程队每天能清理的河道长度是x米,则甲工程队每天能清理的河道长度是1.5x米,依题意得:﹣=5解得x=300经检验x=300是所列方程的解,则1.5x=450答:甲工程队每天能清理的河道长度是450米,乙工程队每天能清理的河道长度是300米;(2)设安排甲队施工的天数是a天,乙施工的天数是b天.由题意知,即a+60﹣1.5a≤50,解得:a≥20.设施工总费用为w万元,由题意,得w=5000a+3000b=5000a+3000×(60﹣1.5a)=500a+180000,∵k=500>0,∴w随x的增大而增大,∴当a=20时,w取最小值,最小值为500×20+180000=19(万元).答:安排甲队施工20天,乙队施工30天时,施工总费用最低,最低费用为19万元.【点评】本题考查了分式的应用、解一元一次不等式以及一次函数的性质,解题的关键是:(1)根据数量关系找出函数解析式;(2)根据数量关系列出函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(或函数关系式)是关键.。
蜀山区数学期末试卷七年级

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. -2.5B. √4C. 0.1010010001…D. π2. 如果a,b是方程2x-3=0的两个根,那么a+b的值是()A. 3B. 2C. 0D. 13. 下列图形中,属于轴对称图形的是()A. 正方形B. 等腰三角形C. 矩形D. 等腰梯形4. 已知函数y=2x-3,当x=4时,y的值为()A. 5B. 7C. 9D. 115. 在平面直角坐标系中,点P(-3,2)关于x轴的对称点是()A. (-3,-2)B. (3,2)C. (3,-2)D. (-3,2)6. 下列等式中,正确的是()A. 3x=2x+xB. 3x=2(x+x)C. 3x=2(x+x+x)D. 3x=2(x+x+x+x)7. 下列代数式中,含有二次项的是()A. 2x^3+5x^2-3x+1B. 3x^2-2x+4C. 2x+3D. 4x^2+5x-28. 已知等差数列{an}中,a1=2,公差d=3,则第10项an的值为()A. 29B. 31C. 33D. 359. 下列各式中,不是不等式的是()A. 2x<5B. 3x=6C. 4x>8D. x≤210. 已知函数y=3x+2,当x=-1时,y的值为()A. 1B. 2C. 3D. 4二、填空题(每题3分,共30分)11. -5的相反数是__________,|-3|的值是__________。
12. 若a=-2,则|a|+|a|的值是__________。
13. 在平面直角坐标系中,点A(2,3)与点B(-1,4)之间的距离是__________。
14. 若等差数列{an}中,a1=3,公差d=2,则第5项an的值为__________。
15. 已知一次函数y=kx+b,当x=1时,y=2,当x=2时,y=4,则该函数的解析式为__________。
16. 已知一元二次方程x^2-5x+6=0的两个根分别为x1和x2,则x1+x2的值为__________。
安徽省合肥市蜀山区2023-2024学年七年级下学期期末数学试题(无答案)

2023/2024学年度第二学期七年级期末质量检测数学试卷温馨提示:1.数学试卷4页,三大题,共23小题,满分100分,考试时间100分钟,请合理分配时间。
2.请你仔细核对每页试卷下方页码和题数,核实无误后再答题.3.请将答案写在答题卷上,在试卷上答题无效,考试结束只收答题卷.4.请你仔细思考,认真答题,不要过于紧张,祝考试顺利!一、选择题(本大题共10小题,每小题3分,满分30分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列实数中,是无理数的是( )A .0.1B .C .2πD2.石墨烯是碳的同素异形体,具有优异的光学、电学、力学特性,在材料学、能源、生物医学等方面具有重要的应用前景.单层石墨烯的厚度为0.0000000335cm ,将0.0000000335这个数用科学记数法表示为( )A .B .C .D .3.下列运算中,正确的是( )A .B .C .D .4.已知a <b ,下列结论中,错误的是()A .B .a +c <b +cC .-3a >-3bD .5.如图,立定跳远是安徽省初中学生体育中考的选考项目,测量立定跳远成绩的依据是()A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .两直线相交有且只有一个交点6.将分式中的x ,y 的值都扩大为原来的3倍,则分式的值( )A .不变B .扩大为原来的6倍C .缩小为原来的D .扩大为原来的3倍7.下列图形中,由∠1=∠2,能得到的是()A .B .67-93.3510-⨯83.3510-⨯933.510-⨯70.33510-⨯111-=-0=321a a ÷=()2224ab a b -=33a b<22ac bc >2xx y-13AB CD ∥C .D .8.如图为商场某品牌椅子的侧面图,椅面DE 与地面AB 平行,椅背AF 与BD 相交于点C ,其中∠DEF =120°,∠ABD =55°,则∠ACB 的度数是()A .70°B .65°C .60°D .50°9.若关于x 的一元一次不等式组有3个整数解,则m 的取值范围是( )A .0≤m <1B .0<m <1C .