分数四则运算

合集下载

分数的四则混合运算

分数的四则混合运算

分数的四则混合运算分数的四则混合运算是数学中一个基本且重要的概念,它包括加法、减法、乘法和除法四种运算方式。

在解决实际问题时,我们经常会用到这种运算,因此掌握分数的四则混合运算对我们的数学学习至关重要。

一、加法运算分数的加法运算是指将两个或多个分数相加,得到它们的和。

当两个分数的分母相同时,我们只需要将它们的分子相加,并将和的分子写在新的分数的分子位置上,而分母保持不变。

例如,计算1/4 + 2/4:将两个分数的分子相加,得到3/4,因此1/4 + 2/4 = 3/4。

当两个分数的分母不相同时,我们需要进行通分运算,即将它们的分母转化为相同的数。

通过找到两个数的最小公倍数,我们可以得到它们的通分分母,然后按照相同的分母进行计算。

例如,计算1/3 + 1/6:首先,我们求出1/3和1/6的最小公倍数为6。

然后,将1/3转化为2/6,将1/6转化为1/6,最后将它们的分子相加得到3/6。

因此1/3 +1/6 = 3/6。

二、减法运算与加法类似,当两个分数的分母相同时,我们只需要将它们的分子相减,并将差的分子写在新的分数的分子位置上,而分母保持不变。

例如,计算3/4 - 1/4:将两个分数的分子相减,得到2/4,因此3/4 - 1/4 = 2/4。

当两个分数的分母不相同时,我们同样需要进行通分运算,然后按照相同的分母进行计算。

例如,计算5/6 - 1/3:首先,我们求出5/6和1/3的最小公倍数为6。

然后,将5/6转化为5/6,将1/3转化为2/6,最后将它们的分子相减得到3/6。

因此5/6 - 1/3 = 3/6。

三、乘法运算分数的乘法运算是指将一个分数乘以另一个分数,得到它们的积。

我们只需要将两个分数的分子相乘,并将积的分子写在新的分数的分子位置上;同样地,将两个分数的分母相乘,并将积的分母写在新的分数的分母位置上。

例如,计算2/3 × 3/4:将两个分数的分子相乘得到6,将两个分数的分母相乘得到12,因此2/3 × 3/4 = 6/12。

分数的四则运算

分数的四则运算

分数的四则运算加法:母变成最小公倍数,分子相加,然后进行约分减法:同加法,分母不变,分子相减乘法:分子乘以分子,分母乘以分母,结果进行约分除法:被除数乘以除数的倒数,然后进行乘法的运算1、整数加、减计算法则:1)要把相同数位对齐,再把相同计数单位上的数相加或相减; 7+2=92)哪一位满十就向前一位进。

9+6=152、小数加、减法的计算法则:1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),5.2+4.7=9.92)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。

4.7+9.8=14.5(得数的小数部分末尾有0,一般要把0去掉。

)3、分数加、减计算法则:1)分母相同时,只把分子相加、减,分母不变;2)分母不相同时,要先通分成同分母分数再相加、减。

4、整数乘法法则:1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;2)然后把几次乘得的数加起来。

(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。

)5、小数乘法法则:1)按整数乘法的法则算出积;2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。

3)得数的小数部分末尾有0,一般要把0去掉。

6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。

7、整数的除法法则1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;2)除到被除数的哪一位,就在那一位上面写上商;3)每次除后余下的数必须比除数小。

8、除数是整数的小数除法法则:1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。

9、除数是小数的小数除法法则:1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;2)然后按照除数是整数的小数除法来除10、分数的除法法则:1)用被除数的分子与除数的分母相乘作为分子;2)用被除数的分母与除数的分子相乘作为分母。

分数的四则运算和简便计算

分数的四则运算和简便计算

分数的四则运算—计算题专题复习一、分数四则运算的运算法则和运算顺序运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。

2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母3、除法:除以一个数就等于乘这个数的倒数运算顺序是:混合计算,先算乘除法再算加减;如果有括号,先算括号里面的(先算小括号,再算中括号)同一级运算,一般从左往右计算。

如果符合运算定律,可以进行简算。

练习:1、34 -(15 + 13 )× 982、 10713151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-3、⎪⎭⎫⎝⎛-+614121÷121 4、9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷1093297126、52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷401二、分数四则运算的简便运算引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:① 乘法交换律:________________________ ② 乘法结合律:________________________ ③ 乘法分配律:________________________做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。

