高等数学(下册)期末复习试题及答案.pdf
(完整版)高等数学下册期末考试试题及答案,推荐文档

又
1 zx2
z
2 y
a
a2 x2 y2 ,…..………【3】
第3页共2页
高数
故
dS z
Dxy
adxdy a2 x2 y2
a
2 d
0
a2 h2 0
d a2 2
2
a
1 2
ln(a2
2
)0
a2 h2
2 a ln a ..【7】 h
三、【9 分】解:设 M (x, y, z) 为该椭圆上的任一点,则点 M 到原点的距离为 d x2 y2 z2 ……【1】
n1
n
4、设 z f (xy, x ) sin y ,其中 f 具有二阶连续偏导数,求 z ,
2z
.
y
x xy
5、计算曲面积分 dS , 其中 是球面 x2 y2 z2 a2 被平面 z h (0 h a) 截出的顶部.
z
三、(本题满分 9 分) 抛物面 z x2 y2 被平面 x y z 1 截成一椭圆,求这椭圆上的点到原点的距离
第1页共2页
的最大值与最小值.
高数
(本题满分 10 分)
计算曲线积分 (ex sin y m)dx (ex cos y mx)dy , L
其中 m 为常数, L 为由点 A(a, 0) 至原点 O(0, 0) 的上半圆周 x2 y2 ax (a 0) .
四、(本题满分 10 分)
xn
3 , 1 2
3 ,2
3),
1 M2( 2
3 , 1 2
3 ,2
3). …………………【7】
又由题意知,距离的最大值和最小值一定存在,所以距离的最大值与最小值分别在这两点处取得.
高数下期末考试试卷与答案

⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯线封号序密过超号班要学教不纸题卷试答⋯学⋯大.峡三⋯⋯⋯⋯⋯⋯⋯⋯2021学年春季学期"高等数学Ⅰ〔二〕"期末考试试卷〔A〕注意:1、本试卷共3页;2、考试时间110 分钟; 3 、**、学号必须写在指定地方题号一二三四总分得分阅卷人得分一、单项选择题〔 8 个小题,每题 2 分,共 16 分〕将每题的正确答案的代号 A、B、 C 或 D 填入下表中.题号12345678答案1.a与b都是非零向量,且满足a b a b ,那么必有〔〕.(A) a b0(B) a b0(C) a b0(D) a b 02.极限lim( x2y 2 )sin12().x0x2yy0(A) 0(B) 1(C) 2(D) 不存在3.以下函数中,df f 的是().〔 A 〕f ( x, y)xy〔B 〕f ( x, y)x y c0 , c0为实数〔 C〕f (x, y)x2y2〔 D〕f ( x, y)e x y4.函数f ( x, y)xy (3x y) ,原点 (0,0)是 f (x, y) 的().〔 A〕驻点与极值点〔 B〕驻点,非极值点〔 C〕极值点,非驻点〔 D〕非驻点,非极值点5 .设平面区域D : (x 1)2( y1)22,假设I1x y d, I 2x yd ,D4D43x y d,那么有〔〕 .I 34D〔A〕I1I 2I 3〔B〕I1I 2I 3〔C〕I2I 1I 3〔D〕I3I1 I26.设椭圆L:x2y 21的周长为l,那么(3x2 4 y2 )ds〔〕 .43L(A) l(B)3l(C)4l(D)12l7.设级数a n为交织级数, a n0(n) ,那么〔〕 .n1(A) 该级数收敛(B) 该级数发散(C) 该级数可能收敛也可能发散(D) 该级数绝对收敛8. 以下四个命题中,正确的命题是〔〕 .〔 A 〕假设级数a n发散,那么级数a n2也发散n 1n 1〔 B〕假设级数a n2发散,那么级数a n也发散n 1n 1〔 C〕假设级数a n2收敛,那么级数a n也收敛n 1n 1〔 D〕假设级数| a n |收敛,那么级数a n2也收敛n 1n 1阅卷人得分二、填空题 (7 个小题,每题 2 分,共 14 分) .1. 直线3x 4 y2z60a 为.x3y z a与 z 轴相交,那么常数2.设f ( x, y)ln( xy),那么 f y (1,0)___________.x3.函数f (x, y)x y 在 (3, 4) 处沿增加最快的方向的方向导数为.4.设D : x2y22x ,二重积分( x y)d=.D5f x2222在是连续函数,{( x, y ,z) | 0z9x y } , f ( x y )dv.设的三次积分为.6. 幂级数( 1)n 1 x n的收敛域是.n 1n!7. 将函数 f ( x)1,x0为周期延拓后,其傅里叶级数在点x2,0 x以 21于.2021年"高等数学Ⅰ〔二〕"课程期末考试试卷 A 共 3 页第1 页⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯线封号序密过超号班要学教不纸题卷试答⋯学⋯大.峡三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分三、综合解答题一〔 5 个小题,每题7分,共35分,解答题应写出文字说明、证明过程或演算步骤〕1.设 u xf ( x,x) ,其中 f 有连续的一阶偏导数,求u,u.y x y解:2.求曲面 e z z xy 3 在点 (2,1,0) 处的切平面方程及法线方程.解:3. 交换积分次序,并计算二次积分dxsin ydy .0x y解:4.设是由曲面z xy, y x, x 1及z0 所围成的空间闭区域,求 I xy2 z3dxdyd解:5.求幂级数nxn 1的和函数 S(x) ,并求级数n的和.n 1n 12n解:2021年"高等数学Ⅰ〔二〕"课程期末考试试卷 A 共 3 页第2 页⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯线封号序密过超号班要学教不纸题卷试答⋯学⋯大.峡三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分四、综合解答题二〔 5 个小题,每题7分,共35分,解答题应写出文字说明、证明过程或演算步骤〕1.从斜边长为 1 的一切直角三角形中,求有最大周长的直角三角形.解2.计算积分( x2y2 )ds ,其中L为圆周 x2y2ax (a0 ).L解:3.