羟基的保护
保护邻二醇羟基的方法

保护邻二醇羟基的方法邻二醇是一种常见的有机化合物,其中的羟基是一种重要的官能团。
在有机合成中,保护邻二醇羟基是一个关键步骤,以防止非预期的反应发生。
下面将介绍三种常用的保护邻二醇羟基的方法。
1. 酯化保护酯化保护是一种简单而有效的方法,通过与酸反应将邻二醇羟基保护为酯。
这种方法常用的保护试剂有甲醇和丙酮等。
以甲醇为例,将邻二醇与甲醇和催化剂(如HCl或H2SO4)反应,可以得到相应的酯化产物。
甲醇的使用可以在一定程度上减少副反应的可能性。
酯化保护方法具有操作简便、反应条件温和、产率高等优点。
然而,在酯化反应中,需要选择适当的催化剂和条件来确保反应的选择性和效率。
此外,在合成中还需要对酯进行去保护操作,以恢复邻二醇原来的官能团。
2. 缩合反应保护邻二醇的羟基还可以通过缩合反应进行保护。
缩合反应是在羟基之间形成醚链的反应,常用的缩合剂有酸酐类、酸酐酶和羧酸等。
例如,将邻二醇与电子富余的酰氯反应,可以得到酰基保护的邻二醇产物。
该方法可以避免醚基保护剂引入的异构体问题。
缩合反应保护方法适用于各种邻二醇保护反应中,具有反应条件温和、操作简便等优点。
然而,由于缩合剂选择的不同,需要实验室中进行適當的优化实验来确定最佳反应条件。
3. 硅烷保护硅烷保护是一种常用的邻二醇羟基保护方法。
它利用硅烷试剂(如三甲基氧基硅烷)与邻二醇反应,形成硅醚链结构。
这种硅醚链具有较稳定的化学性质,能够有效地保护邻二醇羟基。
硅烷保护方法适用于各种官能团的保护,具有广泛的应用领域。
然而,硅烷保护剂的选择和条件的控制对反应的效果有重要影响。
此外,在合成过程中需要对硅烷保护剂进行去保护操作,以恢复邻二醇原来的官能团。
综上所述,保护邻二醇羟基的方法可以通过酯化保护、缩合反应保护和硅烷保护等途径实现。
这些方法在化学合成中起到了关键作用,使得邻二醇具有更广泛的应用领域。
然而,在具体的实验中,需要根据不同的情况选择适当的保护方法和条件,以确保反应的效率和选择性。
羟基的保护与去保护

实施:
1. 保护:酰氯 or 酸酐/吡啶回流,有时也用到酰化催化剂DMAP、4-PPY 2. 去保护:碱性水解
方法2.1:硅醚保护
手段:TMS、TES、TIPS、TBDMS、TBDPS …
特性与优势:
1. 在游离伯胺或仲胺基的存在下,能够对羟基进行选择性保护
Deprotection: Hydrolysis was carried out under aprotic condition-anhydrous tetrabutylammonium fluoride
in THF solution.
方法2.1.2:TBDMS保护
1. TBS醚的生成和断裂的难易取决于空间因素,常用于对多官能团、位 阻不同的分子进行选择性保护。 (在伯、仲醇中,TBS 基相对来说较易 于与伯醇反应)
?
