(完整版)排列组合二项式定理新课

合集下载

新教材高中数学第3章排列组合与二项式定理3

新教材高中数学第3章排列组合与二项式定理3

3.1.3 组合与组合数第1课时 组合与组合数、组合数的性质(教师独具内容)课程标准:1.通过实例,理解组合的概念.2.能利用计数原理推导组合数公式. 教学重点:理解组合的概念、组合数公式及组合数的性质. 教学难点:利用公式及性质解决一些简单的实际问题.知识点一 组合的定义一般地,从n 个不同对象中取出m (m ≤n )个对象□01并成一组,称为从n 个不同对象中取出m 个对象的一个组合.知识点二 组合与组合数公式组合数定义从n 个不同对象中取出m 个对象的□01所有组合的个数,称为从n 个不同对象中取出m 个对象的组合数表示法 □02C m n组合数乘积式C mn =□03公式阶乘式□04性质1.C mn =□05C n -mn ; 2.□06C m +1n +C m n =C m +1n +1 备注①n 和m 都是自然数,且m ≤n ; ②规定:C 0n =□071,C 1n =□08n ,C nn =□091组合的定义包含两个基本内容:一是“取出对象”;二是“合成一组”,表示与对象的顺序无关,排列与组合的相同点是从n 个不同对象中任取m 个对象,不同点是组合是“不管对象的顺序合成一组”,而排列是要求对象按照一定的顺序排成一列.因此区分某一问题是组合还是排列,关键是看取出的对象有无顺序.组合数的两个性质,性质1反映了组合数的对称性,在m >n2时,通常不直接计算C mn 而改为C n -m n ,对于性质2,C m +1n +C m n =C m +1n +1要会正用、逆用、变形用.1.判一判(正确的打“√”,错误的打“×”)(1)从a ,b ,c 三个不同的对象中任取两个对象的一个组合是C 23.( ) (2)从1,3,5,7中任取两个数相乘可得C 24个积.( ) (3)若组合C x n =C mn ,则x =m 成立.( ) (4)C 35=5×4×3=60.( ) 答案 (1)× (2)√ (3)× (4)× 2.做一做(请把正确的答案写在横线上)(1)从6名学生中选出3名学生参加数学竞赛的不同选法种数是________. (2)C 1820=________. (3)C 399+C 299=________.答案 (1)20 (2)190 (3)161700题型一 组合的有关概念 例1 给出下列问题:(1)从a ,b ,c ,d 四名学生中选2名学生完成一件工作,有多少种不同的选法? (2)从a ,b ,c ,d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法? (3)a ,b ,c ,d 四支足球队之间进行单循环比赛,共需赛多少场? (4)a ,b ,c ,d 四支足球队争夺冠亚军,有多少种不同的结果?(5)某人射击8枪,命中4枪,且命中的4枪均为2枪连中,不同的结果有多少种? (6)某人射击8枪,命中4枪,且命中的4枪中恰有3枪连中,不同的结果有多少种? 在上述问题中,哪些是组合问题?哪些是排列问题?[解] (1)2名学生完成的是同一件工作,没有顺序,是组合问题. (2)2名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题.(4)冠亚军是有顺序的,是排列问题.(5)命中的4枪均为2枪连中,为相同的对象,没有顺序,是组合问题.(6)命中的4枪中恰有3枪连中,即连中3枪和单中1枪,有顺序,是排列问题.教材判断是否为组合问题,关键是判断问题是否与顺序有关,可以结合条件理解,也可以选择一个结果,交换这个结果中两个对象的先后顺序,看是否对结果产生影响,若无新变化,则是组合问题.总之,与顺序有关是排列问题,若与顺序无关,则是组合问题.[跟踪训练1]判断下列问题是排列问题,还是组合问题:(1)从集合A={-1,1,10,8,6,4}中任取两个数相加,得到的和共有多少个?(2)从集合A={-1,1,10,8,6,4}中任取两个数相除,得到的商共有多少个?(3)从a,b,c,d这四名同学中任取两名同学去参加某一活动,共有多少种不同的选法?(4)四个人互发一个电子邮件,共写了多少个电子邮件?解(1)从集合A中取出两个数后,改变两个数的顺序,其和不变.因此,此问题只与取出的对象有关,与对象的顺序无关,故是组合问题.(2)从集合A中取出两个数相除,若改变其除数、被除数的位置,其结果就不同,因此其商的值与对象的顺序有关,是排列问题.(3)由于从4名同学中取出的两名同学参加的同一项活动,没有顺序,因此是组合问题.(4)四人互发电子邮件,由于发件人与收件人是有区别的,与顺序有关,是排列问题.题型二组合数以及组合数性质的应用例2 (1)计算:C410-C37A33;(2)已知1C m5-1C m6=710C m7,求C m8;(3)求C38-n3n+C3n21+n的值;(4)证明:m C m n=n C m-1n-1.[解] (1)原式=C410-A37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)原方程可化为=,即=,即,即m 2-23m +42=0,解得m =2或m =21(不符合题意,舍去). ∴C m 8=C 28=28.即m 2-23m +42=0,解得m =2或m =21(不符合题意,舍去). ∴C m8=C 28=28.(3)∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5.∵n ∈N ,∴n =10, ∴C 38-n3n +C 3n21+n =C 2830+C 3031 =30!28!·2!+31!30!·1!=466.(4)证明:m C mn =m ·=n ·=n C m -1n -1.点睛(1)像排列数公式一样,公式C m n=一般用于计算;而公式C mn=及C m n=A mnA mm一般用于证明、解方程(不等式)等.(2)在解决与组合数有关的问题时,要注意隐含条件“m ≤n 且m ,n ∈N ”的运用.如本例(3).(3)要注意公式Am n =C m n A m m 的逆向运用,如本例(1)中可利用“C 37A 33=A 37”简化计算过程. (4)本例(4)所推导的结论“m C m n =n C m -1n -1”以及它的变形公式是非常重要的公式,应熟练掌握.[跟踪训练2] (1)①求值:C 5-n n +C 9-n n +1;②求证:C mn =m +1n -mC m +1n . (2)计算:①C 58+C 98100C 77; ②C 05+C 15+C 25+C 35+C 45+C 55; ③C nn +1C n -1n .解 (1)①⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又n ∈N ,所以n =4或n =5. 当n =4时,原式=C 14+C 55=5, 当n =5时,原式=C 05+C 46=16.②证明:因为C mn =,m +1n -mC m +1n ==,所以C mn =m +1n -mC m +1n .(2)①原式=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4950=5006.②原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32.③原式=C 1n +1C 1n =(n +1)n =n 2+n .题型三 简单的组合问题例3 现有10名教师,其中男教师6名,女教师4名. (1)从中选2名去参加会议,有多少种不同的选法?(2)从中选出2名男教师或2名女教师去外地学习,有多少种不同的选法?(3)从中选出男、女教师各2名去参加会议,有多少种不同的选法?[解] (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同对象中取出2个对象的组合数,即有C 210=10×92×1=45种不同的选法. (2)可把问题分两类:第1类,选出2名男教师,有C 26种方法;第2类,选出2名女教师,有C 24种方法,即共有C 26+C 24=21种不同的选法.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有C 26C 24=6×52×1×4×32×1=90种不同的选法.点睛解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于:排列问题与取出的对象之间的顺序有关,而组合问题与取出对象的顺序无关.其次要注意两个基本原理的运用,即分类与分步的灵活运用,在分类与分步时,一定要注意有无重复和遗漏.[跟踪训练3] 在50件产品中,有4件次品,现从中任意抽取3件. (1)“全部是合格品”的不同抽取方法共有多少种? (2)“恰有2件次品”的不同抽取方法共有多少种? (3)“最多有1件次品”的不同抽取方法共有多少种? 解 在50件产品中,有4件次品,即有46件合格品.(1)抽取的3件产品“全部是合格品”,即在46件合格品中任取3件即可,有C 346=15180种取法.