利用格林公式,计算曲线积分I(x2y2)dx (x 2xy)dy ,其中 L 是由抛物线y x2和Lx y2所围成的区域D的正向边界曲线.y y x2x y2DOx4.计算xdS ,为平面xy z 1在第一卦限局部.解:5.利用高斯公式计算对坐标的曲面积分蝌dxdy + dydz + dzdx,S其中为圆锥面 z2x2y2介于平面z0 及 z 1 之间的局部的下侧.解:2021年"高等数学Ⅰ〔二〕"课程期末考试试卷 A 共 3 页第3 页2021学年春季学期"高等数学Ⅰ〔二〕"期末考试试卷 (A)答案及评分标准一、单项选择题〔 8 个小题,每题 2 分,共 16 分〕题号 123456 7 8答案DABB A D CD1.a 与b 都是非零向量,且满足 ab a b ,那么必有〔 D〕(A) a b0 ;(B)a b 0 ;(C)a b0;(D)a b0 .2. 极限lim( x 2y 2 )sin2 1 2 ( A )x 0x yy(A) 0 ;(B) 1;(C) 2;(D)不存在 .3.以下函数中,df f 的是(B );〔 A 〕 f ( x, y) xy ;〔B 〕f (x, y) x yc 0 ,c 0为实数;〔 C 〕f (x, y)x2y 2;〔 D 〕f ( x, y)e xy .4.函数f ( x, y) xy (3 xy) ,原点 (0,0) 是 f (x, y) 的( B).( A 〕驻点与极值点;〔B 〕驻点,非极值点;( C 〕极值点,非驻点; 〔 D 〕非驻点,非极值点 . 5 .设 平 面 区 域 D :( x 1)2( y 1)22,假设I 1x yd ,I 2x yd ,D4D 43xy,那么有〔 A 〕I 3dD4〔A 〕I 1 I 2 I 3; 〔B 〕 I 1 I 2 I 3;〔C 〕I 2 I 1 I 3;〔D 〕I 3I 1I 2. 6.设椭圆L :x 2y 21的周长为l ,那么(3x24 y 2)ds 〔 D〕43L(A) l ;(B)3l ;(C)4l ;(D) 12l .7.设级数a n 为交织级数, a n 0 ( n) ,那么〔C〕n 1(A) 该级数收敛; (B) 该级数发散;(C) 该级数可能收敛也可能发散; (D)该级数绝对收敛. 8. 以下四个命题中,正确的命题是〔 D 〕 〔 A 〕假设级数 a n 发散,那么级数 a n 2 也发散;n 1n 1〔 B 〕假设级数 a n 2发散,那么级 a n 也发散;数n 1n 1〔 C 〕假设级数 a n 2收敛,那么级数a n 也收敛; n 1n 1〔 D 〕假设级数 | a n |收敛,那么级数a n 2也收敛.n 1n 1二、填空题 (7 个小题,每题 2分,共 14 分).1. 直线3x 4 y 2z 6 0 与 z 轴相交,那么常数a 为3。
高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<-=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为Cxy =.7.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共18分 每小题6分)1.求过点)1,2,1(-且垂直于直线⎩⎨⎧=+-+=-+-02032z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=--=kj i n(4分)所求平面方程为 032=++z y x (6分) 2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +-=及22y x z +=所围成的区域.解: πθ20 ,10 ,2 :2≤≤≤≤-≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰-=221020d ),sin ,cos (d d r rz z r r f r r θθθπ (6分)3.计算二重积分⎰⎰+-=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D解⎰⎰-=2020d d 2r r eI r πθ⎰⎰--=-20220)(d d 212r e r πθ⎰-⋅-=202d 221r e π)1(4--=e π三、解答题(共35分 每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xv v z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分)2.函数),(y x z z =由方程0=-xyz e z所确定,求yz x z ∂∂∂∂,. 解:令xyz e z y x F z-=),,(, (2分)则 ,yz F x -=,xz F y -=,xy e F zz -= (5分)xye yzF F x z zz x -=-=∂∂, xy e xz F F y z z z y -=-=∂∂. (7分) 3.计算曲线积分⎰+-Ly x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+--=+-OA DL y x x y y x y x x y d d d d 2d d (5分)ππ=-⋅=022 (7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解: 由xQ y P ∂∂=∂∂ 得 )()(x f x f e x'=+, 即xe xf x f =-')()( (3分)所以 )d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰---⎰)(C x e x +=, (6分) 代入初始条件,解得1=C ,所以)1()(+=x e x f x. (7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解: 因为)!2()!