辨识方法人工神经网络
机械臂动力学参数辨识

机械臂动力学参数辨识动力学参数辨识在机械臂的研究和应用中具有重要意义。
准确的动力学参数对于机械臂运动学分析、轨迹规划以及控制算法设计等都有着重要的影响。
一、基于静态重力补偿静态重力补偿是机械臂动力学参数辨识的一种简单有效的方法。
通过控制机械臂处于静止状态,并在不同的关节角度下测量末端执行器的重力矩,可以推导出机械臂的惯性矩阵。
这种方法不需要进行复杂的实验和数据处理,适用于一些简单的机械臂系统。
二、基于递归最小二乘法递归最小二乘法是一种递归在线辨识算法,在机械臂动力学参数辨识中具有广泛应用。
该方法采用递归的方式不断更新参数,并通过最小化测量数据与模型之间的误差来求解参数。
该方法适用于在线实时辨识,可以随着机械臂的运动获取更准确的参数。
三、基于质心力矩法质心力矩法是一种基于动力学模型的参数辨识方法。
该方法通过测量机械臂质心位置和末端执行器的力矩,结合动力学模型,可以推导出机械臂的质量、惯性矩阵等参数。
这种方法可以同时辨识多个参数,适用于较复杂的机械臂系统。
四、基于人工神经网络人工神经网络是一种基于模式识别的辨识方法。
该方法通过训练神经网络模型,将输入的机械臂关节角度和末端执行器的力矩作为输入,将模型输出与实际测量值进行比较,通过反向传播算法调整网络权值,从而获得机械臂的动力学参数。
该方法可以适用于不确定或难以建模的机械臂系统。
在进行机械臂动力学参数辨识时,需要注意以下几点。
一、实验数据的收集要准确可靠。
需要使用高精度传感器对机械臂的运动和力矩进行测量,保证数据的可信度。
二、辨识方法的选择要根据具体情况进行。
不同的机械臂系统可能适用不同的辨识方法,要根据实际需要选择最合适的方法。
三、辨识结果的评估和验证是非常重要的。
辨识得到的参数需要经过合理的评估和验证,与实际测量值进行对比,以保证辨识结果的准确性。
综上所述,机械臂动力学参数辨识是机械臂研究和应用中的重要环节。
通过合适的辨识方法和准确的数据收集,可以获取到机械臂系统的动力学参数,为后续的控制算法设计和系统建模提供基础。
神经网络在系统辨识中的应用

神经网络在系统辨识中的应用摘要应用于自动控制系统的神经网络算法很多,特点不一,对于非线性系统辨识的研究有一定影响。
本文就BP网络算法进行了着重介绍,并点明了其收敛较慢等缺点,进而给出了改进算法,说明了建立在BP算法基础上的其他算法用于非线性系统辨识的可行性与有效性。
关键词神经网络BP算法;辨识;非线性系统前言神经网络是一门新兴的多学科研究领域,它是在对人脑的探索中形成的。
神经网络在系统建模、辨识与控制中的应用,大致以1985年Rumelhart的突破性研究为界。
在极短的时间内,神经网络就以其独特的非传统表达方式和固有的学习能力,引起了控制界的普遍重视,并取得了一系列重要结果。
本文以神经网络在系统辨识中的应用作一综述,而后着重介绍BP网络算法,并给出了若干改进的BP算法。
通过比较,说明改进算法具有诸多优点及用于非线性系统辨识[1]的可行性与有效性。
1 神经网絡用于系统辨识的原理及现状神经网络在自动控制系统中的应用已有多年。
目前,利用神经网络建立动态系统的输入/输出模型的理论及技术,在许多具体领域的应用得到成功,如化工过程、水轮机、机器入手臂、涡轮柴油发动机等。
运用神经网络的建模适用于相当于非线性特性的复杂系统[2]。
目前系统辨识中用得最多的是多层前馈神经网络[1]。
我们知道,自动控制系统中,一个单隐层或双隐层的具有任意数目神经元的神经网络,可以产生逼近任意函数的输入/输出映射。
但网络的输入节点数目及种类(延迟输入和输出)、隐层节点的个数以及训练所用的算法对辨识精度和收敛时间均有影响。