(2)在46件合格品中任取1件,在4件次品中任取2件,根据分步乘法计数原理,共有C 146C 24=276种取法.(3)分两类:第1类,抽取的3件产品中有1件次品,2件合格品,有C 14C 246种取法;第2类,抽取的3件产品全为合格品,有C 346种取法,故共有C 14C 246+C 346=19320种取法.1.下列问题不是组合问题的是 ( )A .10个朋友聚会,每两人握手一次,一共握手多少次?B .平面上有2020个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段?C .集合{a 1,a 2,a 3,…,a n }的含有三个元素的子集有多少个?D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?答案 D解析 组合问题与次序无关,排列问题与次序有关,D 项中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是两个不同的选法,因此是排列问题,不是组合问题,故选D.2.若C 7n +1-C 7n =C 8n ,则n 等于( ) A .12 B .13 C .14 D .15 答案 C解析 ∵C 7n +1=C 7n +C 8n =C 8n +1,∴n +1=7+8,∴n =14,故选C. 3.把三张游园票分给10个人中的3人,分法有 ( ) A .A 310种 B .C 310种 C .C 310A 310种 D .30种 答案 B解析 三张票没区别,从10人中选3人即可,即C 310,故选B. 4.若C 4n >C 6n ,则n 的集合是________. 答案 {6,7,8,9} 解析 ∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6⇒⇒⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.∵n ∈N ,∴n =6,7,8,9.∴n 的集合为{6,7,8,9}.5.现有6名内科医生和4名外科医生,要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生; (2)既有内科医生,又有外科医生.解 (1)先选内科医生有C 36种选法,再选外科医生有C 24种选法,故有C 36C 24=120种选派方法.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生选1人,2人,3人,4人,相应地,外科医生选4人,3人,2人,1人,有C 16C 44+C 26C 34+C 36C 24+C 46C 14=246种选派方法.若从反面考虑,则有C 510-C 56=246种选派方法.A 级:“四基”巩固训练一、选择题1.已知组合数C yx =6,则在平面直角坐标系内以点(x ,y )为顶点的图形是 ( ) A .三角形 B .平行四边形 C .梯形 D .矩形 答案 A解析 当x =6,y =1;x =6,y =5;x =4,y =2时,C yx =6,所以满足题意的点有(6,1),(6,5),(4,2),共3个,可构成三角形.故选A.2.从2,3,…,8中任意取三个不同的数字,组成无重复数字的三位数,要求个位数最大,百位数最小,则这样的三位数的个数为 ( )A .35B .42C .105D .210 答案 A解析 由于取出三个数字后大小次序已确定,只需把最小的数字放在百位,最大的数字放在个位,剩下的数字放在十位,因此满足条件的三位数的个数为C 37=7×6×53×2×1=35.3.从6名男生和3名女生中选出4名代表,其中必须有女生,则不同的选法种数为( ) A .168 B .45 C .60 D .111 答案 D解析 选出的代表中女生有1,2,3名时,男生相应有3,2,1名,则不同的选法种数为C 13C 36+C 23C 26+C 33C 16=111.4.C 03+C 14+C 25+C 36+…+C 20192022=( )A .C 22020B .C 32021 C .C 32022D .C 42023 答案 D解析 原式=C 04+C 14+C 25+C 36+…+C 20192022=C 15+C 25+C 36+…+C 20192022=C 26+C 36+…+C 20192022=…=C 20182022+C 20192022=C 20192023=C 42023.故选D.5.(多选)以下四个式子正确的是( ) A .C m n=A mn m !B .A m n =n A m -1n -1C .C m n ÷C m +1n =m +1n -m D .C m +1n +1=n +1m +1C m n 答案 ABCD解析 对于A ,显然成立;对于B ,A m n =n (n -1)(n -2)·…·(n -m +1),A m -1n -1=(n -1)(n-2)…(n -m +1),所以A mn =n A m -1n -1,故B 成立;对于C ,C mn ÷Cm +1n=C mnC m +1n==m +1n -m,故C 成立;对于D ,C m +1n +1===n +1m +1C mn ,故D 成立.故选ABCD. 二、填空题6.设集合A ={a 1,a 2,a 3,a 4,a 5},则集合A 的含有3个元素的子集共有________个. 答案 10解析 从5个元素中取出3个元素组成一组就是集合A 的子集,则共有C 35=10个子集. 7.若A 3m =6C 4m ,则m 的值为________. 答案 7解析 由A 3m =6C 4m ,得=6·,即1m -3=14,解得m =7.8.7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种(用数字作答).答案 140解析 第一步,从7名志愿者中选出3人在周六参加社区公益活动,有C 37种不同的选法;第二步,从余下的4人中选出3人在周日参加社区公益活动,有C 34种不同的选法.根据分步乘法计数原理,共有C 37C 34=140种不同的安排方案. 三、解答题9.有两组平行线,第一组平行线有5条,第二组平行线有6条,第一组平行线与第二组平行线相交,问这两组平行线能构成多少个平行四边形?解 每一个平行四边形有两组对边平行,即两组对边平行的一个组合对应于一个平行四边形.而两组对边平行的组合数为C 25C 26=150.因此能构成150个平行四边形.10.(1)解方程:3C x -7x -3=5A 2x -4; (2)解不等式:2C x -2x +1<3C x -1x +1;(3)计算C 3n13+n +C 3n -112+n +C 3n -211+n +…+C 17-n 2n . 解 (1)由排列数和组合数公式,原方程可化为即(x -3)(x -6)=40.∴x 2-9x -22=0,解得x =11或x =-2.经检验知x =11是原方程的根,x =-2是原方程的增根. ∴方程的根为x =11.(2)∵2C x -2x +1<3C x -1x +1,∴2C 3x +1<3C 2x +1,∴x -13<32,∴x <112, ∵⎩⎪⎨⎪⎧x +1≥3,x +1≥2,∴x ≥2,∴2≤x <112,又x ∈N *,∴x =2,3,4,5.∴不等式的解集为{2,3,4,5}.(3)由题意,得⎩⎪⎨⎪⎧3n ≤13+n ,17-n ≤2n ,解得173≤n ≤132,又n ∈N *,故n =6.∴原式=C 1819+C 1718+C 1617+…+C 1112=C 119+C 118+C 117+…+C 112=19+18+17+…+12=124.B 级:“四能”提升训练1.(1)设x ∈N *,求C x -12x -3+C 2x -3x +1的值; (2)解不等式:C x -420<C x -220<C x20.11解 (1)由题意可得⎩⎪⎨⎪⎧ 2x -3≥x -1,x +1≥2x -3,解得2≤x ≤4, ∵x ∈N *,∴x =2或x =3或x =4,当x =2时,原式值为4;当x =3时,原式值为7;当x =4时,原式值为11.∴所求式的值为4或7或11.(2)原不等式可化为又x ∈N *且x ≥4,∴x =4,5,6,7,8,9,10.∴原不等式的解集是{4,5,6,7,8,9,10}.2.某市工商局对35种商品进行抽样检查,鉴定结果有15种假货,现从35种商品中选取3种.(1)恰有2种假货在内的不同取法有多少种?(2)至少有2种假货在内的不同取法有多少种?(3)至多有2种假货在内的不同取法有多少种?解 (1)从20种真货中选取1种,从15种假货中选取2种,有C 120C 215=2100种. 所以恰有2种假货在内的不同取法有2100种.(2)选取2种假货有C 120C 215种,选取3种假货有C 315种,共有选取方法C 120C 215+C 315=2555种. 所以至少有2种假货在内的不同取法有2555种.(3)选取3种商品的种数为C 335,选取3种假货的种数为C 315,所以至多有2种假货在内的不同取法有C 335-C 315=6090种.。

