现代流动测试技术大作业
现代检测技术作业

现代检测技术作业学院:专业:姓名:学号:指导教师:2023年12月30日一现代检测技术的技术特点和系统的构成1、现代检测技术特点(1)测量过程软件控制智能检测系统可以是新建自稳零放大,自动极性判断,自动量程切换,自动报警,过载保护,非线性补偿,多功能测试和自动巡回检测。
由于有了计算机,上述过程可采用软件控制。
测量过程的软件控制可以简化系统的硬件结构,缩小体积,降低功耗,提高检测系统的可靠性和自动化程度。
(2)智能化数据处理智能化数据处理是智能检测系统最突出的特点。
计算机可以方便、快捷地实现各种算法。
因此,智能检测系统可用软件对测量结果进行及时、在线处理,提高测量精度。
另一方面,智能检测系统可以对测量结果再加工,获得并提高更多更可靠的高质量信息。
智能检测系统中的计算机可以方便地用软件实现线性化处理、算术平均值处理、数据融合计算、快速的傅里叶变换(FFT)、相关分析等各种信息处理功能。
(3)高度的灵活性智能检测系统已以软件工作为核心,生产、修改、复制都比较容易,功能和性能指标更加方便。
而传统的硬件检测系统,生产工艺复杂,参数分散性较大,每次更改都涉及到元器件和仪器结构的改变。
(4)实现多参数检测与信息融合智能检测系统设备多个测量通道,可以有计算对多路测量通进行检测。
在进行多参数检测的基础上,依据各路信息的相关特性,可以实现智能检测系统的多传感器信息融合,从而提高检测系统的准确性、可靠性和容错性。
(5)测量速度快高速测量时智能检测系统追求的目标之一、所谓高速检测,是指从检测开始,经过信号放大、整流滤波、非线性补偿、A/D转换、数据处理和结果输出的全过程所需要的时间。
目前,高速A/D转换的采样速度在2000MHz以上,32位PC机的时钟频率也在500MHz以上。
随着电子技术的迅猛发展,高速显示、高速打印、高速绘图设备也日臻完善。
这些都为智能检测系统的快速检测提供了条件。
(6)智能化功能强以计算机为信息处理核心的智能检测系统具有较强的智能功能,可以满足各类用户的需要。
现代检测技术大作业最终版

现代检测技术大型作业(2014/2015学年第1学期)课题名称粮食存储环境品质监测系统设计院(系)自动化工程学院专业电气系统检测与控制小组成员时间指导老师一.设计背景及意义“国以民为本,民以食为天”,“兵马未动,粮草先行”,这些都充分说明粮食对国家的重要性。
储粮是为了防备战争、保证非农业人口的粮食消费需求、调节国内粮食供求平衡、稳定粮食市场价格、应对重大自然灾害及其它突发性事件而采取的有效措施。
因此,粮食的科学储藏具有重要的战略意义和经济意义。
我国是世界上最大的粮食生产、储藏及消费大国,粮食储藏是国家为防备战争、灾荒及其他突发性事件而采取的有效措施,因此粮食的安全储藏是关系到国计民生的战略大事。
在粮食的储藏的过程中,由于粮仓温湿度异常而造成粮食变质,带来的经济损失是惊人的。
粮食在贮藏过程中,会因为受温度、湿度、氧气、微生物及昆虫等因素的影响,从而造成其质量的不良改变。
目前我国许多粮食仓储单位采用测温仪器与人工抄录、管理相结合的传统方法,消耗了大量的人力和财力,并且效果不佳,发霉变质等现象大量存在。
因此设计粮食储存品质监测系统,可以提高工作效率,实现粮仓数据的实时监控,是仓储单位亟待解决的重要问题。
粮食在贮藏过程中,会因为受温度、湿度、压力、2CO、微生物及昆虫等因素的影响,从而造成其质量的不良改变。
对粮食贮藏过程中的影响参数进行实时监测、分析,是保障粮食储存品质的有效手段。
在此,通过采用CAN总线的数据采集系统对影响粮食贮藏过程中的参数进行实时采集、分析,当发现不良变化时,能够及时发出预警信息,保证粮食储存的安全。
粮食储存品质监测系统是利用现场的前沿机检测粮食储备库中粮食的基本情况,并结合其他粮情信息(如入仓时间、品种、仓型、天气状况等)进行综合分析,然后通过控制电机启停,达到对相应参数的控制。