一般根据系统阶数取延迟输入信号,根据经验确定隐层节点数,然后对若干个神经网络进行比较,确定网络中神经元的合理数目。
现在用得较多的多层前馈神经网络的学习算法是反向传播算法(Back Propagation),即BP算法。
但BP算法收敛速度较慢,后面将会进一步讨论。
1.1 神经网络的结构感知器是最简单的前馈网络,它主要用于模式分类。
在线参数辨识方法

在线参数辨识方法1. 简介在线参数辨识方法是指在系统运行过程中,利用实时采集的数据对系统的参数进行估计和辨识的方法。
通过在线参数辨识,可以实时更新系统模型的参数,提高系统的控制性能和适应性。
在线参数辨识方法在自动控制领域具有广泛的应用。
它可以用于工业过程控制、机器人控制、飞行器控制等各种领域。
通过不断地对系统进行参数辨识,可以使系统更好地适应不确定性和变化。
本文将介绍在线参数辨识方法的基本原理、常用算法以及应用案例,并分析其优点和不足之处。
2. 基本原理在线参数辨识方法基于最小二乘法原理,通过最小化测量值与模型预测值之间的误差来估计系统的参数。
其基本步骤如下:1.收集实时数据:利用传感器等设备采集系统的输入输出数据。
2.确定模型结构:根据系统特性选择合适的数学模型,并确定模型中需要估计的参数。
3.建立误差函数:将测量值与模型预测值之间的误差表示为一个函数,通常采用最小二乘法。
4.参数估计:通过优化算法求解误差函数的最小值,得到系统的参数估计值。
5.参数更新:根据新获得的参数估计值更新系统模型,以便在下一次辨识时使用。
3. 常用算法在线参数辨识方法有多种常用的算法,下面介绍其中几种常见的算法:3.1 最小二乘法最小二乘法是在线参数辨识中最基本也是最常用的方法。
它通过最小化测量值与模型预测值之间的平方误差来估计系统的参数。
最小二乘法可以通过解析方法或迭代方法求解。
3.2 递推最小二乘法递推最小二乘法是一种在线更新参数的方法。
它利用递推公式和滑动窗口技术,在每个时间步都更新参数估计值。
递推最小二乘法能够实时跟踪系统参数变化,并具有较好的收敛性能。
3.3 卡尔曼滤波器卡尔曼滤波器是一种基于状态空间模型和观测方程的滤波器,可以用于在线参数辨识。
它通过对系统状态和观测数据的联合估计,实现对系统参数的在线估计。
3.4 神经网络神经网络是一种基于人工神经元模型的参数辨识方法。
通过训练神经网络,可以实现对系统参数的在线辨识。
控制系统设计中的模型鉴别方法综述

控制系统设计中的模型鉴别方法综述在控制系统设计中,模型鉴别方法是一项关键性工作。
模型鉴别方法可以帮助工程师准确地识别出待控系统的数学模型,为后续的控制器设计和性能优化提供基础。
本文将对控制系统设计中常用的模型鉴别方法进行综述。
一、最小二乘法最小二乘法是一种常见的模型鉴别方法,它通过最小化误差的平方和来拟合实际测量数据和理论模型之间的差异。
最小二乘法可以用于线性和非线性模型的鉴别。
对于线性模型,最小二乘法可以通过矩阵运算求解最优解。
而对于非线性模型,最小二乘法可以通过迭代优化算法求解。
二、频域方法频域方法是一种将系统响应与频率特性相关联的模型鉴别方法。
它通常基于输入和输出信号的频谱分析,可以用于连续时间和离散时间系统。
频域方法可以采用傅里叶变换、拉普拉斯变换等数学工具,通过求解传递函数或频率响应函数来获得系统模型。
频域方法适用于具有周期性输入和输出信号的系统。
三、时域方法时域方法是一种将系统响应与时间域特性相关联的模型鉴别方法。
它通常基于实际采集到的离散时间数据,通过插值、拟合等技术来获得离散时间系统的模型。
时域方法可以采用多项式插值、曲线拟合等数学工具,通过建立系统差分方程或状态空间模型来进行模型鉴别。
时域方法适用于实际工程中获得的离散时间数据。
