自考复变函数与积分变换试题试卷真题

合集下载

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。

2.-8i得三个单根分别为:、、。

3.Lnz在得区域内连续。

4.得解极域为:ﻩﻩﻩﻩﻩ。

5.得导数ﻩﻩﻩﻩﻩ。

6. ﻩﻩ。

7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。

8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。

9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。

10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。

二、(10分)已知、求函数使函数为解析函数、且f(0)=0。

三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。

五、(10分)求函数在以下各圆环内得罗朗展式。

1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。

八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。

)31ln(i --2.-8i 的三个单根分别为: ,,。

3.Ln z 在 的区域内连续。

4.的解极域为:。

z z f =)(5.的导数。

xyi y x z f 2)(22+-==')(z f 6.。

=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。

8.幂函数的映照特点是:。

9.若=F [f (t )],则= F 。

)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。

⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。

)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。

⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

2023年4月全国自考复变函数与积分变换的试卷及答案

2023年4月全国自考复变函数与积分变换的试卷及答案

中国自考人()——700门自考课程 永久免费、完整 在线学习 快快加入我们吧!全国2023年4月高等教育自学考试复变函数与积分变换试题课程代码: 02199一、单项选择题(本大题共10小题, 每小题2分, 共20分)在每小题列出的四个备选项中只有一个是符合题目规定的, 请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.包含了单位圆盘|z|<1的区域是( )A.Re z<-1B.Re z<0C.Re z<1D.Im z<02.设v(x,y)=eaxsiny 是调和函数, 则常数a=( )A.0B.1C.2D.33.设f(z)=z3+8iz+4i, 则f ′(1-i)=( )A.-2iB.2iC.-2D.2 4.设C 为正向圆周|z-a|=a(a>0), 则积分 =( )A.B. C.D. 5.设C 为正向圆周|z-1|=1, 则 ( )A.0B.πiC.2πiD.6πi 6.f(z)=211z在z=1处的泰勒展开式的收敛半径为( ) A.23 B.1 C.2 D.3 7.下列级数中绝对收敛的是( )A.B. C.D. 8.可以使f(z)=3)3(1+z z 在点z=0处的罗朗展开式收敛的区域是( ) A.0<|z|<2或2<|z|<+∞ B.0<|z|<+∞C.0<|z-2|<2D.0<|z-2|<+∞ 9.点z=-1是f(z)=(z+1)5sin )1(1+z 的( ) A.可去奇点 B.二阶极点C.五阶零点D.本性奇点 10.设C 为正向圆周|z|=1, 则 ( )A.-2π.B.2π.C.-2πD.2π二、填空题(本大题共6小题, 每小题2分, 共12分)请在每小题的空格中填上对的答案。

错填、不填均无分。

11.arg (-1+3i )= .12.已知f(z)=u+iv 是解析函数, 其中u= ,则 .13.设C 为正向圆周|z |=1,则=-⎰dz ie c z22π . 14.z=0是f(z)= 的奇点, 其类型为 .15.f(z)= 在圆环域0<|z|<1内的罗朗展开式......16.设f(z)= +--++--+---n n z z z z )1()1()1(1)1(1)1(12,则Res[f(z),1]= .三、计算题(本大题共8小题, 共52分)17. (本题6分)求z=(-1+i )6 的共轭复数 及共轭复数的模| |.18. (本题6分) 设t 为实参数, 求曲线z=reit+3 (0≤t <2π的直角坐标方程.19.(本题6分) 设C 为正向圆周|z|=1, 求I= .20. (本题6分) 求 在z=0处的泰勒展开式.21. (本题7分) 求方程sin z+cos z=0 的所有根.22.(本题7分) 设u=e2xcos 2y 是解析函数f(z)的实部, 求f(z).23. (本题7分) 设C 为正向圆周|z-i|= ,求I= .24.(本题7分)设C 为正向圆周|z|=1, 求I= .四、综合题(下列3个小题中, 第25题必做, 第26.27题中只选做一题。