()!22(])!1[(lim lim221n n n n u u n nn n ++=∞→+∞→ (3分) )12)(22()1(lim2+++=∞→n n n n 141<= (6分) 故该级数收敛. (7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=. (7分) 五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x , 且面积为)sin sin (sin 212z y x R A ++=, 令)2(sin sin sin πλ-+++++=z y x z y x F (3分)由 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z yx (4分)得32π===z y x .此时,其边长为R R 3232=⋅.由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大. (6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解: 1)1(lim lim1=+==∞→+∞→nn a a R n n n n ,故收敛半径为1=R . (2分) 当1-=x 时,根据莱布尼茨判别法,级数收敛; 当1=x 时, 级数为调和级数,发散.故原级数的收敛域为)1,1[-. (5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=-='11)(n n x x S x-=11, (6分) 再积分得 ⎰'=xx x S x S 0d )()(x xxd 110⎰-=)1ln(x --=,)11(<≤-x (8分) 七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x yt t f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f . 解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰ (2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(. (3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为 C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C . 因此所求的函数为 )1(ln 3)(+=x x f .(5分) 八. (5分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程. 解1:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故可设此方程为)(2x f y y y =-'-''将x xe y=代入上式,得x x xe e x f 2)(-=,因此所求的微分方程为x x xe e y y y 22-=-'-''解2:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故x x x e C e C xe y -++=221是所求微分方程的通解,从而有x x x x e C e C xe e y --++='2212, x x x x e C e C xe e y -+++=''22142消去21,C C ,得所求的微分方程为x x xe e y y y 22-=-'-''06高数B一、填空题(共30分 每小题3分)1.xoy 坐标面上的双曲线369422=-y x 绕x 轴旋转一周所生成的旋转曲面方程为36)(94222=+-z y x .2.设函数22),,(z yz x z y x f ++=,则=-)1,0,1(grad f )2,1,2(--.3.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π.4。
高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=log(a,(x+y))的定义域为D={(x,y)|x+y>0}。
2、二重积分22ln(x+y)dxdy的符号为负号。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(x+y-e-1)dxdy,其值为1/2.4、设曲线L的参数方程表示为{x=φ(t),y=ψ(t)}(α≤t≤β),则弧长元素ds=sqrt(φ'(t)^2+ψ'(t)^2)dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∬(x+y+1)ds=27√2.6、微分方程y'=ky(1-y)的通解为y=Ce^(kx)/(1+Ce^(kx)),其中C为任意常数。
7、方程y(4)d^4y/dx^4+tan(x)y'''=0的通解为y=Acos(x)+Bsin(x)+Ccos(x)e^x+Dsin(x)e^x,其中A、B、C、D为任意常数。
8、级数∑n(n+1)/2的和为S=1/2+2/3+3/4+。
+n(n+1)/(n+1)(n+2)=n/(n+2),n≥1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x^2+y^2等于(B)x。
3、设Ω:x+y+z≤1,z≥0,则三重积分I=∭Ω2z dV等于(C)∫0^π/2∫0^1-rsinθ∫0^1-r sinθ-zrdrdφdθ。
4、球面x^2+y^2+z^2=4a^2与柱面x^2+y^2=2ax所围成的立体体积V=(A)4∫0^π/4∫0^2acosθ∫0^4a-rsinθ rdrdφdθ。
(完整版)曲线积分与曲面积分期末复习题高等数学下册(上海电机学院)