-4≤m <-3D .0<m ≤110.已知实数a 、b 、c 满足c -a -b =ab ,下列结论一定正确的是( )A .若a =3,b =-1,则c =1B .若a +b =0,则c >0C .若,则D.若,则二、填空题(本大题共6小题,每小题3分,满分18分)11.若分式有意义,则x 的取值范围为______.12.因式分解:______.13.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,即三角形的三边长分别为a ,b ,c ,记,那么其面积.如果某个三角形的三边长分别为2,3,3,其面积S介于整数n 和n +1之间,那么n 的值是______.14.如图,直线AB 、CD 相交于点O ,∠AOC =25°,EO ⊥CD ,垂足为O ,OF 平分∠BOE ,则∠DOF =______°.15.凸透镜成像是自然界中的一个基本现象,其中物距记为u ,像距记为v ,透镜焦距记为f ,三者满足关系式:,若已知u 、f ,则v =_____.16.如图,,点E ,F 分别在直线AB ,CD 上,点P 在AB ,CD 之间,若,∠EPF =150°,∠PFC =120°,那么∠AEP =______°.242x m x ->⎧⎨-≤⎩221,32ab a b =+=52c =()241110,m m c m a b+=-≠=2ab m =21x -2xy x -=2a b cp ++=S =111u v f+=AB CD ∥三、解答题(本大题共7小题,满分52分)17.(6分)计算:18.(6分)解不等式:,并把它的解集在数轴上表示出来.19.(7分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点A ,B ,C 都在格点(网格线的交点)上,现将△ABC 平移,使点A 平移到点D ,点E ,F 分别是B ,C 的对应点.(1)请在图中画出平移后的△DEF ;(2)△DEF 的面积为______.20.(7分)先化简,再求值:,其中x =4.21.(8分)观察下列等式:第1个等式:第2个等式:第3个等式:第4个等式:……(1)写出符合以上规律的第5个等式:______;(2)已知n 为正整数,写出符合以上规律的第n 个等式,并说明等式成立的理由.22.(8分)如图,CE 平分∠ACD ,AE 平分∠CAB 交AD 于F ,且∠1+∠2=90°.()()()2115x x x --+-7132x x +-≤222121124x x x x x +-+⎛⎫-÷ ⎪+-⎝⎭()()()22221122122⨯+=⨯+-⨯()()()22222134134⨯+=⨯+-⨯()()()22223146146⨯+=⨯+-⨯()()()22224158158⨯+=⨯+-⨯(1)试说明:;(2)若∠3-∠4=20°,求∠AFC 的度数.23.(10分)某科技协会为迎接科技活动月,准备购进若干台A 、B 两种型号的无人机进行开幕式表演.已知每个A 型号的无人机进价比每个B 型号进价多500元,且用28000元购进A 型号无人机的数量与用24000元购进B 型号的数量相同.(1)求A 、B 型号的无人机每个进价分别是多少元?(2)若该协会购进B 型号无人机数量比A 型号的数量的2倍还少3个,且购进A 、B 两种型号无人机的总数量不超过10个,现两种无人机都要购买且预算经费是3万元,请判断预算经费是否够用?并说明理由.AB CD ∥。
蜀山区期末数学七年级试卷

一、选择题(每题3分,共30分)1. 下列各数中,正整数是()A. -2.5B. 0.001C. -3D. 52. 如果a > b,那么下列不等式中正确的是()A. a + 3 > b + 3B. a - 3 < b - 3C. a + 2 < b + 2D.a - 2 >b - 23. 下列各数中,有理数是()A. √16B. √-4C. πD. √34. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 20cmB. 24cmC. 26cmD. 28cm5. 下列函数中,一次函数是()A. y = 2x + 5B. y = x^2 + 3C. y = √xD. y = 2x^36. 在平面直角坐标系中,点A(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)7. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 平行四边形8. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是()A. 8cm^3B. 12cm^3C. 18cm^3D. 24cm^39. 下列各式中,分式有意义的是()A. x - 1 / x + 1B. x + 1 / x - 1C. x^2 - 1 / x^2 + 1D. x^2 + 1 / x^2 - 110. 下列各数中,绝对值最小的是()A. -2B. -1.5C. 0D. 1.5二、填空题(每题3分,共30分)11. 3/4的倒数是______。
12. 下列各数中,最小的负数是______。
13. 等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的面积是______cm^2。