分数简便运算常见题型第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。

第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。

分数的四则混合运算与小数的运算

分数的四则混合运算与小数的运算

分数的四则混合运算与小数的运算分数(有理数)和小数是数学中常见的表示数值的方式。

它们在日常生活中广泛应用于计算和测量。

而分数的四则混合运算和小数的运算是我们在数学学习中必须掌握的基本技能。

本文将以实例为基础,介绍分数的四则混合运算和小数的运算。

1. 分数的四则混合运算分数的四则运算包括加法、减法、乘法和除法。

我们首先来看一个例子:假设有如下的分数运算:1/2 + 2/3 * 3/4 - 1/5 ÷ 2/5。

首先,我们按照次序进行乘法和除法运算:2/3 * 3/4 = 6/12,1/5 ÷2/5 = 1/2。

然后,我们按照次序进行加法和减法运算:1/2 + 6/12 - 1/2。

接下来,我们需要找到这些分数的最小公倍数,并将每个分数的分子乘以相应的倍数,使得它们的分母相同。

1/2 + 6/12 - 1/2 = 6/12 + 6/12 - 6/12 = 0所以,1/2 + 2/3 * 3/4 - 1/5 ÷ 2/5 = 0。

这个例子展示了如何正确地进行分数的四则混合运算。

2. 小数的运算小数的运算与分数相似,同样包括加法、减法、乘法和除法。

下面我们来看一个例子:假设有如下的小数运算:0.3 + 1.5 × 0.2 - 0.4 ÷ 0.2。

首先,我们按照次序进行乘法和除法运算:1.5 × 0.2 = 0.3,0.4 ÷0.2 = 2。

然后,我们按照次序进行加法和减法运算:0.3 + 0.3 - 2 = -1.4。

所以,0.3 + 1.5 × 0.2 - 0.4 ÷ 0.2 = -1.4。

通过这个例子,我们可以看到小数运算与分数相似,但需要注意小数的精度和计算规则。

3. 分数与小数之间的转换在实际应用中,分数和小数可以相互转换。

下面我们来看一个例子:假设需要将小数 0.75 转换为分数。

我们可以将小数 0.75 写成分数 75/100,然后简化这个分数,得到3/4。

分数四则混合运算法则口诀(3篇)

分数四则混合运算法则口诀(3篇)

第1篇一、分数加法口诀分数加法,看似复杂,其实简单。

先通分,再相加,结果是关键。

以下口诀助你轻松掌握:同分母,直接加,分母不变,分子相加;异分母,通分法,分母求最小公倍数,分子相乘;最后,约分求最简,确保结果最完美。

二、分数减法口诀分数减法,方法类似,注意细节,操作简便。

以下口诀助你一臂之力:同分母,直接减,分母不变,分子相减;异分母,通分法,分母求最小公倍数,分子相乘;最后,约分求最简,确保结果最完美。

三、分数乘法口诀分数乘法,简单易行。

相乘分子,相乘分母,结果约分,最简为止。

以下口诀助你轻松掌握:分子相乘,分母相乘,结果是分数,约分求最简;乘积分子,乘积分母,结果是整数,无需约分。

四、分数除法口诀分数除法,关键是倒数。

相乘倒数,结果是分数,约分求最简。

以下口诀助你轻松应对:除以一个数,等于乘以它的倒数;相乘分子,相乘分母,结果是分数,约分求最简;乘积分子,乘积分母,结果是整数,无需约分。

五、分数四则混合运算口诀分数四则混合运算,先乘除,后加减,注意括号。

以下口诀助你一臂之力:先乘除,后加减,注意括号,顺序别乱;加减乘除,混合运算,先算括号,再算乘除;约分求最简,确保结果,正确无误。

六、特殊情况口诀特殊情况,注意处理,以下口诀助你应对:分母为零,无意义,运算不能继续;分子为零,结果是零,分母为零,无意义;分母相等,结果相等,分子相等,结果相等;分子分母同时乘以或除以相同的数(不为零),分数大小不变。

七、总结分数四则混合运算,看似复杂,实则简单。

只要掌握好以上口诀,运用得当,分数运算轻松自如。

在学习过程中,不断练习,提高计算速度和准确性,为以后的学习打下坚实基础。

祝你学习进步,早日成为数学小达人!第2篇在数学学习中,分数的四则混合运算是一个非常重要的内容。

为了帮助同学们更好地掌握分数的加减乘除运算,以下是一份详细的分数四则混合运算法则口诀,希望能对大家的学习有所帮助。

一、分数加减法口诀1. 分子分母同加减,加减符号要跟上。

小升初数学知识点精讲(分数的四则运算)

小升初数学知识点精讲(分数的四则运算)