高等教育自学考试-复变函数与积分变换试题与答案-课程代码

高等教育自学考试-复变函数与积分变换试题与答案-课程代码

全国2010年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.arg(-1+i 3)=( ) A.-3π B.3π C.π23 D.π23+2n π 2.w =|z |2在z =0( )A.不连续B.可导C.不可导D.解析3.设z =x +iy ,则下列函数为解析函数的是( )A.f (z )=x 2-y 2+i 2xyB.f (z )=x -iyC.f (z )=x +i 2yD.f (z )=2x +iy 4.设C 为由z =-1到z =l 的上半圆周|z |=1,则⎰C z z d ||=( ) A.2πiB.0C.1D.2 5.设C 为正向圆周|z |=1,则⎰-C z z z )2(d =( ) A.-πiB.0C.πiD.2πi 6.设C 为正向圆周|z |=2,则⎰-C izi z z e 3)(d z =( )A.0B.e -1C.2πiD.-πe -1i7.z =0是3sin z z的极点,其阶数为( )A.1B.2C.3D.48.以z=0为本性奇点的函数是( ) A.z z sin B.2)1(1-z z C.z 1e D.1e 1-z9.设f (z )的罗朗展开式为-11)1(22---z z +(z -1)+2(z -l)2+…+n (z -1)n +…则Res[f (z ),1]=() A.-2 B.-1C.1D.210.设z =a 为解析函数f (z )的m 阶零点,则函数)()(z f z f '在z =a 的留数为( )A.-mB.-m +lC.m -1D.m二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.|z -i |=|z -1|的图形是_______________.12.设z =i i ,则Im z =_______________.13.设C 为由点z =-l-i 到点z =l+i 的直线段,则⎰C z 3d z =_______________.14.设C 是顶点为z=±21,z=±i 56的菱形的正向边界,则⎰-C i z e 2dz=______________.15.设C 为正向圆周|z|=1,则⎰C z cos z d z =_________.16.函数21-z 在点z =4的泰勒级数的收敛半径为_________.三、计算题(本大题共8小题,共52分)17.设z =x +iy ,求复数11+-z z 的实部与虚部.(6分)18.求复数i 8-4i 25+i 的模.(6分)19.求f (z )=(z -1)2e z 在z =1的泰勒展开式.(6分)20.求f (z )=)2)(1(2--z z 在圆环域1<|z|<2内的罗朗展开式.(6分) 21.求解方程cos z =2.(7分)22.设z =x +iy ,试证v (x ,y )=x 2+2xy -y 2为调和函数,并求解析函数f (z )=u (x ,y )+iv (x ,y ).(7分)23.设C 为正向圆周|z-2|=1,求⎰-C z z z 2)2(e d z .(7分) 24.设C 为正向圆周|z|=1,求⎰C z1sin d z .(7分) 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