2021_2022学年新教材高中数学第3章排列组合与二项式定理3.1排列与组合3.1.3第1课时组合

2021_2022学年新教材高中数学第3章排列组合与二项式定理3.1排列与组合3.1.3第1课时组合

3.1.3 组合与组合数第1课时组合与组合数学习任务核心素养1.理解组合与组合数的概念.(重点)2.会推导组合数公式,并会应用公式求值.(重点) 3.理解组合数的两个性质,并会求值、化简和证明.(难点、易混点)1.通过学习组合与组合数的概念,培养数学抽象的素养.2.借助组合数公式及组合数的性质进行运算,培养数学运算的素养.高考不分文理科后,思想政治、历史、地理、物理、化学、生物这6大科目是选考的,如果考生任选3科作为自己的考试科目,那么选考的组合方式一共有多少种可能的情况?问题:其中选物理不选历史和选历史不选物理的情况又分别有几种?[提示]这几个问题都与顺序无关,学完本节内容便能顺利求解.一般地,从n个不同对象中取出m(m≤n)个对象并成一组,称为从n个不同对象中取出m 个对象的一个组合.提醒:(1)所谓并成一组是指与顺序无关,例如组合a,b与组合b,a是同一组合,可以把一个组合看成一个集合.(2)组合概念的两个要点:①n个对象是不同的;②“只取不排”,即取出的m个对象组成的组合与取出对象的先后顺序无关,无序性是组合的特征性质.(3)如果两个组合中的对象完全相同,那么不管对象的顺序如何,它们都是相同的组合.如果两个组合中的对象不完全相同(即使只有一个对象不同),那么它们就是不同的组合.拓展:排列与组合的异同排列组合相同点从n个不同对象中取出m(m≤n)个对象不同点按照一定的顺序排成一列不管顺序地并成一组1.思考辨析(正确的打“√”,错误的打“×”)(1)两个组合相同的充要条件是组成组合的元素完全相同.()(2)从a1,a2,a3三个不同元素中任取两个元素组成一个组合,所有组合的个数为C23.()(3)从甲、乙、丙3名同学中选出2名去参加某两个乡镇的社会调查,有多少种不同的选法是组合问题.()(4)从甲、乙、丙3名同学中选出2名,有3种不同的选法.()[答案](1)√(2)√(3)×(4)√知识点2组合数的概念、公式定义从n个不同对象中取出m个对象的所有组合的个数,称为从n个不同对象中取出m个对象的组合数表示C m n(n,m∈N+且m≤n)组合数公式乘积式C m n=A m nA m m=n(n-1)·(n-2)…(n-m+1)m!阶乘式C m n=n!m!(n-m)!“组合”与“组合数”是同一个概念吗?[提示]同“排列”与“排列数”是两个不同的概念一样,“组合”与“组合数”也是两个不同的概念.例如,从3个不同对象a,b,c中每次取出2个对象的所有组合为ab,ac,bc,共3种,其中每一种情况都是一个组合,而组合数是3.拓展:(1)组合数公式C m n=n(n-1)…[n-(m-1)]m×(m-1)×…×2×1的形式特点:①分子是m个数相乘,且第一个因数是n,后面每一个因数比它前面一个因数少1,最后一个因数是n-m+1;②分母是m的阶乘.(2)组合数公式C m n=A m nA m m体现了组合数与相应排列数的关系,一般在计算具体的组合数时会用到.(3)组合数公式C m n =n !(n -m )!m !的主要作用有:①用于计算m ,n 较大时的组合数;②对含有字母的组合数的式子进行变形和证明.2.C 218=________,C 1718=________.153 18[C 218=18×172=153, C 1718=18!17!(18-17)!=18.]3.从3,5,7,11这四个数中任取两个相乘,可以得到不相等的积的个数为________.6[从四个数中任取两个数的取法为C 24=6.]类型1 组合的概念【例1】 判断下列各事件是排列问题还是组合问题.(1)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次? (2)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能? (3)从10个人里选3个代表去开会,有多少种选法? (4)从10个人里选出3个不同学科的课代表,有多少种选法?[思路点拨]要确定是组合还是排列问题,只需确定取出的元素是否与顺序有关. [解](1)是组合问题,因为每两个队比赛一次并不需要考虑谁先谁后,没有顺序的区别. (2)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序的区别.(3)是组合问题,因为3个代表之间没有顺序的区别.(4)是排列问题,因为3个人中,担任哪一科的课代表有顺序的区别.1.根据排列与组合的定义进行判断,区分排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.2.区分有无顺序的方法把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.[跟进训练]1.(对接教材P 22练习AT 2)从5个不同的元素a ,b ,c ,d ,e 中取出2个,写出所有不同的组合.[解]要想写出所有组合,就要先将元素按照一定顺序排好,然后按顺序用图示的方法将各个组合逐个标出来,如图所示:由此可得所有的组合为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de . 类型2 组合数公式的应用【例2】 (1)式子n (n +1)(n +2)…(n +100)100!可表示为( )A .A 100n +100B .C 100n +100 C .101C 100n +100D .101C 101n +100(2)求值:C 5-n n +C 9-n n +1.