第十章 曲线积分与曲面积分答案一、选择题 1.曲线积分()sin ()cos xL f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = BA.1()2x x e e -- B. 1()2x x e e -- C. 1()2x x e e -+ D.0 2.闭曲线C 为1x y +=的正向,则Cydx xdyx y -+=+⎰Ñ C A.0 B.2 C.4 D.6 3.闭曲线C 为2241x y +=的正向,则224Cydx xdyx y -+=+⎰Ñ D A.2π- B. 2π C.0 D. π 4.∑为YOZ 平面上221y z +≤,则222()xy z ds ∑++=⎰⎰ DA.0B. πC.14π D. 12π 5.设222:C x y a +=,则22()Cx y ds +=⎰Ñ CA.22a πB. 2a πC. 32a πD. 34a π 6. 设∑为球面2221x y z ++=,则曲面积分∑[ B ]A.4πB.2πC.πD.12π7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分⎰=Lyds [ C ]A. 21B. 21- C. 22 D. 22-8. 设I=⎰Lds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧,则I=[D ]A.655 B.1255 C.6155- D. 12155- 9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A.⎰-l ydy xdx 21; B. ⎰-l xdx ydy 21;C.⎰-l xdy ydx 21; D. ⎰-lydx xdy 21。
10.设2222:(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 CA.14SS xds xds =⎰⎰⎰⎰ B.14SS yds yds =⎰⎰⎰⎰C.14SS zds zds =⎰⎰⎰⎰ D.14SS xyzds xyzds =⎰⎰⎰⎰二、填空题1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分⎰=+-L y dy x eydx )(2-22.S 为球面2222a z y x =++的外侧,则⎰⎰=-+-+-sdxdy y x dzdx x z dydz z y )()()(03.⎰=++-12222y x yx xdyydx =π2-4.曲线积分22()Cx y ds +⎰Ñ,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5.设∑为上半球面)0z z =≥,则曲面积分()222ds y x z ∑++⎰⎰= 32π6. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-⎰Ñ 2π .7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分⎰=+C ds )yx (8. 设∑为上半球面z=,则曲面积分∑的值为 83π。
高等数学第二学期期末考试试题真题及完整答案(第2套)

高等数学第二学期期末考试试题真题及完整答案一、填空题(将正确答案填在横线上)(本大题共5小题,每小题4分,总计20分)1、设函数,则=2、曲面在点处的切平面方程为____3、= .4、曲面积分= ,其中,为与所围的空间几何形体的封闭边界曲面,外侧.5、幂级数的收敛域为。
二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,总计20分)1、函数在(1,1)点沿方向的方向导数为( )。
(A) 0 (B) 1 (C) 最小 (D)最大2、函数在处( ).(A)不连续,但偏导数存在 (B)不连续,且偏导数不存在(C)连续,但偏导数不存在 (D)连续,且偏导数存在3、计算=( ),其中为(按逆时针方向绕行).(A)0 (B)(C) (D)4、设连续,且,其中D由所围成,则( )。
(A)(B) (C) (D)5、设级数收敛,其和为,则级数收敛于( )。
(A)(B)(C)(D)三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、设函数由方程所确定,计算,。
2、计算,其中,为曲线,.3、求幂级数的和函数.三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、求内接于半径为的球面的长方体的最大体积.2、计算,其中平面区域.3、计算,其中为平面被柱面所截得的部分.五、解答下列各题(本大题共2小题,每小题6分,总计12分)1、计算其中为上从点到点.2、将函数展开成的幂级数.答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、 2、3、 4、 5、二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,共20分)1、C2、A3、B4、D5、B三、解答下列各题(本大题共3小题,每小题8分,共24分)1、解:方程两端同时对分别求偏导数,有,………………6分解得:.…………………………………………8分2、解:作图(略)。
原式=………………………2分.………………………8分3、解:经计算,该级数的收敛域为。
高等数学下期末试题(((七套附答案)))

(C)单调增加且单调减少;(D)可能增加;可能减少。
4、已知向量 与向量 则 为.
(A)6(B)-6
(C)1(D)-3
5、已知函数 可导,且 为极值, ,则 .
(A) (B) (C)0 (D)
三.计算题(3小题,每题6分,共18分)
1、求极限
2、求极限
3、已知 ,求
四. 计算题(每题6分,共24分)
.已知函数 ,则 。
.已知 ,则 。
.设L为 上点 到 的上半弧段,则 。
.交换积分顺序 。
.级数 是绝对收敛还是条件收敛?。
.微分方程 的通解为。
二.选择题(每空3分,共15分)
.函数 在点 的全微分存在是 在该点连续的( )条件。
A.充分非必要 B.必要非充分 C.充分必要 D.既非充分,也非必要
1、已知 ,求 。
2、求过点 且平行直线 的直线方程。
3、利用极坐标计算 ,其中D为由 、 及 所围的在第一象限的区域。
四.求解下列各题(共 分,第 题 分,第 题 分)
、利用格林公式计算曲线积分 ,其中L为圆域 : 的边界曲线,取逆时针方向。
、判别下列级数的敛散性:
五、求解下列各题(共 分,第 、 题各 分,第 题 分)