4月全国自考复变函数与积分变换试题及答案解析

4月全国自考复变函数与积分变换试题及答案解析

1全国2018年4月自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.arg(-1+i 3)=( ) A.-3π B.3π C.π23 D.π23+2n π 2.w =|z |2在z =0( ) A.不连续 B.可导 C.不可导D.解析3.设z =x +iy ,则下列函数为解析函数的是( ) A.f (z )=x 2-y 2+i 2xy B.f (z )=x -iy C.f (z )=x +i 2yD.f (z )=2x +iy4.设C 为由z =-1到z =l 的上半圆周|z |=1,则⎰Cz z d ||=( )A.2πiB.0C.1D.25.设C 为正向圆周|z |=1,则⎰-Cz z z)2(d =( )A.-πiB.0C.πiD.2πi6.设C 为正向圆周|z |=2,则⎰-Ciz i z z e 3)(d z =( )A.0B.e -1C.2πiD.-πe -1i2 7.z =0是3sin z z 的极点,其阶数为( )A.1B.2C.3D.48.以z=0为本性奇点的函数是( ) A.zzsin B.2)1(1-z zC.z1eD.1e 1-z9.设f (z )的罗朗展开式为-11)1(22---z z +(z -1)+2(z -l)2+…+n (z -1)n +…则Res[f (z ),1]=( ) A.-2 B.-1C.1D.2 10.设z =a 为解析函数f (z )的m 阶零点,则函数)()(z f z f '在z =a 的留数为( )A.-mB.-m +lC.m -1D.m二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.|z -i |=|z -1|的图形是_______________. 12.设z =i i ,则Im z =_______________.13.设C 为由点z =-l-i 到点z =l+i 的直线段,则⎰Cz 3 d z =_______________.14.设C 是顶点为z=±21,z=±i 56的菱形的正向边界,则⎰-Ciz e 2dz=______________. 15.设C 为正向圆周|z|=1,则⎰Cz cos z d z =_________.16.函数21-z 在点z =4的泰勒级数的收敛半径为_________. 三、计算题(本大题共8小题,共52分) 17.设z =x +iy ,求复数11+-z z 的实部与虚部.(6分) 18.求复数i 8-4i 25+i 的模.(6分)19.求f (z )=(z -1)2e z 在z =1的泰勒展开式.(6分)3 20.求f (z )=)2)(1(2--z z 在圆环域1<|z|<2内的罗朗展开式.(6分)21.求解方程cos z =2.(7分)22.设z =x +iy ,试证v (x ,y )=x 2+2xy -y 2为调和函数,并求解析函数f (z )=u (x ,y )+iv (x ,y ).(7分) 23.设C 为正向圆周|z-2|=1,求⎰-Cz z z 2)2(e d z .(7分)24.设C 为正向圆周|z|=1,求⎰Cz1sind z .(7分) 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

《复变函数与积分变换》试题(一)答案解读

《复变函数与积分变换》试题(一)答案解读

《复变函数与积分变换》试题(一)答案一、单项选择题(本大题共20小题,每小题2分,共40分)1.B2.D3.C4.A5.A6.B7.A8.D9.C 10.A11.D 12.C 13.B 14.B 15.C16.D 17.B 18.D 19.A 20.C二、填空题(本大题共10空,每空2分,共20分)21. 822. 023. 124. z=0 25. z=12133(),+i e i 或π26. 4πi27. -+2ππ()i 28. ππππ23233i i ,cos 或⋅ 29. e30. 6三、计算题(本大题共4小题,每小题5分,共20分)31.解1: ∂∂∂∂u x x y u yx y =+=-2222,, 由C -R 条件,有∂∂∂∂v y u x =,∂∂∂∂v x u y =-, ∴ v v y dy x y dy xy y x ==+=++⎰⎰∂∂ϕ()()2222. 再由∂∂ϕ∂∂v x y x x y u y=+'=-+=-222(), 得'=-=-+ϕϕ(),(),x x x x C 22于是∴ v=2xy+y 2-x 2+C.由v(0,0)=1, 得C=1.故v=2xy+y 2-x 2+1.解2:v(x,y)=∂∂∂∂v x dx v y dy C x y ++⎰(,)(,)00 =()()(,)(,)222200y x dx x y dy C x y -+++⎰=-x 2+2xy+y 2+C以下同解1.32.解1:z z z dz zdz i i d C C +==⋅+-⎰⎰⎰||Re cos (cos sin )12222θθθθππ=4i (cos ).1240+=⎰θθππd i解2:z z z z dz e e ie d C i i i ||||+⎛⎝ ⎫⎭⎪=+⎛⎝ ⎫⎭⎪⎰⎰-2222202θθπθθ =2i(2π+0)=4πi.33.解:因为f ˊ(z)=e z -2=()!()!(||)-=-<+∞=∞=∞∑∑z n n z z n n n n n 20021, 所以由幂级数在收敛圆内逐项求积性质,得 f(z)='=-++=∞∑⎰f d n z n n n n z()()!ζζ1212100 (||z <+∞). 34.解:因在C 内f(z)=e z i z i zπ()()-+223有二阶极点z=i ,所以f z dz i d dzz i f z z i C ()!lim[()()]=-→⎰212π =232323ππππi e z i e z i z izzlim[()()]→+-+ =ππ1612().-+i 四、综合题(下列3个题中,35题必做,36、37题选做一题,需考《积分变换》者做37题,其它考生做36题,两题都做者按37题给分。