[思路点拨] 根据题目的特点,选择适当的组合数公式进行求值或证明.(1)D [分式的分母是100!,分子是101个连续自然数的乘积,最大的为n +100,最小的为n ,故n (n +1)(n +2)…(n +100)100!=101·n (n +1)(n +2)…(n +100)101!=101C 101n +100.] (2)[解] 由组合数定义知:⎩⎪⎨⎪⎧0≤5-n ≤n ,0≤9-n ≤n +1,所以4≤n ≤5,又因为n ∈N +, 所以n =4或5.当n =4时,C 5-n n +C 9-n n +1=C 14+C 55=5;当n =5时,C 5-n n +C 9-n n +1=C 05+C 46=16.关于组合数计算公式的选取1.涉及具体数字的可以直接用公式C mn =A m n A m m=n (n -1)(n -2)…(n -m +1)m !计算.2.涉及字母的可以用阶乘式C m n =n !m !(n -m )!计算.[跟进训练]2.(1)计算:C 410-C 37·A 33; (2)求证:C m n =m +1n +1C m +1n +1. [解] (1)C 410-C 37·A 33=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)证明:右边=m +1n +1·(n +1)!(m +1)!(n -m )!=n !m !(n -m )!=C m n =左边.即等式成立.类型3 简单的组合问题解答简单组合问题的关键是什么?[提示] 关键是把实际问题模型化,在此基础上选择组合数公式求解.【例3】 现有10名教师,其中男教师6名,女教师4名. (1)现要从中选2名去参加会议,有多少种不同的选法?(2)选出2名男教师或2名女教师参加会议,有多少种不同的选法? (3)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?[解] (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45(种).(2)可把问题分两类情况:第1类,选出的2名是男教师有C 26种方法; 第2类,选出的2名是女教师有C 24种方法.根据分类加法计数原理,共有C26+C24=15+6=21种不同选法.(3)从6名男教师中选2名的选法有C26种,从4名女教师中选2名的选法有C24种,根据分步乘法计数原理,共有不同的选法C26×C24=15×6=90(种).(变结论)本例其他条件不变,问题变为从中选2名教师参加会议,至少有1名男教师的选法是多少?最多有1名男教师的选法又是多少?[解]至少有1名男教师可分两类:1男1女有C16C14种,2男0女有C26种.由分类加法计数原理知有C16C14+C26=39种.最多有1名男教师包括两类:1男1女有C16C14种,0男2女有C24种.由分类加法计数原理知有C16C14+C24=30种.解简单的组合应用题的策略1.解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出元素之间的顺序有关,而组合问题与取出元素的顺序无关.2.要注意两个基本原理的运用,即分类与分步的灵活运用.提醒:在分类和分步时,一定注意有无重复或遗漏.[跟进训练]3.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“━━”和阴爻“━━”,如图就是一重卦.如果某重卦中有2个阳爻,则它可以组成________种重卦.(用数字作答)15[由题设知,“重卦”的种数为C26=15.]1.下列四个问题属于组合问题的是()A.从4名志愿者中选出2人分别参加导游和翻译的工作B.从0,1,2,3,4这5个数字中选取3个不同的数字,组成一个三位数C.从全班同学中选出3名同学出席运动会开幕式D.从全班同学中选出3名同学分别担任班长、副班长和学习委员C [A 、B 、D 项均为排列问题,只有C 项是组合问题.] 2.若A 3n =12C 2n ,则n 等于( )A .8B .5或6C .3或4D .4 A [A 3n =n (n -1)(n -2),C 2n =12n (n -1),所以n (n -1)(n -2)=12×12n (n -1).由n ∈N +,且n ≥3,解得n =8.]3.从7名男生和5名女生中选4人参加夏令营,规定男、女同学至少各有1人参加,则选法总数应为( )A .C 17C 15C 210 B .C 17C 15A 210C .C 412-C 47-C 45D .C 17C 15(C 26+C 14C 16+C 24)C [任选4人的方法数为C 412,减去其中全部为男生或全部为女生的方法数C 47+C 45,故选法总数应为C 412-C 47-C 45.]4.从9名学生中选出3名参加“希望英语”口语比赛,有______种不同的选法. 84[由题意可知共有C 39=9×8×73×2×1=84种.]5.6个朋友聚会,每两人握手1次,一共握手________次.15[每两人握手1次,无顺序之分,是组合问题,故一共握手C 26=15次.]回顾本节内容,自我完成以下问题: 试比较排列与组合的区别与联系. [提示] 名称 排列组合相同点 都是从n 个不同元素中取m (m ≤n )个元素,元素无重复名称排列组合不同点1.排列与顺序有关;2.两个排列相同,当且仅当这两个排列的元素及其排列顺序完全相同1.组合与顺序无关;2.两个组合相同,当且仅当这两个组合的元素完全相同联系 A m n =C m n A mm。