四、系统辨识方法系统辨识方法是一种通过试验数据来识别系统动态特性的模型鉴别方法。
它可以通过对系统施加特定的输入信号,观测系统输出响应来获得系统模型。
系统辨识方法可以分为参数辨识和非参数辨识两种方法。
参数辨识方法假设系统具有某种结构,通过最小化残差的平方和来确定模型参数。
非参数辨识方法不对系统结构进行假设,通过直接拟合试验数据来获得系统模型。
五、神经网络方法神经网络方法是一种基于人工神经网络的模型鉴别方法。
它可以通过输入输出数据训练神经网络,从而获得系统的模型。
神经网络方法可以适用于非线性系统的建模和鉴别。
神经网络方法具有较强的自适应能力和非线性拟合能力,但对于网络结构和训练样本的选择具有一定的要求。
7-1 神经网络辨识方法

从实际的观点看,辨识就是从一组模型中选择一个模型,按照某种原则,使之最 好地拟合所关心实际系统的动态或静态特性。
ˆ ,输出为 其数学表达为:设 系统为 P ,输出为 Z,输入为 u,模型为 P ˆz 辨识准则为 min z
ˆ z
ˆ, 使 因此辨识问题的提法是:确定模型 P
ˆ u p u ˆ z min p min z
u 系统 P
z _
z
模型
ˆ P
z -Z
2 系统解识的传统方法 <1> 基本要求 ①模型的选择 模型只能是在某种意义下实际系统的一种近似描述。 选择的标准依赖于模型的用途并兼顾其精确性和复杂性等问题。 ② 输入信号的选择 第一,输入信号的频谱必须足以覆盖系统的频谱。在辨识时间里,输入信号 必须是持续激励的,也就是说,输入信号必须充分激励系统的所有模态。 第二,输入信号应是最优的,即设计的输入信号使给定的问题的辨识程度最 高,因此常用的输入信号是向噪声或伪随机信号。 ③误差准则的选择 个误差的泛函: 准则是用来衡量模型接近实际系统的标准,它通常表示为一
系统 h(k) 辨识表达式 0 e(k) + z(k) -
Z(k) _
模型
z (k)
( z (k)- z(k) ) 辨识算法 (k) 最小二乘法辨识原理
②梯形校正法 利用最速下降法原理,沿着误差准则函数关于模型参数的负梯度 方向,逐步修改模型的参数估计值,直至误差准则函数达到最小值。
J f e k
L
其中 f 是 e k 的泛函数, e k 是定义在区间 0, L 上模型与实际系统的误差函 数。
k 1
<2> 传统辨识基本方法 传统方法的基本原理:是通过建立系统依赖于参数 的模型,把辨识问题转化成 对模型参数的估计问题。
人工神经网络简介

人工神经网络简介1 人工神经网络概念、特点及其原理 (1)1.1人工神经网络的概念 (1)1.2人工神经网络的特点及用途 (2)1.3人工神经网络的基本原理 (3)2 人工神经网络的分类及其运作过程 (5)2.1 人工神经网络模式的分类 (5)2.2 人工神经网络的运作过程 (6)3 人工神经网络基本模型介绍 (6)3.1感知器 (7)3.2线性神经网络 (7)3.3BP(Back Propagation)网络 (7)3.4径向基函数网络 (8)3.5反馈性神经网络 (8)3.6竞争型神经网络 (8)1 人工神经网络概念、特点及其原理人工神经网络(Artificial Neural Networks,简记作ANN),是对人类大脑系统的一阶特征的一种描述。
简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究的一种方法。
1.1人工神经网络的概念利用机器模仿人类的智能是长期以来人们认识自然、改造自然的理想。
自从有了能够存储信息、进行数值运算和逻辑运算的电子计算机以来,其功能和性能得到了不断的发展,使机器智能的研究与开发日益受到人们的重视。