.平面 与 的夹角为( )。
A. B. C. D.
.幂级数 的收敛域为( )。
A. B. C. D.
.设 是微分方程 的两特解且 常数,则下列( )是其通解( 为任意常数)。
A. B.
C. D.
. 在直角坐标系下化为三次积分为( ),其中 为 , 所围的闭区域。
A. B. C. D.
三.计算下列各题(共 分,每题 分)
高等数学(同济六版)下册期末总复习

G
x − x0 y − y0 z − z0 = = m n p
⎧ x = x0 + mt ⎪ 2)参数式方程: ⎨ y = y0 + nt ; ⎪ z = z + pt 0 ⎩
Δ
( Δx ) 2 + ( Δy ) 2
⎧ x = x(t ) ⎪ a、 若曲线 Γ 的方程为参数方程: ⎨ y = y (t ) ,点 M ( x0 , y0 , z0 ) ∈ Γ ↔ t = t0 ,则 ⎪ z = z (t ) ⎩
切向量为 T = ( x′(t0 ), y′(t0 ), z ′(t0 )) , 切线方程为
2) 求导法则:对 x 求偏导,暂时视 y 为常量;对 y 求偏导,暂时视 x 为常量 3) 复合函数的求导法则(链式法则) :若 z = f (u , v ) 具有连续偏导数,而 u = g ( x, y ) 与 v = h( x, y ) 都具 有偏导数,则复合函数 z = f [ g ( x, y ), h ( x, y )] 的偏导数为:
by bz b G G ; a&b ⇔ x = = (对应坐标成比例) ax a y az
G G G G a ⊥ b ⇔ a ⋅b = 0 ;
G G a ⋅b G G n cos(a , b ) = G G ; | a || b |
G G G G n G b =| b | cos( a , b ) Prja
2) 方程组的情形: (隐函数求导法)
⎧ F ( x, y, z ) = 0 ⎩ z = z ( x ) dy dz 三元方程组确定两个一元隐函数: ⎨ ⇒ , ⎩G ( x, y, z ) = 0 对x求导 dx dx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(共21分 每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =−−=−+与直线⎪⎩⎪⎨⎧+=+−==tz t y tx L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<−=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为 Cxy =.7.写出微分方程xe y y y =−'+''2的特解的形式xaxe y =*.二、解答题(共18分 每小题6分)1.求过点)1,2,1(−且垂直于直线⎩⎨⎧=+−+=−+−02032z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=−−=kj i n(4分)所求平面方程为 032=++z y x (6分) 2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +−=及22y x z +=所围成的区域.解: πθ20 ,10 ,2 :2≤≤≤≤−≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰−=221020d ),sin ,cos (d d r rz z r r f r r θθθπ(6分)3.计算二重积分⎰⎰+−=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D解 ⎰⎰−=2020d d 2r r eI r πθ⎰⎰−−=−20220)(d d 212r e r πθ⎰−⋅−=202d 221r e π)1(4−−=e π三、解答题(共35分 每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xvv z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分)2.函数),(y x z z =由方程0=−xyz e z所确定,求yz x z ∂∂∂∂,. 解:令xyz e z y x F z−=),,(, (2分)则 ,yz F x −= ,xz F y −= ,xy e F zz −= (5分)xy e yzF F x z z z x −=−=∂∂, xye xz F F y z z z y −=−=∂∂. (7分) 3.计算曲线积分⎰+−Ly x x y d d ,其中L 是在圆周22x x y −=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+−−=+−OA DL y x x y y x y x x y d d d d 2d d (5分)ππ=−⋅=022 (7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解: 由xQ y P ∂∂=∂∂ 得 )()(x f x f e x'=+, 即xe xf x f =−')()( (3分)所以 )d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰−−−⎰)(C x e x +=, (6分) 代入初始条件,解得1=C ,所以)1()(+=x e x f x. (7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解: 因为 )!2()!()!22(])!1[(limlim 221n n n n u u n nn n ++=∞→+∞→ (3分) )12)(22()1(lim2+++=∞→n n n n 141<= (6分) 故该级数收敛. (7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x −−=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++−1d d d d d d y x z x z y z y x (4分)0d 3−=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=. (7分) 五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x , 且面积为)sin sin (sin 212z y x R A ++=, 令)2(sin sin sin πλ−+++++=z y x z y x F (3分)由 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z yx (4分)得32π===z y x .此时,其边长为R R 3232=⋅. 由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大. (6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解: 1)1(lim lim 1=+==∞→+∞→n n a a R n n n n ,故收敛半径为1=R . (2分)当1−=x 时,根据莱布尼茨判别法,级数收敛; 当1=x 时, 级数为调和级数,发散.