排列组合与二项式定理知识点精选全文完整版

排列组合与二项式定理知识点精选全文完整版

可编辑修改精选全文完整版排列与组合一、两个根本计数原理:〔排列与组合的根底〕1、分类加法计数原理:做一件事,完成它可以有类方法,在第一类方法中有种不同的方法,在第二类方法中有种不同的方法,……,在第类方法中有种不同的方法,那么完成这件事共有种不同方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第步有种不同的方法,那么完成这件事共有种不同的方法.二、排列与组合〔1〕排列定义:一般地,从个不同元素中取出个元素,按照一定顺序排成一列。

排列数公式:我们把正整数由1到的连乘积,叫做的阶乘,用表示,即,并规定。

全排列数公式可写成.〔主要用于化简、证明等〕(二)组合定义:一般地,从个不同元素中取出个元素合成一组,叫做从个不同元素中取出个元素的一个组合;组合数用符号表示组合数公式:变式:组合数的两个性质:1、三、二项式定理1、二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- .展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.2、二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+.3、二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数最大.I. 当n 是偶数时,中间项是第12+n 项,它的二项式系数2n n C 最大; II. 当n是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大.③系数和: 1314201022-=++=+++=+++n n n n n n n n nn n C C C C C C C C。

高中数学 排列组合二项式定理 二项式的通项公式 (初始课件)

高中数学 排列组合二项式定理 二项式的通项公式 (初始课件)

注意:展开式中第 r + 1 项的二项式 系数 与第 r + 1项的系数不同。
小结
• 二项式定理展开式的通项公式及其应用
a b
n
c 0 a n c1 a n 1b n n
r nr r cn a b
n n cn b
c a c a b c a b c b
1 n 1 n
这个公式叫做二项式定理,等号后面的 式子叫做(a+b)n的二项展开式,其中 Cnk(k=0,1,2,…,n)叫做二项式系数。
二项展开式中的第k+1项为Cnkan-kbk
叫做二项展开式的通项,
通项公式:TK+1=Cnkan-kbk
2.二项展开式的特点 (1) 项数: 展开式有共n+1项 (2) 系数 : 都是组合数, 依次为Cn0,Cn1,Cn2,Cn3,…Cnn (3) 指数的特点 : 1) a的指数 由n 0 (降幂) 2) b的指数由0 n (升幂) 3) a和b的指数和为n
1 3 例2:求 x 的展开式中x 的系数。 x 解:展开式的通项是
9
Tr 1 C x
r 9
9r
r 1 r 9 2 r 1 . C9 x x
r
根据题意,得 9 – 2r = 3
3

3
r=3
3 因此,x 的系数是 1 C9 84
内容
描述
课件名称
二项式的通项公式
课程内容
二项式的通项公式
教学设计
激趣导入:通过具体例子引出二项式的通项公式。 知识新授:二项式的通项公式 课堂练习:二项式的通项公式 课堂小结:总结
二项式的通项公式
主讲教师:栾小敏