1956年J.McCart冲等人提出了人工智能的概念,从而形成了一个与神经生理科学、认知科学、数理科学、信息论与计算机科学等密切相关的交叉学科。
人工神经网络是人工智能的一部分,提出于50年代,兴起于80年代中期,近些年已经成为各领域科学家们竞相研究的热点。
人工神经网络是人脑及其活动的一个理论化的数学模型,它由大量的处理单元通过适当的方式互联构成,是一个大规模的非线性自适应系统,1998年Hecht-Nielsen曾经给人工神经网络下了如下定义:人工神经网络是一个并行、分层处理单元及称为联接的无向信号通道互连而成。
这些处理单元(PE-Processing Element)具有局部内存,并可以完成局部操作。
每个处理单元有一个单一的输出联接,这个输出可以根据需要被分支撑希望个数的许多并联联接,且这些并联联接都输出相同的信号,即相应处理单元的信号。
人工神经网络系统辨识综述

人工神经网络系统辨识综述摘要:当今社会,系统辨识技术的发展逐渐成熟,人工神经网络的系统辨识方法的应用也越来越多,遍及各个领域。
首先对神经网络系统辨识方法与经典辨识法进行对比,显示出其优越性,然后再通过对改进后的算法具体加以说明,最后展望了神经网络系统辨识法的发展方向。
关键词:神经网络;系统辨识;系统建模0引言随着社会的进步,越来越多的实际系统变成了具有不确定性的复杂系统,经典的系统辨识方法在这些系统中应用,体现出以下的不足:(1)在某些动态系统中,系统的输入常常无法保证,但是最小二乘法的系统辨识法一般要求输入信号已知,且变化较丰富。
(2)在线性系统中,传统的系统辨识方法比在非线性系统辨识效果要好。
(3)不能同时确定系统的结构与参数和往往得不到全局最优解,是传统辨识方法普遍存在的两个缺点。
随着科技的继续发展,基于神经网络的辨识与传统的辨识方法相比较具有以下几个特点:第一,可以省去系统机构建模这一步,不需要建立实际系统的辨识格式;其次,辨识的收敛速度仅依赖于与神经网络本身及其所采用的学习算法,所以可以对本质非线性系统进行辨识;最后可以通过调节神经网络连接权值达到让网络输出逼近系统输出的目的;作为实际系统的辨识模型,神经网络还可用于在线控制。
1神经网络系统辨识法1.1神经网络人工神经网络迅速发展于20世纪末,并广泛地应用于各个领域,尤其是在模式识别、信号处理、工程、专家系统、优化组合、机器人控制等方面。
随着神经网络理论本身以及相关理论和相关技术的不断发展,神经网络的应用定将更加深入。
神经网络,包括前向网络和递归动态网络,将确定某一非线性映射的问题转化为求解优化问题,有一种改进的系统辨识方法就是通过调整网络的权值矩阵来实现这一优化过程。
1.2辨识原理选择一种适合的神经网络模型来逼近实际系统是神经网络用于系统辨识的实质。
其辨识有模型、数据和误差准则三大要素。
系统辨识实际上是一个最优化问题,由辨识的目的与辨识算法的复杂性等因素决定其优化准则。
人脸识别技术的原理与应用

人脸识别技术的原理与应用人脸识别技术是指通过使用计算机科学及电子技术,对摄像头或摄像设备拍摄的人脸进行识别的一项技术。
人脸识别技术近年来在安防、金融、教育等行业中得到广泛应用,主要是因为它具有高效、准确、可靠、自动化等诸多优点。
本文将从技术原理和应用两个方面,分别进行介绍。
一、技术原理人脸识别技术的原理主要有两种方式,一种是基于图像处理和分析的方法,另一种是基于人工智能、神经网络等技术。
1.基于图像处理和分析的方法基于图像处理和分析的方法,主要是利用摄像头或摄像设备对场景进行拍摄,然后对拍摄对象的人脸进行图像处理。
1.1特征点法特征点法是将人脸的关键特征点提取出来,进行识别。
当人脸被拍摄之后,会对图像中的关键点进行提取,以此判断出人脸是否匹配。