羟基的常见保护策略
转化为酯:糖、核苷、多酚
转化为醚
硅醚
三甲基硅醚 (TMS-OR) 叔丁基二甲基硅醚 (TBDMS-OR or TBS-OR) 叔丁基二苯基硅醚 (TBDPS-OR) …
烷氧基甲基醚或烷氧基取代甲基醚
烷基醚
苄醚 甲基醚 烯丙基醚、叔丁基醚 …
方法1:酰化为酯
手段:乙酰化(Ac)、苯甲酰化(Bz)、特戊酰化(Pv)…
方法2.2.1:THP
1. THP醚引入形成了一个非对映体,使NMR谱的表达有点困难。 2. 成本低,易于分离,对大多数非质子酸试剂有一定的稳定性,易于除去。 3. 引入THP常用三氟化硼醚化物(BF3.Et2O),对甲苯磺酸(TsOH),吡
啶对甲苯磺酸盐(PPTs)作催化剂。 4. 几乎任何酸性试剂或任何可以在原位产生酸的试剂都可被用来引入THP
有机合成中保护羟基的方法

有机合成中保护羟基的方法有机合成中的保护羟基的方法,真的是个妙趣横生的话题。
说到羟基,大家可能觉得这玩意儿没啥特别,但它在有机合成中可是扮演着超级重要的角色啊。
羟基就像一个总是想要参与聚会的朋友,然而有时我们得给它一个保护,让它先冷静下来。
哎,你知道吗?不管是做药物合成,还是做一些复杂的化合物,保护羟基都是不可或缺的步骤。
简单来说,保护羟基就像给它穿上一层防护服,这样在后面的化学反应中,它就不会受到其他反应的干扰。
那我们来看看,保护羟基的方法可真不少。
最常见的办法是用甲基化试剂,比如说氯甲烷。
这方法就像给羟基披上一层轻薄的外衣,简单又有效。
听起来是不是有点神奇?其实就是让羟基和甲基结合在一起,这样它在化学反应中就不容易被干扰。
这个过程,虽然看起来简单,但其实在实验室里可得小心翼翼地操作。
说白了,这可不是一件随随便便就能搞定的事情。
除了甲基化,还有一个很酷的方法,叫做醚化。
这个名字听起来就让人有点兴奋。
用醇和酸催化剂,羟基就能转变成醚。
这样一来,羟基就被“隐藏”起来了,简直是个小魔术!再说,这种方法不仅有效,而且能让化合物更稳定,哇,简直是两全其美。
这种保护的方法在合成中广泛应用,简直就是合成化学家的必备技能。
还有其他的选择,比如说用三氟甲基化试剂。
这个就像是给羟基添加了一层“强力防护”,能够抵御很多外来的攻击。
三氟甲基化的效果非常持久,真是让人爱不释手。
不过,大家也得注意,这种方法虽然厉害,但成本有点高,适合那些特别讲究的项目。
化学反应可真是个精细活儿,万事得考虑周全,才不会出错。
在保护羟基的过程中,我们还得注意一些细节,比如反应条件和时间。
这就像你做饭,要掌握好火候,否则就糊了。
没错,很多化学反应也是有“火候”讲究的。
温度太高或太低,都会影响羟基的保护效果。
用得好,羟基就能安安静静地待在一旁,等着你去进行下一步的合成;用得不好,就可能出现意想不到的麻烦。
说到这里,你可能会想,保护羟基的方法总是那么繁琐吗?随着科技的发展,越来越多的高效方法应运而生。
保护羟基的常用试剂

保护羟基的常用试剂保护羟基的常用试剂一、概述在有机合成中,羟基(-OH)是常见的官能团。
然而,由于其亲电性和碱性特性,使其容易受到酸、碱、亲电试剂等的攻击,从而导致反应失效或分子结构改变。
为了避免这种情况的发生,化学家们采用了一系列保护羟基的方法。
其中最常见的是使用化学试剂来保护羟基。
本文将介绍几种常用的保护羟基试剂。
二、硅烷类试剂硅烷类试剂是一类广泛应用于有机合成中的化学试剂。
其中最常见的就是三甲基硅氢化钠(NaHSiMe3)和三甲基氧硅烷(TMOS)。
它们可以通过与羟基反应生成稳定的硅醚或硅酯结构来保护羟基。
三、醇类试剂醇类试剂也是常用于保护羟基的一类化学试剂。
其中最常见的就是三苯甲氧基甲醇(Triphenylmethanol),它可以通过与羟基反应生成稳定的苯甲醚结构来保护羟基。
四、丙酮类试剂丙酮类试剂是一类常用于保护羟基的化学试剂。
其中最常见的是二甲基乙酰胺(DMF)和五氯酚(PCl5)。
它们可以通过与羟基反应生成稳定的丙酮或醚结构来保护羟基。