高中数学第三章排列组合与二项式定理3.1.2.1排列与排列数课件新人教B版选择性必修第二册

高中数学第三章排列组合与二项式定理3.1.2.1排列与排列数课件新人教B版选择性必修第二册

3.5A!××33××22×1=15.
4.由 1,2,3 这三个数字组成的三位数分别是 _1_2_3_,_1_3_2_,2_1_3_,_2_3_1_,3_1_2_,_3_2_1______. 解析:用树形图表示为
由“树形图”可知组成的三位数为 123,132,213,231,312,321, 共 6 个.
[基础自测]
1.判断(正确的打“√”,错误的打“×”) (1) 两 个 排 列 的 对 象 相 同 , 则 这 两 个 排 列 是 相 同 的 排 列.( ) × 因为相同的两个排列不仅对象相同,而且对象的排列顺 序相同.
(2)从六名学生中选三名学生参加数学、物理、化学竞赛, 共有多少种选法属于排列问题.( )
2.由 1 知 A24 =4×3 =12,A34 =4×3×2 =24,你能否 得出 A2n的意义和 A2n的值?
[提示] A2n的意义:假定有排好顺序的 2 个空位,从 n 个对 象 a1,a2,…,an 中任取 2 个对象去填空,一个空位填一个对象, 每一种填法就得到一个排列;反过来,任一个排列总可以由这样
题型三 排列数公式的推导及应用
状元随笔 1.两个同学从写有数字 1,2,3,4 的卡片中选取卡
片进行组数字游戏.从这 4 个数字中选出 2 个或 3 个分别能构成 多少个无重复数字的两位数或三位数?
[提示] 从这 4 个数字中选出 2 个能构成 A24 =4×3 =12 个无重复数字的两位数;若选出 3 个能构成 A34 =4×3×2 =24 个无重复数字的三位数.
题型一 排列的概念
例 1 判断下列问题是否为排列问题. (1)北京、上海、天津三个民航站之间的直达航线的飞机票 的价格(假设来回的票价相同); (2)选 2 个小组分别去植树和种菜; (3)选 2 个小组去种菜; (4)选 10 人组成一个学习小组; (5)选 3 个人分别担任班长、学习委员、生活委员; (6)某班 40 名学生在假期相互通信.

排列组合二项式定理PPT课件

排列组合二项式定理PPT课件

通项是指展开式的第 r+1 项,
展开式共有 n+ 个项. 1
第3页/共9页
性性质质复复习习
性质1:在二项展开式中,与首末两端等距离
的任意两项的二项式系数相等.
性质2:如果二项式的幂指数是偶数,中间一
项的二项式系数最大;如果二项式的
幂指数是奇数,中间两项的二项式系
性质3性:质数3最:大;
性质3:
C
0 n
Pnm
n! (n m)!
Pnn n!
1)
0!
1
C
m n
C
m n
n(n 1) (n n! m!
m!(n m)!
m
C
0 n
1)
1
Pnm
C
m n
Pmm
, C C m n
nm n
Cm n1
Cnm
C m1 n
全排列:n个不同元素全部取出的一个排列.全排列数公式:所
有全排列的个数,即:
Pnn n第2页(n/共9页1) (n 2) 21
6×5=30
2. 若x、y可以取1,2,3,4,5中的任一个,则点(x,y)的不同个
数有多少?
5×5=25
第5页/共9页
练习2
1.计算:
③ p44=
① =p83 ,33②6 = ,p136 3=360 p33 24,④ = p55, 1⑤20 = , p66 = 720
6p2 2
2
Cn0 1
Cn1 n
感谢您的观看!
第9页/共9页
不同点
直接(分类)完成
间接(分步骤)完成
第1页/共9页
1.排列和组合的区别和联系:
名称

第31讲排列组合二项式定理(讲义)

第31讲排列组合二项式定理(讲义)

第31讲:排列组合、二项式定理一、高考要求掌握分类计数原理与分步计数原理,理解排列与组合的意义掌握排列数与组合数的计算公式及组合数的两个性质,并用它们解决一些简单的应用问题.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.二、两点解读重点:①以学生熟悉的数学问题为主的带有附加条件排列问题;②以“至少”“至多”为限量词的组合问题;③按元素的性质进行分类,按事件发生的连续过程分步的处理排列组合的基本思想;④直接运用通项公式求特定项的系数或与系数有关的问题;⑤需用转化思想化归为二项问题来处理的问题.难点:①排列、组合内容中分类讨论、分步讨论;②非二项问题向二项问题转化的化归思想.三、课前训练1.用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有 ( A )(A )24个 (B )30个 (C )40个 (D )60个2. 5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为 ( B )(A )480 (B )240 (C )120 (D )963.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作.若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有( B )(A )280种 (B )240种 (C )180种(D )96种 4.设n 是一个自然数,(1+n x )n 的展开式中x 3的系数为161,则n =__4__四、典型例题例1 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( A )(A )42 (B )30 (C )20 (D )12解析:这是一个插空问题,应分两类:第一类,新增的两个节目连在一起;第二类,两个新增节目不连在一起,而原来的5个节目可看做分出6个空位.第一类则有2×16A 种不同的插法,第二类则有26A 种不同的插法.应用分类计数原理,共有12+30=42种不同的插法.例 2 12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( A )(A )4448412C C C 种 (B )34448412C C C 种 (C )3348412A C C 种 (D )334448412A C C C 种 解析:先分配4个人到第一个路口,再分配4个人到第二个路口,最后分配4个人到第三个路口,即:412C ·48C ·44C .例3 有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有( C )(A )1260种 (B )2025种(C )2520种 (D )5040种 解法一:从10人中选派4人有410C 种,进而对选出的4人具体分派任务,有1224C C 种,由分步计数原理得不同的选派方法为1224410C C C =2520种,答案为C.解法二:据分步计数原理,不同选法种数为210C ·18C ·17C =2520种例4 (1)若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+ax 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为______(2)在64(1)(1)x x +-的展开式中,x 3的系数是________(结果用数值表示).(1) 答案: 1(2)解析:原式=(1+x )2(1-x 2)4=(1+2x +x 2)(1-x 2)4含x 3的项为2x ·14C ·(-x 2)=-8x 3,故x 3的系数为-8.例5 四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有( D )(A )150种 (B )147种 (C )144种 (D )141种解法一:10个点任取4个点取法有410C 种,其中面ABC 内的6个点中任意4点都共面,从这6点中任取4点有46C 种,同理在其余3个面内也有46C 种,又每条棱与相对棱中点共面有6种,各棱中点中4点共面的有3种,故10个点中取4点,不共面的取法共有36C 4C 46410---=141种. 解法二:四面体记之为A —BCD ,设平面BCD 为α,那么从10个点中取4个不共面的点的情况共有四类:(1)恰有3个点在α上,有4(3C 36-)=68种取法;(2)恰有2个点在α上,可分两种情况:该2个点在四面体的同一条棱上时有3)3C (C 2423-=27种,该2个点不在同一条棱上,有(2326C 3C -)·(24C -1)=30种;(3)恰有1个点在α上,可分两种情况,该点是棱的中点时有3×3=9种,该点是棱的端点时有3×2=6种;(4)4个点全不在α上,只有1种取法.根据分类计数原理得,不同的取法共有68+27+30+9+6+1=141种.。