1.2纹理法纹理法是利用人脸图像的纹理特征来进行识别。
它将特征点和纹理特征结合起来,提高人脸识别的准确率。
1.3三维重建法三维重建法是将人脸图像进行三维模型重建,进行识别。
这种方法对环境要求相对较高,需要较好的光照、环境等条件。
2.基于人工智能、神经网络等技术基于人工智能、神经网络等技术的人脸识别方法则是通过计算机模拟人类的认知过程,使其可以进行人脸识别。
2.1人脸检测人脸检测是指在图像或视频中检测人脸的过程,它是进行人脸识别的第一步。
检测到人脸之后,才能对人脸进行特征提取和识别。
2.2人脸特征提取人脸特征提取是指从人脸图像中提取出具有辨识性的特征,例如眼睛、鼻子、嘴巴等部位的特征以及图像的纹理、颜色等。
2.3人脸识别人脸识别是利用计算机技术将提取的特征与数据库中的数据进行比对,从而判断人脸是否匹配的过程。
二、应用人脸识别技术的应用范围非常广泛,下面主要介绍一些实际的应用场景。
1.安防领域在安防领域,人脸识别技术被广泛应用。
例如,通过安装摄像头,人脸识别技术可以用于进出口通道的管理、犯罪嫌疑人的追踪等。
2.金融领域在金融领域,人脸识别技术可以用于身份识别、支付等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
No
···
···
Nh
···
Ni
图 3 BP网络结构示意图
18
算法的主要思想
BP网络是一种正向的、各层相互全连接的网络。
正向传播:输入信号要经过输入层,向前传递给隐 层节点,经过激发函数作用后,把隐层节点的输出 传递到输出节点,再经激发函数后给出输出结果。
误差反向传播:如果输出层得不到期望结果,则转 入反向传播,将误差信号沿原来的连接通路返回, 通过修改各层神经网络的权值,使过程的输出和神 经网络模型的输出之间误差最小为止。
K.Fukushima等提出神经认知机网络理论。 7、1986 Rumelhart等人提出了BP 网络。1986年进
行认知微观结构地研究,提出了并行分布处理的 理论(74年,Werbos博士论文提出) 8、1987 Kohonen提出自组织映射理论。
4
发展阶段(1986年之后) 9、标志是1987年6月在美国圣地亚哥召开
Xn
Wn
图 神经元结构模型
多入单出 表达式
n
I
Wj X j
j 1
y f (I )
为阈值
f(x)为激发函数
9
3、激发函数
阈值型
分段线性
10
双曲函数
Sigmoid函数
( xc)2
f (x) e b2
高斯函数
4、神经网络模型结构
基本网络结构1
11
基本网络结构2
12
5、人工神经网络学习方法
了第一届 世界神经网络会议 10、1988年前后我国发展起来
1989年我国第一届神经网络-信号处理会 议
5
神经细胞
功能:产生、处理和传递信号。 构成:细胞体、树突和轴突。 基本信息:兴奋或抑制。信号量足够大,
激活细胞,产生脉冲。
6
一、基本概念
人工神经网络是智能控制技术的三大组成部分---神经网 络、模糊控制和专家系统
19
BP算法选用的激发函数
LOG-Sig函数 Tan-Sig函数 线性函数
f
(x)
1 1 ex
f
(x)
tan
sig ( x)
2 1 e2x
1
20
BP算法过程
(1)信息的正向传播——各层神经元的输入输出关系
输入层第i个节点
输入
M
neti xi i
i 1
隐层第j个节点
输出
2
ai tan sig(neti )
1MBiblioteka 1 e 2 i1 xi i
输入
N
输出
15
二、神经网络学习算法
感知器网络
BP网络
线性神经网络 径向基函数RBF网络 竞争型神经网络 反馈型神经网络
16
误差反向传播算法原理(BP算法)