14. 下列函数中,正比例函数是______。
15. 在平面直角坐标系中,点B(-3,4)关于原点的对称点是______。
16. 一个圆的半径是5cm,那么这个圆的直径是______cm。
安徽省合肥市蜀山区2020-2021学年七年级下学期期末数学试卷(含答案)

合肥蜀山区2020-2021学年七年级下学期期末数学试卷(含答案)温馨提示:本试卷共4页八三大题,23小题,满分100分,时间100分钟一、选择题(本大题共10小题,每小题3分,满分30分) 1.下列四个实数中,无理数是( )A.0B.12- C. 38 D.22.下列计算中,正确的是( )A.(a 3)2=a 5B.a 6÷a 3=a 2C.(-a)2.(-a)3=-a 5D.(-2a)2=-4a 2 3.下列四个多项式中,能因式分解的是( )A. a 2+bB. a 2-a+1C. a 2-bD. a 2-2a+1 4. 如图,直线11//l 2,点A 、B 在l 2上,射线BD 交11于点D ,BC 平分∠ABD 交11于点C ,若∠1=80°,则∠2的度数是( )A.40°B.50°C.60°D.80°第4题图 第8题图 第10题图5.解不等式组311211-02②x ①x ->≤⎧⎪⎨⎪⎩时,不等式①②的解集在同一条数轴上表示正确的是( )A B C D6.下列式子中,正确的是( )A.z y z y x x x +-+=-B. c d c d d a aa-+-=-C. 1a y a y -=--+D. 202x y x y+=+7.若实数x 、y 满足|2x-1|+y 2-4y=-4,则yx的值等于( )A.-4B.4C.-2D.2 8.如图,下列判断正确的是( )A.若∠l=∠3,则AB//DCB.若∠ABC=∠ADC,则AD// BCC.若∠ABC+∠BCD=180°,则AD// BCD.若∠2=∠4,则AB//DC9.工地调来76人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样分配劳动力才能使挖出的土能及时运走?解决此问题,可设派x 人挖土,其它的人运土,以下方程正确的是( )A. 7613x x -=B. 1763x x =-C.76-x=3xD.x+3x=7610.如图,直线l 1与l 2相交于点O ,点P 是平面内任意一点,点P 到直线l 1的距离为2,且到直线l 2的距离为3,则符合条件的点P 的个数是( )A.2B.3C.4D.无数个二、填空题(本大题共6小题,每小题3分,满分18分) 11.计算:425= 12.因式分解: ab 3 + 6ab 2 + 9ab =13.“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米,用科学记数法表示0.0000025为 14. 如图,已知AB//DE ,∠B=130°,∠D=75°,则∠C 的度数是15.若不等式组{13231x x x m +≥-+≤无解,则m 的取值范围是16. 已知a> 0,11S a =,1211S S -=,2311S S -=,3411S S -=……,按此规律,请用含a 的代数式表示S 2021=三、(本大题共7小题,满分52分) 17、(6分)计算: ()()22125332π-⎛⎫-+---- ⎪⎝⎭18. (6分)计算: (x-3)(3x-4)-(x-2)219. (7分)先化简,再求值:2311111x x x x ⎛⎫+-÷ ⎪+--⎝⎭ ,其中x=320.(7分)如图所示的正方形网格中,每个小正方形的边长都为1个单位长度,三角形ABC的顶点都在正方形网格的格点(网格线的交点)上,将三角形ABC经过平移后得到三角形A´B´C´,A、B、C 的对应点分别是A´、B´、C´,点C´在直线1上(1)画出平移后得到的三角形A´B´C´;(2)连接AA´、BB´,则线段AA´、BB´的关系为;(3)直线1上存在点D使三角形DB´C´的面积等于三角形A´B´C´的面积,请在直线1上画出所有符合要求的格点D .21.(8分)观察以下等式:第1个等式:1×3-0×4=3;第2个等式:2×4-1×5=3;第3个等式:3×5-2×6=3;第4个等式:4×6-3×7=3;……;按照以上规律,解决下列问题:(1)写出第5个等式:(2)写出你猜想的第n个等式: (用含n的等式表示).(3)你认为(2)中所写的式子一定成立吗?请说明理由.22、(8分)如图,已知BD⊥AC,EF⊥AC,垂足分别为点D、F,且∠1=∠2,那么∠AGD与∠ABC 相等吗?试说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河道的总天数不超过 50 天,请直接写出如何安排甲乙两队施工的天数,使施工总费用最 低?最低费用是多少万元?
第4页(共5页)
安徽省合肥市蜀山区七年级(下)期末数学试卷
的角共有( )
A.5 题(共 6 小题,每小题 3 分,共 18 分)
11.(3 分)计算: ﹣ =
.
D.8 对
12.(3 分)一种微型电子元件的半径约为 0.000025 米,把 0.000025 用科学记数法可表示
为
.
第2页(共5页)
13.(3 分)不等式
的所有自然数解的和等于
.
三、解答题(共 7 小题,共 52 分) 17.(6 分)化简:(a﹣1)(a+3)﹣(2﹣a)(2+a)
18.(6 分)解不等式组:
19.(7 分)先化简,再求值:
,其中 x=8.