正 2x÷2=9.6÷2

x=4.8
归纳总结
方程的意义: 含有未知数的等式,叫做方程。
方程和等式的关系 方程都是等式,但等式不一定是方程。
方程的解和解方程的区别 使方程左右两边相等的未知数的值,叫做方程的解 求方程的解的过程叫做解方程。
解:6χ=30
χ+2=7
6χ÷6=30÷6
χ+2-2=7-2
χ=5
χ=5
6χ+12=42 解:6χ+1 2解-:126=χ=424-2-1212
6χ+2×6=42 解:6χ+12=42 6χ+12-12=6χ4=2-421-2 12
6χ=30 6χ÷6=χ=303÷06÷6
6χ=30
χ=5
6χ÷6=χ=303÷0÷6 6
题3
本题的单位 “1”是这本书
的全部页数,是未知的。全
部页数的
5 8
是45页。
解:
45
5 8
45
8 5
72 (页)
答:这本书共有72(页)。
题4 东方农场去年退耕还林630公顷,超过计划还林面积
的20%,去年计划退耕还林多少公顷?
分析:本题的单位“1”是去年计划 还林面积,是要求的问题。用除法: 方法:数量÷(1+n%)=单位“1” 。
解:630÷(1+20%) =630÷120% =525(公顷)
答:去年计划退耕还林525公顷 。
易错1
易错点拨
错解:
240
1 6
40
错因: 把梨树的棵数看作单位 “1”,而实际上是苹果树 的棵数为单位“1”的量。
对策: 帮助学生弄清题中被比较的 量(单位“1”的量)。单位 “1”的量,有时在题目中是 明显的,有时要从题意去理 解。

数学分数四则混合运算

数学分数四则混合运算

1、运算顺序:分数四则混合运算的顺序与整数相同。

先算乘除法,后算加减法;有括号的先算括号里面的,后算括号外面的。

2、运算律:加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)乘法的交换律:a×b=b×a乘法的结合律:(a×b)×c=a×(b×c)乘法的分配律:(a+b)×c=a×c+b×c3、分数四则混合运算的应用题:(1) 总数与部分数相比较的问题:【分数乘法、减法】一般解题方法:先求出未知的部分数,再用总数减部分数等于另一部分数。

(2) 已知一个数量比另一个数量多(或少)几分之几,求这个数量是多少的问题:【分数乘法、加减法】一般解题方法:先求出多(或少)的部分,再用加法或减法求出结果。

注:对于题中出现的带单位与不带单位的分数,要注意它们的意义不一样。

四则混合运算常见错误一、对于计算错误应该进行针对性的练习提高计算的准确性,可以从口算开始进行训练。

在四则混合运算中,加强基本训练的一个重要环节,就是要加强口算教学和练习。

口算是笔算的基础,笔算的技能技巧是口算的发展,笔算是由若干口算按照笔算法则计算出来的。

如:9×71一题,就要进行2次乘法口算,由此可以看出,如果口算出错误,笔算必然出错误。

因此,不仅低中年级基本口算的训练要持之以恒,随着学习内容的扩展、加深,在高年级也应同样重视。

这不仅有利于学生及时巩固概念、法则,增大课堂教学的密度,提高计算能力,而且可以在口算训练中,通过引导学生积极思维,灵活运用知识,培养学生思维的敏捷性、注意力和记忆力。

二、顺序错误主要有一下几种:1.脱式计算时,学生会出现如下错误的情况。

如:36-135÷9=15(没有把“36-”照抄下来)或36-135÷9=15-36(颠倒了两个数的位置)=21对于这类错误教师要反复讲清,为什么不能改变顺序,为什么未算的部分要照抄下来的道理。

六年级上册分数四则混合运算简便计算

六年级上册分数四则混合运算简便计算

六年级上册分数四则混合运算简便计算六年级分数的四则运算和简便计算一、分数四则运算的运算法则和运算顺序分数四则运算的运算法则包括以下三种:1.加减法:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,再分母不变,分子相加减。

2.乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母。

3.除法:除以一个数就等于乘这个数的倒数。

分数四则运算的运算顺序包括以下四种:1.如果是同一级运算,一般按从左往右依次进行计算。

2.如果既有加减、又有乘除法,先算乘除法,再算加减。

3.如果有括号,先算括号里面的。

4.如果符合运算定律,可以利用运算定律进行简算。

练:1.3119÷1-21×7+22.1-(35÷13+10×2)3.72/246-9×18/49+7/93÷5+12二、分数四则运算的简便运算分数乘法简便运算涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:1.乘法交换律:a×b×c=a×c×b。