五、卤代烷类试剂卤代烷类试剂也是一类常用于保护羟基的化学试剂。
其中最常见的就是溴甲烷和氯甲烷。
它们可以通过与羟基反应生成稳定的卤代甲基或卤代乙基结构来保护羟基。
六、二硫化物类试剂二硫化物类试剂也是一类常用于保护羟基的化学试剂。
其中最常见的就是二异丙硫脲(DIP)和三苯基磷硫氰(TPSCl)。
它们可以通过与羟基反应生成稳定的硫脲或硫醇结构来保护羟基。
七、总结以上介绍了几种常用于保护羟基的化学试剂,包括硅烷类、醇类、丙酮类、卤代烷类和二硫化物类试剂。
在实际应用中,根据反应条件和反应物的特性,可以选择合适的保护羟基试剂。
同时,在保护羟基的过程中,还需要注意试剂的选择、反应条件的控制以及后续去除保护基等问题,以确保反应顺利进行并得到理想产物。
羟基保护

2. 形成苄醚 ROCH2Ph
制备时,使醇在强碱下与苄溴反应。苄基醚在碱性条件 下通常是稳定的,即使对氧化剂(如过碘酸,四乙酸铅), LiAlH4,弱酸也是稳定的。苄醚的去保护采用氢解法,包括 钯-碳催化氢化法和锂金属还原法。氢解去苄基时,其他的 醚键可以保留。
O O OH HO Cl 3CCH 2OOCCl (Py/CHCl3) HO OCOOCH2CCl3
RCOCl/Py Zn/AcOH,20℃
RCOO RCOO OH
三
1,2-和1,3-二醇的保护
在多羟基化合物中,同时保护两个羟基往往很方便。 保护基即可以是缩醛,缩酮,也可以是碳酸酯。
1. 缩醛或缩酮
乙酰化反应通常使用乙酸酐在吡啶溶液中进行,也可 用乙酸酐在无水乙酸钠中进行。脱去乙酸酯保护基采 用氨解反应或甲醇分解反应。
ROH (CH3CO)2O , 吡啶 K2CO3溶液 , MeOH O ROCCH3
对于多羟基化合物的选择性酰化只有在一个或几个 羟基比其他羟基的空间位阻小时才有可能。用乙酰酐/ 吡啶与室温下反应,可选择性地酰化多羟基化合物中的 伯羟基、仲羟基,而不能酰化叔羟基。
PhCH2OCH2 O OCH3
COCl2
Pyridine
PhCH 2OCH2 O OCH3
(1) HBr (2) (PhCH2O)2PO 2N(C2H 5)4
OH OH
O O
O
PhCH2OCH2
HOCH2 O
H2, Pd
O OP(O(O)CH2Ph)2 O O O
HOCH2 O
LiOH H2O
OP(O(O)CH2Ph)2 O O O
羟基和羰基的保护

OPMB OH
MOMCl,DIEA, CH2Cl2
TBDPSO
OPMB
OMOM CO2CH3
HCl(gas)/iPrOH,55oC
O
TIPSO
OPMB OMOM OPMB OH
CO2CH3 O
21
3.3 EE(CH3CH2OCH3CH-OR)保护羟基
EE旳性质和THP很相同。
O O
HO
HO OTBDMS
Solvent
THF Hexanol Methanol Toluene Hexane
Reaction rate(mm H2 / min /0.1g cat) 40 25 5 2 6
16
对甲氧基苄基醚
特点:羟基上对甲氧基苄基保护旳措施和苄基类似。 一般而言,对甲氧基苄醚在合成中更为常用。
Bn O
O HH
E:TBS醚旳断裂除了常用旳四烷基氟化胺外,许多情况下 也可用酸来断。当分子内没有对强酸敏感旳官能基存在时, 可用 HCl-MeOH, HCl-Dioxane 体系清除TBS,若有对强 酸敏感旳官能基存在时,则可选用AcOH-THF体系清除。
TBSO
O O
AcOH/H2O/THF
HO
O O
TBSO
NHBoc
烷基硅醚在酸中轻易去保护,而酚基醚在碱性条件下更轻易 去保护。降低硅旳碱性还能够用于变化Lewis酸催化反应旳成 果,而且有利于选择性去保护。在硅原子上引入吸电子取代基 能够提升碱性条下水解反应旳敏捷性,而对酸旳敏感性降低。
6
三甲基硅醚(TMSOR)
许多硅基化试剂(如TMSCl,TMSOTf)均可用于在多种
NC
Cl
DDQ
NC
二氢吡喃保护羟基方法

二氢吡喃保护羟基方法羟基是一种常见的功能基团,在有机合成中具有重要的作用。