利用监控室的上位机对粮仓进行监控,用户可方便地构造自己需要的数据采集系统,在任何时候把粮仓现场的信息实时地传到控制室,管理人员不需要深入现场,就可以按照所需的要求对粮仓内的情况进行控制,还可以查看历史数据,优化现场作业,提高了生产效率,增强了国家粮食储备安全水平,以获得实时粮仓管理,实现自动化、智能化,为实现我国粮仓管理现代化更近了一步。
测试技术大作业

动态测试信号采集仿真与实例分析姓名:学号:********指导老师:***东南大学机械工程学院2012年6月1日目录摘要 (3)关键词 (3)Abstra ct (4)Key words (4)1绪论 (5)1.1信号处理、分析及应用 (5)1.2本次设计的主要内容 (5)2设计题一:信号仿真、采集与分析处理 (6)2.1题目 (6)2.2设计过程 (6)2.3分析 (8)2.4讨论 (13)3设计题二:基于计算机的声信号采集与分析 (14)3.1题目 (14)3.2设计过程 (14)3.3分析 (16)3.4讨论 (19)4设计题三:机械运行数据分析与处理 (20)4.1题目 (20)4.2设计过程 (20)4.3分析 (22)4.4讨论 (24)结论 (25)致谢 (25)参考文献 (25)动态测试信号采集仿真与实例分析02009124沈健指导教师胡建中摘要:通过不同的设备采集相关的信号,对信号进行分析和处理,考察信号的特征。
本次项目设计中先对信号采集过程中不同参数数值的设置,了解数值变化的影响。
再通过软件采集人声信号,在时域和频域中对其分析和处理。
最后对采集的转子数据信号进行处理,分析其故障。
关键词:信号时域分析频域分析Acquisition And Simulation Of Dynamic Test Signal And CaseAnalysis02009124 Jian ShenSupervised by Jianzhong HuAbstract:With different equipment people get related signals. The characteristics of signals can be examined by the signal analysis and processing. Different values of the parameters affect the signal analysis. Collecting sound signals, analyze them in the time domain and frequency domain. Processing the data of rotors and analyze the fault.Key words:signal, analysis in time and frequency domain1、绪论1.1信号处理、分析及应用现代的测试技术中,动态测试的作用越来越重要。
现代工程测试技术作业(精)

如何利用误差理论减少测量中的误差在进行测量的过程中,人利用仪器求出作为研究对象的部分物体用数量表示的某种性质.在进行任何一次测量中,所用的仪器设备,所采用的测量方法,人们对测量环境和条件的控制及人的观察认识能力都会受到当前的科学技术水平和人的生理条件所制约,都不可能做到完美无缺,因而必然被测量结果受到歪曲,表现为测量结果与真值之间存在一定差值,即测量误差。
这就是误差存在的必然性和普遍性,称为误差的公理。
这也就是说,误差是经常存在,是不能完全消除的,只能设法减少和削弱。
在测量过程中,引起测量误差的因素是很多的,但在分析和计算测量误差时,不可能也没必要逐一地对所有误差因素进行分析计算。
而是着重分析引起误差的主要因素。
通常情况下,产生误差的原因有仪器设备误差、环境误差、方法误差、人员误差和测量对象变化误差。
测量误差的来源是多方面的,按其性质可分为三类,即:系统误差、随机误差、粗大误差。
这三类误差中,粗大误差是一种明显歪曲测量结果的误差,主要是粗枝大叶,操作不当所引起的,无规律可寻,只要操作细心,多方注意,即可避免。
可通过离群值的检查发现并剔除。
系统误差和随机误差都是测得值对真值的歪曲,都有其确定的界限。