故原级数的收敛域为)1,1[−. (5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=−='11)(n n x x S x−=11, (6分) 再积分得 ⎰'=xx x S x S 0d )()(x xxd 110⎰−=)1ln(x −−=,)11(<≤−x (8分) 七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x yt t f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f . 解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰ (2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(. (3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为 C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C . 因此所求的函数为 )1(ln 3)(+=x x f . (5分)八. (5分)已知x x e xe y 21+=,x x e xe y −+=2,x x x e e xe y −−+=23是某二阶线性非齐次微分方程的三个解,求此微分方程. 解1:由线性微分方程解的结构定理知xe2与xe−是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故可设此方程为 )(2x f y y y =−'−''将x xe y=代入上式,得x x xe e x f 2)(−=,因此所求的微分方程为x x xe e y y y 22−=−'−''解2:由线性微分方程解的结构定理知xe2与xe−是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故x x x e C e C xe y −++=221是所求微分方程的通解,从而有 x x x x e C e C xe e y −−++='2212,x x x x e C e C xe e y −+++=''22142消去21,C C ,得所求的微分方程为x x xe e y y y 22−=−'−''06高数B一、填空题(共30分 每小题3分)1.xoy 坐标面上的双曲线369422=−y x 绕x 轴旋转一周所生成的旋转曲面方程为36)(94222=+−z y x .2.设函数22),,(z yz x z y x f ++=,则=−)1,0,1(grad f )2,1,2(−−.3.直线35422:1z y x L =−−=−+与直线⎪⎩⎪⎨⎧+=+−==tz t y tx L 72313:2的夹角为2π.4. 设Ω是曲面222y x z −−=及22y x z +=所围成的区域积分,则⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分形式是⎰⎰⎰−221020d ),sin ,cos (d d r rz z r r f r r θθθπ.5. 设L 是圆周22x x y −=,取正向,则曲线积分=+−⎰Ly x x y d dπ2.6. 幂级数∑∞=−−11)1(n nn n x 的收敛半径1=R .7.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.8.设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<−=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.9.全微分方程0d d =+y y x x 的通解为 Cxy =.10.写出微分方程xe y y y =−'+''2的特解的形式xaxe y =*.二、解答题(共42分 每小题6分)1.求过点)1,2,1(且垂直于直线⎩⎨⎧=+−+=−+−03202z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=−−=kj i n(4分)所求平面方程为 032=++z y x (2分)2.函数),(y x z z =由方程z y x z y x 32)32sin(−+=−+所确定,求xz∂∂.解:令z y x z y x z y x F 32)32sin(),,(+−−−+=, (2分)则,1)32cos(−−+=z y x F x 3)32cos(3+−+−=z y x F z . (2分))32cos(33)32cos(1z y x z y x F F x z z x −+−−+−=−=∂∂ . (2分)3.计算⎰⎰Dxy σd ,其中D 是由直线2 ,1==x y 及x y =所围成的闭区域.解法一: 原式⎰⎰=211d ]d [xx y xy (2分)x y x x d ]2[2112⎰⋅=x xx d )22(213⎰−= 811]48[2124=−=x x . (4分)解法二: 原式⎰⎰=212d ]d [y y x xy 811]8[2142=−=y y .(同上类似分) 4.计算⎰⎰−−Dy x y x d d 122,其中D 是由122=+y x 即坐标轴所围成的在第一象限内的闭区域.解: 选极坐标系原式⎰⎰−=2012d 1πθr r r d (3分))1(1)21(22102r d r −−−⋅=⎰π6π= (3分)5.计算⎰Γ−+−z x y yz x z y d d 2d )(222,其中Γ是曲线,t x =,2t y =3t z =上由01=t 到12=t 的一段弧.解:原式⎰⋅−⋅+−=122564d ]322)[(t t t t t t t (3分)⎰−=1046d )23(t t t 1057]5273[t t −=351= (3分)6.判断级数∑∞=−1212n n n 的敛散性. 解: 因为 n n n nn n n n u u 2122)12(lim lim11−+=+∞→+∞→ (3分) 121<=, (2分) 故该级数收敛. (1分) 7.求微分方程043=−'−''y y y 满足初始条件,00==x y 50−='=x y 的特解.解:特征方程 0432=−−r r ,特征根 1,421−==r r通解为 x x e C e C y −+=241, (3分)x xe C e C y −−='2414,代入初始条件得 1,121=−=C C ,所以特解x x e e y −+−=4.(3分)三、(8分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x −−=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的 空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++−1d d d d d d y x z x z y z y x (4分)0d 3−=⎰⎰⎰Ωv (2分)34213π⋅⋅=π2=. (2分)四、(8分)设曲线积分⎰−+Ly x x xf x x yf d ])(2[d )(2在右半平面)0(>x 内与路径无关,其中)(x f 可导,且满足1)1(=f ,求)(x f . 