为了保护羟基,可以采用多种方法,其中包括化学转化法、生物酶法、固相合成法、微流控法、微波辅助法、超声波辅助法、高温高压法以及离子液体法等。
本文将详细介绍这些方法。
1.化学转化法化学转化法是保护羟基的一种常用方法。
其中,二氢吡喃是一种常用的保护剂,通过与羟基反应生成相应的二氢吡喃酯,可以有效地保护羟基。
反应条件温和,适用于大多数有机合成反应。
相关文献可查阅近年的化学期刊。
2.生物酶法生物酶法是一种环保且高效的方法,可用于保护羟基。
利用特定的酶将羟基转化为相应的酯或酮,可以有效地保护羟基。
生物酶法条件温和,选择性强,适用于复杂化合物的羟基保护。
相关文献可查阅近年的生物化学期刊。
3.固相合成法固相合成法是一种具有实用价值的合成方法,可用于保护羟基。
在固相载体上将羟基进行功能化,然后进行后续的合成反应。
该方法具有高效、高选择性等优点,适用于大规模生产。
相关文献可查阅近年的有机化学期刊。
4.微流控法微流控法是一种新型的合成方法,可用于保护羟基。
该方法采用微流控芯片技术,将合成反应在微通道中进行,具有高效、快速、环保等优点。
相关文献可查阅近年的微流控芯片研究期刊。
5.微波辅助法微波辅助法是一种高效合成方法,可用于保护羟基。
在微波条件下,反应速度加快,反应温度升高,可以促进羟基的保护反应。
该方法具有高效、快速等优点,适用于复杂化合物的合成。
相关文献可查阅近年的微波化学期刊。
6.超声波辅助法超声波辅助法是一种绿色合成方法,可用于保护羟基。
超声波的空化作用可以促进化学反应的进行,提高反应速度和产率。
该方法具有环保、高效等优点,适用于复杂化合物的合成。
相关文献可查阅近年的超声化学期刊。
7.高温高压法高温高压法是一种极端条件下的合成方法,可用于保护羟基。
在高温高压条件下,可以提高反应速度和产率,促进羟基的保护反应。
该方法具有高效、高选择性等优点,适用于复杂化合物的合成。
常见的羟基的保护与脱保护方法

常见的羟基的保护与脱保护方法保护羟基:羟基在许多有机合成反应中往往需要保护,以防止它们在反应条件下发生不需要的副反应。
常见的羟基保护基包括醚、酯、酮、酚、酰胺、醛等。
以下是一些常用的羟基保护方法:1.醚保护:醚保护可以通过将羟基与醇反应得到,生成醚。
醚保护通常使用对应于醇的活化试剂进行,例如甲基化反应中使用碘甲烷或次氯酸盐。
醚保护可以在中性或碱性条件下进行,但不适合在酸性条件下进行。
2.酯保护:酯保护是通过将羟基与酸酐反应得到,生成酯。
常用的酸酐有酸氯和酸酐等。
酯保护通常在碱性条件下进行,并且在加热时通常反应速率更快。
3.酮保护:酮保护是通过将羟基与酮反应得到,生成酮。
酮保护也通常在碱性条件下进行,使用碱金属如钠作为催化剂。
4.酚保护:酚保护是通过将羟基与酸酐反应得到,生成酯。
酚保护与酯保护原理相同,但需要更强的碱性条件。
5.酰胺保护:酰胺保护是通过将羟基与酰胺反应得到,生成酮。
常用的酰胺有二甲基亚砜、二甲基甲酰胺等。
6.醛保护:醛保护是通过将羟基和醛反应得到,生成醇。
这种保护方法通常使用缩醛反应进行,输入多相催化剂。
脱保护羟基:羟基的脱保护常常需要特定的条件和试剂来进行,以下是一些常用的羟基脱保护方法:1.醚脱保护:醚脱保护通常使用酸性条件进行,例如使用浓硫酸或三氟化硼进行醚的酸性水解。
2.酯脱保护:酯脱保护可以通过酸催化的水解得到,常用的酸催化试剂包括浓硫酸,氢氯酸等。
3.酮脱保护:酮脱保护通常使用还原剂进行,最常用的是氢化钠或氢化钠铝合金。
4.酚脱保护:酚脱保护可以使用酸性条件下的水解反应,例如使用浓硫酸进行酚的酸性水解。
5.酰胺脱保护:酰胺脱保护可以通过酸或碱催化进行,例如使用浓碱水解。
6.醛脱保护:醛脱保护可以通过加热和蒸馏等方法进行,例如使用强酸、碱或硼氢化钠等试剂进行醛的脱保护。
总结:羟基的保护与脱保护方法在有机合成反应中扮演重要的角色,能够有效地保护或脱除羟基。