前已述及,误差是必然而普遍存在的,要完全消除所有的误差是不可能的。
但我们可以采取适当的措施使误差尽量减小。
对于随机误差要通过增加平行测定次数以将其减少到容许的范围之内。
而系统误差则要设法消除。
在日常工作中,有的人在几次平行测定中所得数据非常接近,就主观武断地认为测定是绝对可靠的,但有时却存在系统误差而未能发觉。
因为单独靠测定步骤本身是不能反映出是否存在系统误差的,所以即使存在较大的系统误差,通过仔细的测定也未必能察觉,从而造成工作上的损失。
因此必须对消除系统误差的问题予以足够的重视。
从系统误差对分析结果的作用来说,系统误差有两种不同的表现形式,一是恒定误差(Constant error;另一种是比例误差(Proportional error。
现代检测技术大作业

2015年—2016年度第1学期课程名称:现代检测技术专业:控制工程研究生姓名:陈俊亚学号:2016232011任课教师姓名:冯晓明第一部分:现代检测技术的内容一、概述随着现代科学技术的不断发展、社会的日益进步,现代化生产的规模越来越大,管理的形式和方式趋于多样性,管理也更加科学,人们对产品的产量和质量的要求也越来越高,这就导致常规的检测参数、检测手段、检测仪表难以满足现代生产和生活的需求。
从一般的单参数测量到相关多参数的综合自动检测,从一般的参数量值测量到参数的状态估计,从确定性测量到模糊的判断等,已成为当前检测领域中的发展趋势,正受到越来越广泛的关注,从而形成了各种新的检测技术和新的检测方法,这些技术和方法统称为现代检测技术。
二、传感器的基本原理及检测技术的特点利用某种转换功能,将物理的、化学的、生物的等外界信号变成可直接测量的信号的器件称为传感器。
由于电信号易于放大、反馈、滤波、微分、存储和远距离传输,加上计算机只能处理电信号,所以,从狭义上说,传感器又可以定义为可唯一而重视性好的将外界信号转换成电信号的元器件;从广义上讲,传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的装置;简单说传感器是将外界信号转换为电信号的装置。
所以它由敏感元器件(感知元件)和转换器件两部分组成,有的半导体敏感元器件可以直接输出电信号,本身就构成传感器。
敏感元器件品种繁多,就其感知外界信息的原理来讲,可分为:①物理类,基于力、热、光、电、磁和声等物理效应。
②化学类,基于化学反应的原理。
③生物类,基于酶、抗体、和激素等分子识别功能。
通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。
检测技术的特点可以归纳为:(1)从待测参数的性质看,现代检测技术主要用于非常见的参数的测量,对于这些参数的测量目前还没有合适的传感器对应,难以实现常规意义的“一一对应”的测量;另一种情况是待测参数虽已有传感器,但测量误差比较大,受各种因素的影响比较大,不能满足测量要求。
现代分析测试技术作业1及答案

现代分析测试技术作业1及答案1 X射线在测试仪器中的应用在X射线荧光分析仪的应用:又称X射线次级发射光谱分析仪。
本法系利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究的方法。
在X射线测厚仪中的应用:利用X射线穿透被测材料时,X射线的强度的变化与材料的厚度相关的特性,从而测定材料的厚度,是一种非接触式的动态计量仪器。
在X射线衍射仪中的应用:X射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。
衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。
分析衍射结果,便可获得晶体结构。
2 晶体生长方法1) 提拉法(Czochralski,Cz)所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。
这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。