全国自学考试复变函数与积分变换试题

全国自学考试复变函数与积分变换试题

全国2011年4月自学考试复变函数与积分变换试题1做试题,没答案?上自考365,网校名师为你详细解答!全国2011年4月自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3πB.6π C.3π D.23π 2.w=z 2将Z 平面上的实轴映射为W 平面的( ) A.非负实轴 B.实轴 C.上半虚轴 D.虚轴 3.下列说法正确的是( ) A.ln z 的定义域为 z>0 B.|sin z|≤1 C.e z ≠0 D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n C sin zdz z ⎰=2π i ,则整数n 为( )A.-1B.0C.1D.25.设C 为正向圆周|z|=2,则2Czdz z ⎰=( ) A.-2πi B.0 C.2πi D.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( ) A.-3i 36πB.3i 36π7.设nn n 0a z∞=∑nn n 0b z∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )全国2011年4月自学考试复变函数与积分变换试题2A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( )A.|z|<1B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z ,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15! 10.整数k≠0,则Res[cot kz, π]=( ) A.-1kB.0C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分) 请在每小题的空格中填上正确答案。

自学考试复变函数与积分变换试题(2)

自学考试复变函数与积分变换试题(2)

全国2007年7月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.z=2-2i ,|z 2|=( )A.2B.8C.4D.82.复数方程z=cost+isint 的曲线是( )A.直线B.圆周C.椭圆D.双曲线3.Re(e 2x+iy )=( )A.e 2xB.e yC.e 2x cosyD.e 2x siny4.下列集合为有界单连通区域的是( )A.0<|z-3|<2B.Rez>3C.|z+a|<1D.π≤<πargz 215.设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( )A.-3B.1C.2D.36.若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=()A.e x (ycosy-xsiny)B.e x (xcosy-xsiny)C.e x (ycosy-ysiny)D.e x (xcosy-ysiny) 7.⎰=-3|i z |zdz =( )A.0B.2πC.πiD.2πi 8.⎰=---11212z z sinzdz |z |=( ) A.0 B.2πisin1C.2πsin1D.1sin 21i π9.⎰302dz zcosz =( ) A.21sin9 B.21cos9C.cos9D.sin910.若f(z)=tgz ,则Res[f(z),2π ]=( ) A.-2πB.-πC.-1D.0 11.f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( ) A.0B.1C.2D.3 12.z=0为函数cosz 1的( ) A.本性奇点B.极点C.可去奇点D.解析点 13.f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( ) A.∑∞=-01n n n z )( B.∑∞=-021n n z )z ( C.∑∞=-02n n )z ( D.∑∞=---0121n n n )z ()(14.线性变换ω=iz z i +-( ) A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<115.函数f(t)=t 的傅氏变换J [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω)二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数与积分变换试题
一、单项选择题(本大题共15小题,每小题2分,共30分)
1.z=2-2i ,|z 2|=( )
A.2
B.8
C.4
D.8
2.复数方程z=cost+isint 的曲线是( )
A.直线
B.圆周
C.椭圆
D.双曲线
3.Re(e 2x+iy )=( )
A.e 2x
B.e y
C.e 2x cosy
D.e 2x siny
4.下列集合为有界单连通区域的是( )
A.0<|z-3|<2
B.Rez>3
C.|z+a|<1
D.π≤<πargz 21
5.设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( )
A.-3
B.1
C.2
D.3
6.若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=(