合理选择适当的保护基和脱保护试剂可以帮助实现合成目标化合物的高产率和高选择性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
羟基的保护目录1.简介 (2)2.硅醚 (2)2.1三甲基硅醚(T M S-O R) (3)2.2叔丁基二甲基硅醚(T B D M S-O R) (4)2.3叔丁基二苯基硅醚(T B D P S-O R) (4)3.苄醚 (6)4.取代苄醚 (7)5.取代甲基醚 (8)6.四氢吡喃醚 (9)7.烯丙基醚 (10)1.前言羟基广泛存在于许多在生理上和合成上有意义的化合物中,如核苷,碳水化合物、甾族化合物、大环内酯类化合物、聚醚、某些氨基酸的侧链。
另外,羟基也是有机合成中一个很重要的官能基,其可转变为卤素、氨基、羰基、酸基等多种官能团。
在化合物的氧化、酰基化、用卤代磷或卤化氢的卤化、脱水的反应或许多官能团的转化过程中,我们常常需要将羟基保护起来。
在含有多官能团复杂分子的合成中,如何选择性保护羟基和脱保护往往是许多新化合物开发时的关键所在,如紫杉醇的全合成。
羟基保护主要将其转变为相应的醚或酯,以醚更为常见。
一般用于羟基保护醚主要有硅醚、甲基醚、烯丙基醚、苄基醚、烷氧甲基醚、烷巯基甲基醚、三甲基硅乙基甲基醚等等。
羟基的酯保护一般用的不多,但在糖及核糖化学中较为多见。
2.羟基硅醚保护及脱除硅醚是最常见的保护羟基的方法之一。
随着硅原子上的取代基的不同,保护和去保护的反应活性均有较大的变化。
当分子中有多官能团时,空间效应及电子效应是影响反应的主要因素。
在进行选择性去保护反应时,硅原子周围的空间效应,以及被保护分子的结构环境均需考虑。
例如,一般情况下,在TBDMS基团存在时,断裂DEIPS( 二乙基异丙基硅基) 基团是较容易的,但实际得出的一些结果是相反的。
在这些例子中,分子结构中空间阻碍是产生相反选择性的原因。
电子效应的不同也会影响反应的选择性。
对于两种空间结构相似的醇来说,电子云密度不同造成酸催化去保护速率不同,因此可以选择性去保护。
这一点对酚基和烷基硅醚特别有效:烷基硅醚在酸中容易去保护,而酚基醚在碱性条件下更容易去保护。
降低硅的碱性还可以用于改变Lewis酸催化反应的结果,并且有助于选择性去保护。
在硅原子上引入吸电子取代基可以提高碱性条下水解反应的灵敏性,而对酸的敏感性降低。
对大多数醚来说,在酸中的稳定性为TMS (1)<TES (64)<TBDMS (20,000)<TIPS (700,000)<TBDPS (5,000,000);在碱中稳定性为TMS (1)<TES (10-100)<TBDMS~TBDPS (20,000)< TIPS (100,000)。
一般而言,对于没有什么位阻的伯醇和仲醇,尽量不要选用TMS作为保护基团,因为得到的产物一般在硅胶这样弱的酸性条件下也会被裂解掉。
任何羟基硅醚的都可以通过四烷基氟化胺如TBAF脱除,其主要硅原子对氟原子的亲和性远远大于硅-氧之间的亲和性。
在用TBAF裂解硅醚后,分解产生的四丁铵离子有时通过柱层析或HPLC很难除干净,而季铵盐的质谱丰度(Bu4N+: 242)又特别的强有时会干扰质谱,因此这时需要使用四甲基氟化铵或四乙基氟化铵来脱除。
使用硅醚保护的另一个好处是可以在分子中游离伯胺或仲胺基的存在下,对羟基进行保护,其主要由于硅-氮键的结合远比硅-氧键来的弱,硅原子优先与羟基上的氧原子结合,这正是与其他保护基不同之处。
顺便提一句,一般而言,决大部分的硅-氮键的结合是不稳定的,其很容易被水解掉。
2.1 三甲基硅醚的保护 (TMS-OR)许多硅基化试剂均可用于在各种醇中引入三甲基硅基。
一般来说,空间位阻较小的醇最容易硅基化,但同时在酸或碱中也非常不稳定易水解,三甲基硅基化广泛用于多官能团化合物,生成的衍生物具有较高的挥发度而利于其相色谱和质谱分析。