提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。
提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。
2) 热交换法(Heat Exchange Method, HEM)热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。
现代水动力学实验作业

3
掺气。还有人说,明槽急流就是高速水流,因为急流会发生一些特殊的水流 现象,如冲击波等。 根据近 30 多年来对高速水力学的研究与认识,看来 20m/s 以下的流速, 虽然有掺气、空化、脉动、冲击波等高速水力学问题,但不是很严重,对确 定水工建筑物的体型影响不大,所以一般可不作为高速水力学问题处理,按 一般水力学问题计算就可以了, 而把流速达到 20~50m/s 的水流作为高速水力 学研究的主要范畴。 也就是说,高度水力学主要指研究流速为 20~50m/s 的水 流的运动规律的学科。 研究内容:一般来说,高速水力学包括以下六个研究课题: 1、水流脉动与水工建筑物的振动 人们发现水流在运动中有脉动现象是本世纪 30 年代的事,距今只有 70 年。我国在 50 年代开始研究,特别是在 50 年代后期这方面的研究有较大的 发展,后因观测手段跟不上,数据理论与分析手段落后,很长一段时间进展 不大。 到 80 年, 由于实验与测试技术的改进, 数据处理分析中计算机的应用, 水流脉动的研究有了更多的进展与提高。 研究脉动的基础应是紊流理论,近年来借助随机理论推动了这个课题的 发展。 国内外都对这个课题的研究非常重视,但这个课题能否有进展,主要与 观测及分析技术有关,与紊流理论的发展和应用有关。 2、掺气水流 高水头泄水建筑物中的水流,由于水头高,流速大,在一定条件下会掺 入大量空气, 形成掺气水流。 掺气水流是高速水力学中发现最早的一种现象, 本世纪 20 年代就已经开始了室内外研究,但主要研究的是自掺气水流,本世 纪 60 年代以来人们的注意力,更着眼于强迫掺气水流,利用掺气减免空蚀推 动了强迫掺气水流的研究。 3、空化与空蚀 空化与空蚀最早是在航海界发现的, 到本世纪 30 年代才在水工建筑物上 发现。由于与水流运动接触的固壁上都可能有空化与空蚀,所以这个课题的 研究人力多,领域广,成果也多。 水工建筑物的空化与空蚀,从 30 年代开始,很长时间内侧重于过水建筑 物合理体型的设计,抗空蚀材料的研究以及在施工中控制不平整度。但问题 一直未得到解决, 到 60 年代美国首先用掺气减蚀获得成功,以后不少国家都 相继采用,效果良好。我国从 70 年代开始在工程中采用掺气减蚀措施。 我国减免空蚀的研究, 在 70 年代有较大的发展,很多研究单位相继建设 了研究设备。这方面的研究能否取得进展主要与空化研究设备、测试技术、 空化机理有关,对我国还应研究含沙水流对空化的影响。 4、泄水建筑物的消能防冲 我国的水利水电建设工程主要是两大类,一类是高水头、大流量,窄峡 河谷的大中型工程,另一类是面广量大的中小型工程。两类工程中都有不同 的高速水力学问题,特别是消能防冲问题在两类工程中普遍的存在着。 近年来我国已突破了传统的底、面、挑三种消能方式,而大量的采用了 落水点前后错开,挑坎高程不同的大差动泄洪,各种异形挑坎,窄缝挑坎等
现代流动测试技术

流动测试技术简介摘要:水利工程是国民经济的基础设施,水泵是水利工程中最重要的组成部分。
提高水泵效率,有利于节约能源,提高经济效益。
因此,知晓泵内流体的流动特性,流速分布尤为重要。
水泵几何结构及内部流动的复杂性,对内部流动的测量技术提出了苛刻的要求。
本文就水泵内部流场测试常用的三种现代测试方法进行总结介绍。
关键词:流动测试技术;五孔探针;LDV ;PIV1、三种测量技术介绍1.1 五孔探针技术探针测定恒定流场,其稳定性好、重复性好,对现场条件要求不高,适应性好,设备费用低,简便易行,测量精度高。