Back-Propagation Network
1986年Rumelhart和McCleland提出了多层 前馈人工神经网络及其学习算法──误差 反向传播(Error back-propagation, BP)算 法,它是目前在实际中应用最广泛的一种 人工神经网络。
记忆、计算、判断:<1秒
范德曼 J.A. Feldman
100步程序长度
新型的信号处理机制
2
ANN研究历史
三个阶段
初创期(1943-1969)
1943年 McCulloch 和Pitts 著作
第一次提出了神经网络模拟
2、1949年 Hebb 研究大脑神经细胞、学习及条件反射提 出了Hebbian规则(从心理学角度)
3、1957年 Frank Resenblant (神经元之父)提出了感知 器(Perceptron),确立了从系统角度研究的基础。
(自动学习模式分类的判别函数的一般性方法,推广到有多
层相互连接的阀值逻辑单元构成的审议机)
4、1962年 Bloek用解释器证明了感知器的学习收敛性
1969年M.Minsky,S.Papert证明了感知器的局限性和 多层感知器还没有找到有效的计算方法
相关规则
仅根据连接间的激活水平改变权值。Hebb算法
纠错规则
依赖于输出节点的外部反馈改变权系数。δ学习规则、 梯度下降法、BP算法
无教师学习规则
自适应于输入空间的检测规则,有选择地接受输入 空间的不同特性。竞争式学习
13
Winner-Take-all学习规则是一种竞争学习规则
对于一个特定的输入X,竞争层的所有p个神经 元均有输出响应,其中响应值最大的神经元为在竞 争中获胜的神经元。
只有获胜神经元才有权调整其权向量,调整量为
14
Wm X Wm
6、特 点
分布式存储
系统信息等式分布存储在网络的各个神经元及其连接 权值中,有很强的鲁棒性。
并行
处理及推理的过程具有并行的特点
非线性
神经网络本质上是非线性系统,能够充分逼近任意复 杂的非线性关系。
自学习和自适应能力
具有高度的自适应性和自组织性,能够学习和适应严 重不确定性系统的动态特性。
3
过渡阶段(1970-1986) 5、70年代,低谷。 M.Minsky的论点极大地影响了
神经网络的研究,加之当时串行计算机和人工智 能所取得的成就,掩盖了发展新型计算机和人工 智能新途径的必要性和迫切性,使人工神经网络 的研究处于低潮。 6、Hopfield 于1982年和1984年提出Hopfield神经网 络模型,引入网络能量函数的概念,开创了神经 网络用于联想记忆和优化计算的新途径。
参考文献
神经网络理论 【俄】A.H.加卢什金著 人工神经网络 郑君里 杨行峻 神经网络控制技术及其应用 何玉彬 李新忠著 神经网络、模糊系统及其在运动控制中的应用 丛
爽著 神经计算 原理、语言、设计、应用 何明 一著 面向MATLAB工具箱的神经网络理论与应用
侯媛彬、汪梅等著
1
起因
电子元器件:纳秒量级 10-9 神经细胞:毫秒量级 10-3
1、定义
ANN是指由大量自然神经系统的神经细胞类似的(人工 )神经元互联而成的网络。 单个人工神经元的功能简单,但大量神经元构成网络, 其并行运算的特点使得其行为及其丰富多彩。 神经网络是一个非线性动力学系统,特色:分布式存储 和并行协调。和数字计算机相比,神经网络具有集体运 算能力和自适应学习能力。
7
智能功能具有两类模拟能力 (1)低级处理能力
研究生物神经细胞结构,获得生物神经 细胞的某些特征。
(感知器、BP网络)
(2)高级处理能力 利用生物学、数学等手段,提炼ANN 应具备的高级智能的能力,设计其基本 处理单元。
(LAC的竞争机理、良心机理)
8
2、人工神经元基本模型
X1
W1
y
X2
f(x)