2.1.1 三甲基硅醚羟基保护示例 (J. Org.Chem. 1996, 61, 2065)12HOOOTESHO BzO H OAcO AcOTMSOOOTESMe HSiO BzOH OAcO AcOCompound 1 (3.00g, 4.286mmol) was dissolved in dry DMF (17 mL). To this solution at 0o C was added imidazole (874.3 mg, 12.86mmol), followed by TMSCl (1.63 mL, 12.86 mmol). After stirring at 0o C for 1.5 h, the reaction mixture was diluted with EtOAc (300 mL) and washed with water (3 20 mL) and then brine (30 mL). The organic layer was dried and concentrated in vacuo . The resulting material was then dissolved in dry DMF (20 mL) and treated at 0o C with imidazole (816 mg, 12.00 mmol), followed by chlorodimethylsilane (1.135g, 12.00mmol). The reaction mixture was stirred for 1h at 0o C and then diluted with EtOAc (200mL). The organic layer was washed with water and brine. Upon silica gel chromatography (10% ethyl acetate in hexane), 3.197 g (90%) of the desired product 2 was obtained.Cleavage (J. Org.Chem. 1996, 61, 2065)Hydrolysis was carried out under aprotic condition-anhydrous tetrabutylammonium fluoride in THF solution.2.2 t-Butyldimethylsilyl ether (TBDMS-OR)在化学合成中,采用硅基化进行羟基保护生成叔丁基甲基硅基醚是应用较多的方法之一。
一般来说,在分子中羟基位阻不大时主要通过TBSCl 对羟基进行保护。
但当羟基位阻较大时则采用较强的硅醚化试剂TBSOTf 来实现。
生成的叔丁基二甲基醚在多种有机反应中是相当稳定的,在一定条件下去保护时一般不会影响其他官能团。
它在碱性水解时的稳定性约为三甲基硅醚的104倍。
它对碱稳定。
相对来说对酸敏感些。
TBS 醚的生成和断裂的难易取决于空间因素,因此常常用于对多官能团,位阻不同的分子进行选择性保护。
在伯、仲醇中,TBS 基相对来说较易于与伯醇反应。
TBS 醚的断裂除了常用的四烷基氟化胺外,许多情况下也可用酸来断。
当分子内没有对强酸敏感的官能基存在时,可用 HCl-MeOH, HCl-Dioxane 体系去除TBS ,若有对强酸敏感的官能基存在时,则可选用AcOH-THF 体系去除。
2.2.1 通过TBSCl 进行羟基的叔丁基二甲基硅醚保护示例 (J. Am. Chem. Soc. 1972, 94, 6190)OCH 2OBnHOO OCH 2OBnTBDMSOO12The hydroxyl lactone 1, upon treatment with TBDMSCl (1.2 equiv) and imidazole (2.5 equiv.) in DMF (2 mL/g of 1) at 35o C for 10 h, produced the silyl ether-lactone 2 in 96% yield.2.2.2 通过TBSOTf 进行羟基的叔丁基二甲基硅醚保护示例(.Chem. 