虽然近年来出现了许多现代流场测定方法,但探针在流场压力测定和条件复杂的现场流场测定方面,以及其简便易行的特点仍具有不可替代的地位。
1.1.1 五孔探针测流场原理毕托管的构造如图1所示,由图可以看出这种毕托管是由两根空心细管组成。
细管1为总压管,细管2为测压管。
量测流速时使总压管下端出口方向正对水流流速方向,测压管下端出口方向与流速垂直。
在两细管上端用橡皮管分别与压差计的两根玻璃管相连接。
图1 毕托管示意图如图,毕托管有两根细管。
一管孔口正对液流方向,90°转弯后液流的动能转化为势能,液体在管内上升的高度是该处的总水头gv g P Z 22++ρ;而另一根管开口方向与液流方向垂直,只感应到液体的压力,液体在管内上升的高度是该处的测压管水头(就是相应于势能的那部分水头)gP Z ρ+,两管液面的高差就是该处的流速水头g v 22,量出两管液面的高差H ∆,则H gv ∆=22,即H g v ∆=2,从而间接地测出该处的流速V 。
五孔探针应用该原理,利用头部感应部位上的五个感应孔,测量系统如图2所示,不仅可测出流场的流速分布,还可测出测点的静压、全压分布,根据轴向速度对面积的积分,即可间接测出测量断面的流量[1-3]。
图2 五孔探针测量系统1.1.2 提高测量精度的措施及误差分析1.1.2.1 测量系统选择探针系统的组成对针孔压差测量反应时间和测量误差有很大影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代流动测试技术大作业姓名:学号:班级:电话:时间:2016第一次作业1)孔板流量计测量的基本原理是什么?对于液体、气体和蒸汽流动,如何布置测点?基本原理:充满管道的流体流经管道的节流装置时,在节流件附近造成局部收缩,流速增加,在上下游两侧产生静压差。
在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。
公式如下:4v q d d πα==其中:C -流出系数 无量纲d -工作条件下节流件的节流孔或喉部直径D -工作条件下上游管道内径qv -体积流量 m3/sβ-直径比d/D 无量纲ρ—流体的密度Kg/m3测量液体时,测点应布置在中下部,应为液体未必充满全管,因此不可以布置的太靠上。
测量气体时,测点应布置在管道的中上部,以防止气体中密度较大的颗粒或者杂质对测量产生干扰。
测量水蒸气时,测点应该布置在中下部。
2)简述红外测温仪的使用方法、应用领域、优缺点和技术发展趋势。
使用方法:红外测温仪只能测量表面温度,无法测量内部温度;安装地点尽量避免有强磁场的地方;现场环境温度高时,一定要加保护套,并保证水源的供应;现场灰尘、水汽较大时,应有洁净的气源进行吹扫,保证镜头的洁净;红外探头前不应有障碍物,注意环境条件:蒸汽、尘土、烟雾等,它阻挡仪器的光学系统而影响精确测温;信号传输线一定要用屏蔽电缆。
应用领域:首先,在危险性大、无法接触的环境和场合下,红外测温仪可以作为首选,比如:1)食品领域:烧面管理及贮存温度2)电气领域:检查有故障的变压器,电气面板和接头3)汽车工业领域:诊断气缸和加热/冷却系统4)HVAC 领域:监视空气分层,供/回记录,炉体性能。
5)其他领域:许多工程,基地和改造应用等领域均有使用。
优点:可测运动、旋转的物体;直接测量物料的温度;可透过测量窗口进行测量;远距离测量;维护量小。
缺点:对测量周围的环境要求较高,避免强磁场,探头前不应有障碍物,信号传输线要用屏蔽电缆,当环境很恶劣时红外探头应进行保护。
发展趋势:红外热像仪,可对有热变化表面进行扫描测温,确定其温度分布图像,迅速检测出隐藏的温差。
便携化,小型化也是其发展趋势。
3)简述LDV 和热线的测速原理及使用方法。
LDV(激光多普勒测速仪)测速原理:测量通过激光束的示踪粒子的多普勒信号,再根据与多普勒频率的关系得到粒子速度,粒子的速度也就是流体流动的速度。
使用方法: 注意选择合适的两束激光束的夹角。
当夹角增大时,对散射光功率分布来说,会使信噪比降;光学系统必须细致调整。