解:由xQy P ∂∂=∂∂, 得x x f x x f x f 2)(2)(2)(−'+=, 即1)(21)(=+'x f xx f , (3分) 所以)d ()(d 21d 21C xeex f x x x x +=⎰⎰−⎰)(2121C dx x x+=⎰−)32(2321C x x+=−, (3分)代入初始条件,解得31=C ,所以x x x f 3132)(+=. (2分)五、(6分)求函数xy y x y x f 3),(33−+=的极值.解:⎪⎩⎪⎨⎧=−==−=033),(033),(22x y y x f y x y x f y x得驻点 )1,1(),0,0( (3分),6),(x y x f xx = ,3),(−=y x f xy y y x f yy 6),(=在点)0,0(处,,092>=−AC B 故)0,0(f 非极值;在点)1,1(处,,0272<−=−AC B 故1)1,1(−=f 是极小值. (3分)六、(6分)试证:曲面)(xyxf z =上任一点处的切平面都过原点.证:因),()(xyf x y x y f x z '−=∂∂)(1)(x y f x x y f x y z '=⋅'=∂∂ (3分) 则取任意点),,(0000z y x M ,有)(0000x y f x z =,得切平面方程为))(())](()([)(0000000000000y y x y f x x x y f x y x y f x y f x z −'+−'−=−即0)()]()([00000000=−'+'−z y x yf x x y f x y x y f 故切平面过原点. (3分)07A一、 填空题(每小题3分,共21分)1.设向量}5,1,{},1,3,2{−==λb a ,已知a 与b垂直,则=λ1−2.设3),(,2,3π===b a b a ,则=−b a 6−3.yoz 坐标面上的曲线12222=+bz a y 绕z 轴旋转一周生成的旋转曲面方程为122222=++bz a y x4.过点)0,4,2(且与直线⎩⎨⎧=−−=−+023012z y z x 垂直的平面方程0832=+−−z y x5.二元函数)ln(y x x z +=的定义域为}0,0,({>+≥=y x x y x D6.函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(gradf }1,0,1{7.设xy e z =,则=dz )(xdy ydx e xy +8.设),(x yx xf u=,f具有连续偏导数,则=∂∂xu 21f xy xf f −+9.曲线32,,t z t y t x ===上点)1,1,1(处的切向量=T}3,2,1{ 10.交换积分顺序:⎰⎰=ydx y x f dy 010),(⎰⎰110),(x dyy x f dx11.闭区域Ω由曲面222y x z+=及平面1=z 所围成,将三重积分⎰⎰⎰Ωdv z y x f ),,(化为柱面坐标系下的三次积分为⎰⎰⎰πθθθ20101),sin ,cos (rdzz r r f rdr d12.设L 为下半圆周21x y−−=,则=+⎰ds y x L )(22π13.设L 为取正向圆周922=+y x,则=−+−⎰dy x x dx y xy L )4()22(2π18−14.设周期函数在一个周期内的表达式为⎩⎨⎧<≤≤<−=ππx xx x f 000)(则它的傅里叶级数在π=x 处收敛于2π15.若0lim ≠∞→nn u ,则级数∑∞=1n n u 的敛散性是 发散16.级数∑∞=1!2n n n nn 的敛散性是 收敛17.设一般项级数∑∞=1n n u ,已知∑∞=1n n u 收敛,则∑∞=1n n u 的敛散性是 绝对收敛18.微分方程05)(23=+'−''xy y y x 是 2 阶微分方程19.微分方程044=+'+''y y y 的通解=y xx xe C e C 2221−−+20.微分方程x xe y y y 223=+'−''的特解形式为xe b ax x 2)(+二、(共5分)设xy v y x u v u z ===,,ln 2,求yzx z ∂∂∂∂, 解:]1)ln(2[1ln 2222+=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy yx y v u y v u x v v z x u u z x z]1)ln(2[)(ln 23222−−=⋅+−⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy yx x v u y x v u y v v z y u u z y z 三、(共5分)设022=−++xyz z y x ,求xz ∂∂解:令xyz z y x z y x F 22),,(−++=xyzyzxyz F x −=xyzxyxyz F z −=xyxyz xyz yz F F x zz x −−=−=∂∂ 四、(共5分)计算⎰⎰⎰Ωxdxdydz ,其中Ω为三个坐标面及平面1=++z y x 所围成的闭区域解:y x z x y x −−≤≤−≤≤≤≤Ω10,10,10:⎰⎰⎰⎰⎰⎰⎰⎰−−−−Ω−−==xyx xdy y x x dx xdz dy dx xdxdydz 1010101010)1(241)2(21)1(213102102=+−=−=⎰⎰dx x x x dx x x五、(共6分) 计算⎰−+−Lxx dy y e dx y y e )1cos ()sin (,其中L 为由点)0,(a A 到点)0,0(O 的上半圆周ax y x =+22解:添加有向辅助线段OA ,则有向辅助线段OA 和有向弧段OA 围成闭区域记为D ,根据格林 公式⎰−+−Lxx dy y e dx y y e )1cos ()sin ( ⎰⎰⎰−+−−=DOAx x dy y e dx y y e dxdy )1cos ()sin (0)2(212−=a π 381a π= 六、(共6分)求幂级数∑∞=−13)3(n nn n x 的收敛域解:对绝对值级数,用比值判敛法3313131lim 333)1(3lim lim 111−=−⋅+=−+−=∞→++∞→+∞→x x n n n x n x u u n n nn n n n n n 当1331<−x 时,即60<<x ,原级数绝对收敛 当1331>−x 时,即60><x x 或,原级数发散 当0=x 时,根据莱布尼兹判别法,级数∑∞=−1)1(n nn收敛当6=x时,级数∑∞=11n n发散,故收敛域为)6,0[ 七、(共5分) 计算dxdy z⎰⎰∑2,其中∑为球面1222=++z y x 在第一卦限的外侧解:∑在xoy 面的投影xy D :0,0,122≥≥≤+y x y xdxdy z ⎰⎰∑2dxdy y x xyD )1(22−−+=⎰⎰rdr r d )1(2102⎰⎰−=πθ412⋅=π8π=八、(共7分) 设0)1(=f ,求)(x f 使dy x f ydx x f xx )()](1[ln ++为某二元函数),(y x u 的全微分,并求),(y x u 解:由x Q y P ∂∂=∂∂,得)()(1ln x f x f x x '=+,即x x f xx f ln )(1)(=−' 所以)ln 21()1ln ()ln ()(211C x x C dx x x x C ex ex f dxx dxx+=+⋅=+=⎰⎰⎰⎰−−−带入初始条件,解得0=C,所以x x x f 2ln 21)(=⎰++=),()0,0(22ln 21)ln 21(ln ),(y x xdy x ydx x x y x u⎰⎰+=x y xdy x 002ln 210x xy 2ln 21=07高数B一、(共60分 每题3分)1. 