2.乘法结合律:(a×b)×c=a×(b×c)。

3.乘法分配律:a×(b+c)=a×b+a×c。

做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。

分数简便运算常见题型包括以下四种:1.连乘——乘法交换律的应用。

2.乘法分配律的应用。

3.乘法分配律的逆运算。

4.添加因数“1”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点四:两个量之间的数量关系
一个量比另一个量多(少)几分之几是多少的问题
• 1.一套西服原价250元,现在降价1/5.现在买这套西服要多 少元?
知识点四:两个量之间的数量关系
一个量比另一个量多(少)几分之几是多少的问题.
• 一本书原价100元,先降价1/10,再提价1/10,这本书 的现在的价格是多少?
• 一本书,已读了比总数的1/3多15页,已读的页数与未读的页数 比是2:3,全书共有多少页?
知识点三:部分和整体的数量关系
• 一条公路,走了全长的2/5,离中点还有14千米。求这条公路全 长是多少千米?
知识点四:两个量之间的数量关系
一个量比另一个量多(少)几分之几是多少的问题
要求: 1.找准单位“1” 2.画出线段图 3.写出关系式 4.技巧:单位“1”已知用( )法
• 例:北京天坛公园占地面积约272公顷,北京故宫的占地面积比 天坛公园的1/4多4公顷,北京故宫的占地面积是多少公顷?
• 画图: • 分步: • 综合算式:
知识点二:整数的运算律在分数运算中的 推广
• 长城全长约8800千米,其中人工墙体约占全长的7/10,天然山险 墙约占1/4,其他的是壕堑。长城中人工墙体和山险墙共长多少千 米?
知识点四:两个量之间的数量关系
一个量比另一个量多(少)几分之几是多少的问题
• 实验小学去年六年级毕业生360人,今年毕业人数比去年增加 1/10,今年六年级毕业生有多少人?
知识点四:两个量之间的数量关系
一个量比另一个量多(少)几分之几是多少的问题
• 食堂七月份用煤120吨,比六月份节约2/5.六月份用煤多少 吨?
• 画图: • 分步: • 对比算式:
计算
1111 23 23
答案是: 1 9
1 + 1 99 44
答案是:25
3 1+3 3 84 84
答案是:2
11 1+13 8 12 8 12
答案是:16
解方程
3 x+x 5
7
4
1 x+ 2 x 26 45 5
1- 2 x 3 95
1+2x 1
• 关系式是: • 我可以列方程: • 我也可以直接列算式:
知识点四:两个量之间的数量关系
一个量比另一个量多(少)几分之几是多少的问题
• 水结成冰,体积增加1/10,现在有一块44立方分米的冰,溶 化后体积是多少?
知识点四:两个量之间的数量关系
一个量比另一个量多(少)几分之几是多少的问题
• 一件西服原价180元,现在的价格比原来降低了1/5,现在的价格 是多少元?
8
4
知识点三:部分和整体的数量关系
• 学校买来新书240本,其中的2/3分给六年级,其余的分给五年级, 五年级分得多少本?
• 我可以这样做: • 我也可以这样做:
知识点三:部分和整体的数量关系
• 一桶油,用去3/5,还剩8千克。这桶油多少千克? • 我可以列方程 • 我可以列算式
知识点三:部分和整体的数量关系
• 技巧:找单位“1”

判断另一量的多少

差÷单位“1”
知识点四:两个量之间的数量关系
一个量比另一个量多(少)几分之几是多少的问题
• 水果店运来一些水果。菠萝的筐数比苹果少1/3,运来苹果30筐, 运来菠萝多少筐?
知识点四:两个量之间的数量关系
一个量比另一个量多(少)几分之几是多少的问题
• 1.甲比乙多2/5,乙比甲少( )
• 2. 5比4多( ),4比5少( )
分数四则混合运算
六上五单元 郝盼盼
一、计算
• 四则运算顺序是:
运算律
• 五律两性质 • a+b=b+a • a+b+c=a+(b+c) • a×b=b×ab+a× c • a-b-c=a-(b+c) • a÷b÷c=a÷(b×c)
知识点一:分数的四则混合运算
单位“1”未知根据关系式用(
)法或者用( )
知识点四:两个量之间的数量关系
一个量比另一个量多(少)几分之几是多少的问题
• 1.乙比甲少1/10,单位“1”是(),等量关系式是() • 2.乙比甲的1/10多1米,单位“1”是(),等量关系式是() • 3.乙比甲的1/10少1米,单位“1”是(),等量关系式是()
相关文档
最新文档