A.e x (ycosy-xsiny)
B.e x (xcosy-xsiny)
C.e x (ycosy-ysiny)
D.e x (xcosy-ysiny) 7.⎰=-3|i z |z
dz =( )
A.0
B.2π
C.πi
D.2πi 8.
⎰=---11212
z z sinzdz |z |=( ) A.0 B.2πisin1
C.2πsin1
D.1sin 21
i π
9.⎰3
02dz zcosz =( ) A.21sin9 B.2
1cos9 C.cos9
D.sin9 10.若f(z)=tgz ,则Res[f(z),
2π ]=( ) A.-2π
B.-π
C.-1
D.0 11.f(z)=
2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( ) A.0
B.1
C.2
D.3 12.z=0为函数cos
z 1的( ) A.本性奇点
B.极点
C.可去奇点
D.解析点 13.f(z)=
)z )(z (121--在0<|z-2|<1内的罗朗展开式是( ) A.∑∞=-0
1n n n z )
( B.∑∞=-021n n z )z ( C.∑∞=-02n n )
z ( D.∑∞=---0121n n n )z ()(
14.线性变换ω=i
z z i +-( ) A.将上半平面Imz>0映射为上半平面Im ω>0
B.将上半平面Imz>0映射为单位圆|ω|<1
C.将单位圆|z|<1映射为上半平面Im ω>0
D.将单位圆|z|<1映射为单位圆|ω|<1
15.函数f(t)=t 的傅氏变换J [f(t)]为( )
A.δ(ω)
B.2πi δ(ω)
C.2πi δ'(ω)
D.δ'(ω)
二、填空题(本大题共5小题,每小题2分,共10分)
16.若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.
17.若cosz=0,则z=________.
18.设f ′(z)=⎰
==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 19.幂级数∑∞=1n n n z n !n 的收敛半径是________.
20.线性映射ω=z 是关于________的对称变换.
三、计算题(本大题共8小题,每小题5分,共40分)
21.计算复数z=327-的值.
22.已知调和函数v=arctg x
y ,x>0,求f ′(z),并将它表示成z 的函数形式. 23.设f(z)=x 2+axy+by 2+i(-x 2+2xy+y 2)为解析函数,试确定a ,b 的值.
24.求积分I=⎰
+C dz z i 的22值,其中C :|z|=4为正向. 25.求积分I=⎰+C z
dz )i z (e 的42
值,其中C :|z|=2为正向. 26.利用留数计算积分I=⎰C zsinz
dz ,其中C 为正向圆周|z|=1. 27.将函数f(z)=ln(3+z)展开为z 的泰勒级数.
28.将函数f(z)=()
22+z z 在圆环域0<|z|<2内展开为罗朗级数. 四、综合题(下列3个小题中,第29小题必做,第30、31小题中只选做一题。

每小题10
分,共20分)
29.(1)求f(z)=iz e z z
21+在上半平面的所有孤立奇点;
(2)求f(z)在以上各孤立奇点的留数;
(3)利用以上结果计算积分I=⎰
+∞∞-+x d x 1xsinx 2. 30.设D 是Z 平面上的带形区域:1<Rez<1+π,求下列保角映射:
(1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Re ω1<π;
(2)ω2=f 2(ω1)把D 1映射成ω2平面上的带形区域D 2:0<Im ω2<π;
(3)ω=f 3(ω2)把D 2映射成ω平面上的上半平面D 3:Im ω>0;
(4)综合以上三步,求把D 映射成D 3的保角映射ω=f(z).
31.(1)求e t 的拉氏变换L [e t ];
(2)设F (p )=L [y(t)],其中函数y(t)二阶可导,L [y ′(t)]、L [y ″(t)]存在,且y(0)=0, y ′(0)=0,求L [y ′(t)]、L [y ″(t)];
(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==+'-''.)(y ,)(y e y y y t
00002。

相关文档
最新文档