1987, 52, 622)OH CN CH 3H OTBS CN CH H 12To an ice-cold solution of 4.8 g of pyridine (2.0 equiv) and 4.20 g of 1 in 30 mL of dry acetonitrile was added slowly 9.6 g of tert-butyldimethylsilyl triflate (36.2 mmol, 1.2 equiv). The reaction mixture was stirred for 5 h at room temperature and then poured into 200 mL of saturated sodium bicarbonate solution at 0o C. The solution was extracted thoroughly with hexane, and the organic extracts were dried over anhydrous potassium carbonate and filtered. Removal of the solvent under reduced pressure followed by distillation of the residue gave6.29 g (82% yield).2.2.3 通过TBAF 脱TBDPS 示例 (Can. J. Chem. 1975, 53, 2975)OTHPOC C C 6H 5Bu 4N +F -/THF12HOTHPOC C C 6H 5Si Ph PhTo a solution of THP ether 1 (1.7 g, 3.3 mmol) in THF (10 mL) was added a 1 M solution of tetrabutylammonium fluoride in THF (5 mL, 5 mmol) at 22-24o C. The solution was stirred for 2 h and diluted with 100 mL (1:1) of Et 2O/EtOAc solution. The organic layer was separated and washed with H 2O (3 ⨯ 100 mL). The water extract was washed with 2:1 Et 2O/EtOAc solution (2 ⨯ 50 mL), and the organic layers were combined and dried over MgSO 4. The solvent was evaporated in vacuo , and the residue was chromatographed over silica gel using (5:1) hexanes/ethyl acetate solution to give 2 (0.75 g, 82%).2.2.4 通过AcOH-THF 脱TBS 示例(Tetrahedron Lett. 1988, 29, 6331)OTBSONHBocTBSOOTBSONHBocHO 12AcOh/H 2O/THFSelective removal of one of the TBDMS groups of 1 was accomplished by treatment with acetic acid-water-THF (13:7:3) (30°C, 15h) to give the monohydroxy compound 2 in 79% yield.2.3 t-Butyldiphenylsilyl ether (TBDPS-OR)在酸性水解条件下TBDPS 保护基比TBDMS 更加稳定(约100倍),而TBDPS 保护基对碱的稳定性比TBDMS 要差。