设向量}4 ,2 ,6{−=a,}2 ,1 ,{−=λb ,已知a 与b 平行,则=λ3−.2. yoz 坐标面上的曲线12222=−c z a y 绕z 轴旋转一周生成的旋转曲面方程为122222=−+bz a y x . 3.设3),(,1,2π===∧b a b a ,则a b −=3.4. 设一平面经过点)1,1,1(,且与直线⎩⎨⎧=+=−−03042z y y x 垂直,则此平面方程为032=−+z y x .5. 二元函数12ln 2+−=x y z 的定义域为{}012|),(2>+−x y y x .6. 设xy e z =,则=z d )d d (y x x y e xy +.7. 函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(grad f )1,0,1(.8.设(,)yu xf x x =,f 具有连续导数,则u x ∂=∂12yf xf f x''+−. 9. 曲面1222=++z y x 在点)2,0,1(−处的法向量=n{}4,0,2−. 10. 交换积分顺序:⎰⎰=100d ),(d x y y x f x ⎰⎰101d ),(d y x y x f y .11.闭区域Ω由曲面22y x z +=及平面1=z 所围成,将三重积⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分为⎰⎰⎰11202d ),sin ,cos (d d rz z r r f r r θθθπ.12. 设∑是闭区域Ω的整个边界曲面的外侧,V 是Ω的体积,则 ⎰⎰∑++y x z x z y x y x d d d d d d =V 3. 13. 设L 为上半圆周21x y −=,则=+⎰Ls y x d )(22π.14. 设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<−=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.15. 若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 .16. 级数∑∞=1!5n n nn n 的敛散性是 收敛 .17.级数∑∞=12sin n nn的敛散性是 收敛 . 18. 微分方程06)(542=+'+''y y y x 是 2 阶微分方程. 19. 微分方程02=+'−''y y y 的通解为)(21x C C e x +.20.微分方程x xe y y y 2365−=+'+''的特解的形式xe bx ax y 22*)(−+=.三、(共5分)函数),(y x z z =由方程04222=−++z z y x 所确定,求xz∂∂. 解:令=),,(z y x F z z y x 4222−++, (1分)则 ,2x F x = ,42−=z F z (2分)zx F F x z z x −=−=∂∂2 (2分) 五、(共6分)计算曲线积分⎰+−−Ly y x x y x d )sin (d )2(22,其中L 为由点)0,2(A 到点)0,0(O 的上半圆周x y x 222=+.解:添加有向辅助线段OA ,它与上半圆周围成的闭区域记为D ,根据格林公式⎰+−−Ly y x x y x d )sin (d )2(22⎰⎰⎰+−−−+−=OADy y x x y x y x d )sin (d )2(d d )21(22 (3分)⎰⎰=Dy x d d ⎰−22d x x 3823212132−=−⋅⋅=ππ (3分)七、(共6设0)1(=f ,确定)(x f 使y x f x xyx f x d )(d )]([sin +−为某二元函数(,)u x y 的全微分.解: 由x Q y P ∂∂=∂∂ 得 )()(sin x f xx f x '=−,即 xxx f x x f sin )(1)(=+' (2分) 所以 )d sin ()(d x 1d 1C xe xx ex f x x x+⋅=⎰⎰⎰−)d sin (ln ln C x e xx e xx +⋅=⎰− (2分) )cos (1C x x+−=, (1分) 代入初始条件,解得1cos =C ,所以)cos 1(cos 1)(x xx f −=. (1分) 八、(共6分)计算⎰⎰∑y x z d d 2,其中∑是球面1222=++z y x 外侧在,0≥x 0≥y 的部分. 解:⎰⎰∑y x z d d ⎰⎰∑=1d d y x z ⎰⎰∑+2d d y x (2分)⎰⎰−−=xyD y x y x d d )1(22⎰⎰−−−−xyD y x y x d )d 1()1(22 (2分) ⎰⎰−−=xyD y x y x d )d 1(222r r r d )1(d 21220⋅−=⎰⎰πθ 4π=(2分)08高数A一、选择题(共24分 每小题3分)1.设{}1111,,p n m s =,{}2221,,p n m s =分别为直线1L ,2L 的方向向量,则1L 与2L 垂直的充要条件是 (A )(A )0212121=++p p n n m m (B )212121p p n n m m ==(C )1212121=++p p n n m m (D )1212121=++p pn n m m 2.Yoz 平面上曲线12+=y z 绕z 轴旋转一周生成的旋转曲面方程为 ( C )(A )12+=y z (B )22x y z +=(C )122++=x y z (D )x y z +=23.二元函数12ln 2+−=x y z 的定义域为 (B )(A ){}02|),(2>−x y y x (B ){}012|),(2>+−x y y x (C ){}012|),(2≤+−x y y x (D ){}0,0|),(≥>y x y x4.交换积分顺序:1d (,)d yy f x y x =⎰⎰ ( A )(A )dy y x f dx x ⎰⎰110),((B )dx y x f dy y ⎰⎰110),((C )dx y x f dy y⎰⎰110),((D )dy y x f dx x⎰⎰110),(5.空间闭区域Ω由曲面1=r 所围成,则三重积分⎰⎰⎰Ωv d 2= ( C ) (A )2 (B )2π (C )38π (D )34π 6.函数),(y x z z =由方程04222=−++z z y x 所确定,则xz∂∂= ( D ) (A )zy −2 (B )y x−2 (C )zz−2 (D )zx−2 7.幂级数∑∞=13n n nn x 的收敛域是 ( C )(A )][3,3− (B )](3,0(C ) [)3,3− (D )()3,3−8.已知微分方程xe y y y =−'+''2的一个特解为x xe y =*,则它的通解是( B ) (A )x xe x C x C ++221(B )x x x xe e C e C ++−221(C )x e x C x C ++221(D )x x x xe e C e C ++−21二、填空题(共15分 每小题3分)1.曲面z y x =+22在点)1,0,1(处的切平面的方程是012=−−z x . 2.若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 3.级数∑∞=12cos n n n的敛散性是 绝对收敛 . 4.二元函数2221sin)(),(x y x y x f +=,当()()0,0,→y x 时的极限等于 0 。