高中数学第3章排列组合与二项式定理3.3二项式定理与杨辉三角第2课时二项式系数的性质杨辉三角及二项式

高中数学第3章排列组合与二项式定理3.3二项式定理与杨辉三角第2课时二项式系数的性质杨辉三角及二项式
据各项系数的正、负变化情况进行分析.如求(a+bx)n(a,b∈R)的展开式 中系数最大的项,一般采用待定系数法.设展开式中各项的系数分别为 A0, A1,A2,…,An,且第 r+1 项最大,应用AArr≥ ≥AArr- +11, , 解得 r,即得出系
数最大的项.
[跟踪训练3] 已知二项式12+2xn 的展开式中前三项的二项式系数和

(2)证明:(C0n)2+(Cn1)2+…+(Cnn)2=
n! n!n! ;
[解] (2)证明:∵ n!nn!!=Cn2n,
n! ∴要证(Cn0)2+(C1n)2+…+(Cnn)2= n!n! ,
即证(Cn0)2+(Cn1)2+…+(Cnn)2=Cn2n.
构造等式(1+x)n(1+x)n=(1+x)2n,则 C2nn表示二项式(1+x)2n 展开式中 xn 的系数.
[解] (3)从第二行到第五行,每一行数字组成的数(如第三行为 121)都 是上一行的数与 11 的积.

(4)由此你可以写出 115=________; [解] (4)115=161051.

(5)由第________行可写出 118=________. [ 解 ] (5) ∵ 118 = (10 + 1)8 = 108 + 8×107×1 + 28×106×12 + 56×105×13 + 70×104×14 + 56×103×15 +28×102×16 + 8×10×17 + 18 =214358881, ∴由第 9 行可写出 118=214358881.
又(1+x)n(1+x)n=(C0n+C1nx+…+Cnnxn)(C0n+Cn1x+…+Cnnxn),

得各项系数绝对值之和.
[跟踪训练1] 设(2- 3x)100=a0+a1x+a2x2+…+a100x100,求下列
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1.1 排列的概念【教学目标】1.了解排列、排列数的定义;掌握排列数公式及推导方法;2. 能用“树形图”写出一个排列问题的所有的排列,并能运用排列数公式进行计算。

3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。

【教学重难点】教学重点:排列的定义、排列数公式及其应用教学难点:排列数公式的推导【教学课时】二课时【教学过程】合作探究一:排列的定义我们看下面的问题(1)从红球、黄球、白球三个小球中任取两个,分别放入甲、乙盒子里(2)从10名学生中选2名学生做正副班长;(3)从10名学生中选2名学生干部;上述问题中哪个是排列问题?为什么?概念形成1、元素:我们把问题中被取的对象叫做元素2、排列:从n个不同元素中,任取m(m n≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n个不同元素中取出m个元素的一个排列....。

说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关)(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同合作探究二排列数的定义及公式3、排列数:从n个不同元素中,任取m(m n≤)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示议一议:“排列”和“排列数”有什么区别和联系?4、排列数公式推导探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?mA n 呢? )1()2)(1(+-⋯--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数;(2),,m n N m n *∈≤ 即学即练:1.计算 (1)410A ;(2)25A ;(3)3355A A ÷2.已知101095m A =⨯⨯⨯,那么m =3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( )A .5079k k A --B .2979k A -C .3079k A -D .3050k A - 答案:1、5040、20、20;2、6;3、C典型例题例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。

解析:(1)利用好树状图,确保不重不漏;(2)注意最后列举。

解:略点评:在写出所要求的排列时,可采用树状图或框图一一列出,一定保证不重不漏。

变式训练:由数字1,2,3,4可以组成多少个没有重复数字的三位数?并写出所有的排列。

5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。

此时在排列数公式中,m =n全排列数:(1)(2)21!n n A n n n n =--⋅=(叫做n 的阶乘).即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-⋅n n想一想:由前面联系中( 2 ) ( 3 )的结果我们看到,25A 和3355A A ÷有怎样的关系?那么,这个结果有没有一般性呢?排列数公式的另一种形式:)!(!m n n A m n -= 另外,我们规定 0! =1 .想一想:排列数公式的两种不同形式,在应用中应该怎样选择?例2.求证:m n m n m n A mA A 11+-=+.解析:计算时,既要考虑排列数公式,又要考虑各排列数之间的关系;先化简,以减少运算量。

解:左边=右边)!)!!)((!)!(!==+-+=+-⋅++=+-⋅+-+m1n A 1()!1(1(n!m n 1m -n )!1m n n m m n n m n n m n 点评:(1)熟记两个公式;(2)掌握两个公式的用途;(3)注意公式的逆用。

思考:你能用计数原理直接解释例2中的等式吗?(提示:可就所取的m 个元素分类,分含某个元素a 和不含元素a 两类)变式训练:已知89557=-nn n A A A ,求n 的值。