20.(7 分)如图,在边长为 1 个单位长度的小正方形组成的 8×8 网格中,三角形 ABC 的 三个均在格点上,将三角形 ABC 向左平移 3 个单位长度、再向下平移 2 个单位长度得到 三角形 DEF.
C.40352﹣20183+20173=2018×2017
D.2018×2019﹣20183+20193=40372
10.(3 分)已知:如图,点 E、F 分别在直线 AB、CD 上,点 G、H 在两直线之间,线段
EF 与 GH 相交于点 O,且有∠AEF+∠CFE=180°,∠AEF﹣∠1=∠2,则在图中相等
第5页(共5页)
参考答案
一、单项选择题(共 10 小题,每小题 3 分,共 30 分)
1.D; 2.C; 3.C; 4.D; 5.D; 6.A; 7.B; 8.A; 9.B; 10.D;
二、填空题(共 6 小题,每小题 3 分,共 18 分) 11.﹣4; 12.2.5×10﹣5; 13.3; 14.80°; 15.m>﹣1 且 m≠9; 16.70°或 30°; 三、解答题(共 7 小题,共 52 分)
安徽省合肥市蜀山区七年级(下)期末数学试卷
一、单项选择题(共 10 小题,每小题 3 分,共 30 分) 1.(3 分)如果 x 的立方根是 3,那么 x 的值为( )
A.3
B.9
C.
D.27
2.(3 分)把不等式 x<﹣1 的解集在数轴上表示出来,则正确的是( )
A.
B.
C.
D.
3.(3 分)下列代数式,能用完全平方公式进行因式分解的是(
A.x2﹣1
B.x2+xy+y2
C.x2﹣x+
) D.x2+2x﹣1
4.(3 分)下列分式运算结果正确的是( A.
) B.
C.
D.
5.(3 分)已知 2018﹣a2=2a,则 2035﹣a2﹣2a 的值是( )
A.4053
B.﹣4053
C.﹣17
D.17
6.(3 分)在下列图形中,由∠1=∠2 能得到 AB∥CD 的是( )
A.﹣6
B.﹣3
C.6
D.3
9.(3 分)观察下列等式
①23﹣13=32﹣2
②33﹣23=52﹣6
③43﹣33=72﹣12:
④53﹣43=92﹣20…
请根据上述规律,请判断下列等式错误的是( )
A.20163﹣20153=40312﹣2016×2015
B.20173﹣20163﹣40332=2017×2016
(1)画出平移后的三角形 DEF; (2)若点 A 向左平移 n 个单位长度在三角形 DEF 的内部,请直接写出所有符合条件的整
数 n 的值.
第3页(共5页)
21.(8 分)某种糖果在甲、乙两商场标价相同,“六•一”期间两家商场同时推出优惠活动: 甲商场购买此糖果总金额超过 50 元后,超出 50 元的部分按八折收费;在乙商场购买此 糖果总金超过 20 元后,超出 20 元的部分按九折收费,请问顾客购买此糖果总金额在什 么范围内到乙场更合算?
22.(8 分)已知:如图,CD 平分∠ACB,∠1+∠2=180°,∠3=∠A,∠4=35°,求∠ CED 的度数.
23.(10 分)南淝河是合肥的母亲河,为改善南淝河河道水质和生态环境,合肥市城建委准 备对其中的 18 公里的河道进行清理,经招投标,由甲、乙两个工程队来完成,已知甲队 每天能清理的河道长度是乙队的 1.5 倍,且甲队清理 4500 米河道要比乙队少用 5 天.
A.
B.
C.
D.
7.(3 分)如图,半径为 1 的圆从表示 1 的点开始沿着数轴向左滚动一周,圆上的点 A 与表
示 1 的点重合,滚动一周后到达点 B,点 B 表示的数是( )
第1页(共5页)
A.﹣2π
B.1﹣2π
8.(3 分)如果解关于 x 的分式方程
C.﹣π
D.1﹣π
=5 时出现了增根,那么 a 的值是( )
.
14.(3 分)如图,将一块含 45°的直角三角板的直角顶点放在直尺的一边上,当∠1=35°
时,则∠2 的度数是
.
15.(3 分)若关于 x 的分式方程
的解为正数,则 m 的取值范围是
.
16.(3 分)已知:如图,点 M、N 分别在直线 AB、CD 上,且 AB∥CD,若在同一平面内
存在一点 O,使∠OMB=20°,∠OND=50°,则∠MON=
17.
; 18.
; 19.
; 20.
; 21.
; 22.
; 23.
;
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
日期:2019/1/16 15:07:25; 用户:qgjyus er10 485;邮箱:q gjyus er10485.219 57750;学号 :21985493