(n =15) 归纳总结:1、顺序是排列的特征;2、两个排列数公式的用途:乘积形式多用于计算,阶乘形式多用于化简或证明。

【当堂检测】1.若!3!n x =,则x = ( ) ()A 3n A ()B 3n n A -()C 3n A ()D 33n A -2.若532m m A A =,则m 的值为 ( )()A 5()B 3()C 6()D 73. 已知256n A =,那么n =;4.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?答案:1、B ;2、A ;3、8;4、1680。

【课外作业】见《同步练习》20.1.2 排列应用题【教学目标】1.进一步理解排列的意义,并能用排列数公式进行运算;2.能用所学的排列知识和具体方法正确解决简单的实际问题。

3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。

【教学重难点】教学重点:排列应用题常用的方法:直接法(包括特殊元素处理法、特殊位置处理法、捆绑法、插空法),间接法教学难点:排列数公式的理解与运用【教学过程】情境设计从1~9这九个数字中选出三个组成一个三位数,则这样的三位数的个数是多少?新知教学排列数公式的应用:例1、(1)某足球联赛共有12支队伍参加,每队都要与其他队在主、客场分别比赛一场,共要进行多少场比赛?解:略变式训练:(1)放假了,某宿舍的四名同学相约互发一封电子邮件,则他们共发了多少封电子邮件?(2) 放假了,某宿舍的四名同学相约互通一次电话,共打了多少次电话?例2、(1)从5本不同的书中选3本送给3名同学,每人1本,共有多少种不同的送法?(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?解:见书本16页例3例3、用0到9这10个数字,可以组成多少个没有重复数字的三位数?解:见书本19页例4点评:解答元素“在”与“不在”某一位置问题的思路是:优先安置受限制的元素,然后再考虑一般对象的安置问题’,常用方法如下:1)从特殊元素出发,事件分类完成,用分类计数原理.2)从特殊位置出发,事件分步完成,用分步计数原理.3)从“对立事件”出发,用减法.4)若要求某n 个元素相邻,可采用“捆绑法”,所谓“捆绑法”就是首先将要求排在相邻位置上的元素看成一个整体同其它元素一同排列,然后再考虑这个整体内部元素的排列。

5)若要求某n 个元素间隔,常采用“插空法”。

所谓插空法就是首先安排一般元素,然后再将受限制元素插人到允许的位置上.变式训练:有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有( )(A )88A 种 (B )48A 种 (C )44A ·44A 种 (D )44A 种答案:D例4、三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?答案:(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 720点评:1)若要求某n 个元素相邻,可采用“捆绑法”,所谓“捆绑法”就是首先将要求排在相邻位置上的元素看成一个整体同其它元素一同排列,然后再考虑这个整体内部元素的排列。

2)若要求某n 个元素间隔,常采用“插空法”。

所谓插空法就是首先安排一般元素,然后再将受限制元素插人到允许的位置上.变式训练:1、6个人站一排,甲不在排头,共有种不同排法.2.6个人站一排,甲不在排头,乙不在排尾,共有种不同排法.答案:1.600 2.504归纳总结:1、解有关排列的应用题时,先将问题归结为排列问题,然后确定原有元素和取出元素的个数,即n、m的值.2、解决相邻问题通常用捆绑的办法;不相邻问题通常用插入的办法.3、解有条件限制的排列问题思路:①正确选择原理;②处理好特殊元素和特殊位置,先让特殊元素占位,或特殊位置选元素;③再考虑其余元素或其余位置;④数字的排列问题,0不能排在首位4、判断是否是排列问题关键在于取出的元素是否与顺序有关,若与顺序有关则是排列,否则不是.5、由于解排列应用题往往难以验证结果的正确性,所以一般应考虑用一种方法计算结果,用另一种方法检查核对,辨别正误.【当堂检测】1.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A)24个(B)30个(C)40个(D)60个2.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方法共有()(A)12种(B)18种(C)24种(D)96种3.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有()(A)6种(B)9种(C)18种(D)24种4.五男二女排成一排,若男生甲必须排在排头或排尾,二女必须排在一起,不同的排法共有种.答案:1、A;2、B;3、C;4、480。

【课外作业】见《对口单招》20.2.1组合【教学目标】:(1)理解组合的定义,掌握组合数的计算公式(2)正确认识组合与排列的区别与联系(3)会利用组合数的性质,解决一些简单的组合问题【教学重难点】:掌握组合定义及与排列的区别,会计算组合数【教学课时】:二课时【教学过程】:情景导入问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种不同的选法?合作探究:探究1:组合的定义?一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.探究2:排列与组合的概念有什么共同点与不同点?不同点: 排列与元素的顺序有关,而组合则与元素的顺序无关.共同点: 都要“从n个不同元素中任取m个元素”问题三:判断下列问题是组合问题还是排列问题?(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有多少个?(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票?组合是选择的结果,排列是选择后再排序的结果.探究3:写出从a,b,c,d 四个元素中任取三个元素的所有组合abc , abd , acd ,bcd每一个组合又能对应几个排列?交流展示精讲精练例1判断下列问题是排列问题还是组合问题?(1)a 、b 、c 、d 四支足球队之间进行单循环比赛,共需要多少场比赛?(2)a 、b 、c 、d 四支足球队争夺冠亚军,有多少场不同的比赛?变式训练1 已知ABCDE 五个元素,写出取出3个元素的所有组合例2计算下列各式的值(1)97999699C C +(2)n n n nC C 321383+-+变式训练2 (1)解方程247353---=x x x A C(2)已知m 8765C ,10711求m m m C C C =+ 课堂测评: 1、判断下列语句是排列问题还是组合问题(1)某人射击8次,命中4枪,且命中的4枪均为2枪连中,不同的结果有多少种?(2)某人射击8次,命中4枪,且命中的4枪均为3枪连中,不同的结果有多少种?2、计算=++293828C C C ( )A120 B240 C60 D4803、已知2n C =10,则n=( )A10 B5 C3 D24、如果436m m C A =,则m=( )A6 B7 C8 D9【板书设计】:略。

相关文档
最新文档