热线测速原理:将一根细的金属丝放在流体中,通过电流加热金属丝,使其温度高于流体的温度,故将金属丝称为“热线”。
当流体沿着垂直方向流过金属丝时,将带走金属丝的部分热量,是其温度下降。
热线在气流中的散热量与流速有关,散热量导致热线温度变化而引起电阻变化,流速信号即转变为电信号。
使用方法: 热线有两种工作模式:1恒流式。
通过热线的电流保持不变,温度变化时,热线电阻改变,因而两端电压变化,由此测量流速。
2恒温式。
热线的温度保持不变,如保持150℃,根据所需施加的电流可度量流速。
恒温式比恒流式应用更广泛。
由于热线测量本身属于间接测量,影响测量准确性的因素很多,单靠物理规律和测量原理是不够的,所以在使用中必须校准。
4)简述动态压力传感器的标定方法和管腔效应,以及如何消除传压管和管腔效应对动态压力测量造成的影响。
动态压力传感器的标定方法如下:1)标定步骤:将已知的标准值输入到待标定的传感器中,传感器得到相应的输出量。
将输出量与输入的标准量绘制成曲线,即标定曲线。
2)标定方法:荷重、应力、压力传感器等的静标定方法是利用压力试验机进行标定,它们更精确的标定则是在压力试验机上用专门的荷载标定器标定。
位移传感器的标定则是采用标准量块或位移标定器。
3)标定要求:标定应该在与其使用条件相似的状态下进行;增加重复标定的次数,以提高测试精度;传感器需定期标定,一般以一年为期;对重要的试验,要求试验前后的标定误差,在允许的范围内。
消除传压管和管腔效应对动态压力测量造成的影响的方法:可采用半无限管技术消除管腔效应的影响。
使压力波经过一段相当长的距离后在管腔中无反射地传播,由于介质阻尼作用而最终消失,管腔内不会形成驻波,即不会形成压力共振现象,改善了管腔的频率特性。
5)设计一套方案测量高亚音速或跨音速高温风洞的基本参数,包括压力、温度、流量、速度和湍流度等参数。
风洞工作雷诺数为105 量级,最高温度为400℃。
测量方法应包括仪表布置和仪表型号、精度。
压力测量:选用YTF-150H耐高温压力计,量程:0.1-160MPa,精度1%。
流量选用:普通流量计使用温度较低,不能满足测量要求,因此选用超声波流量计如:TUF-2000H型手持式超声波流量计,精度大于±1%,管径15mm~6000mm。
温度测量:风洞中的最高温度为400℃,则可以选用镍铬-镍硅热电偶测量风洞中的温度,如:TC-117K型高精度镍铬-镍硅K型热电偶,测温范围-200℃-1372℃,精度:±(0.05%测量值+0.3℃)。
流量测量:由于流体最高温度为400℃,所以必须选用耐高温流量计,针对本次测量可以选用毕托巴BTB-M系列高温高压高流速或者超高温超高压的蒸汽流量计。
采用完整的金属腔结构,确保强度和刚性,以至于在高速气流的冲刷下不会发生机构损坏。
使传感器在测量过程中取压更加稳定、精确。
配套使用温度、压力传感器对被测介质进行温、压补偿,以确保测量精度。
它采用耐高温、耐冲腐的1Cr18Ni9Ti材料制造,最高测量温度可达650℃;测量压力可达32Mpa。
测量范围广:气体流速大于1m/s,液体流速大于0.1m/s均可精确测量。
速度、湍流度测量:为了测量湍流度,需要知道脉动速度,则可以选用热线风速仪或者多普勒测速仪,但是一般的热线风速仪不能满足温度和流速要求,因此选用激光多普勒测速仪。
如激光多普勒测速仪:产品编号:1718-000105005356,产品名称:激光多普勒测速仪,产品型号:LDV,产品铭牌:美国TSI,测速范围:-150m/s-1000m/s,精度:0.1%,适用于气、液或多相流的三维测量,采样频率:400MHZ-800MHZ,测量量包括:平均速度、均方根、剪应力系数、湍流度以及各个统计参数关联分布,提供各参数的自相关、互相关、功率谱分析,最终数据文件可供Tecplot、Matlab调用,可以升级到相位多普勒测速仪,同时测量粒径和速度矢量,该型测速仪可以直接测得平均速度和湍流度,完全满足要求。
仪器布置:对于温度,压力测量,需要在风洞侧壁上打孔,将热电偶和压力计伸入流场进行测量,测点位置视测试要求而定。
可以在风洞一周布置多个热电偶和温度计,将测得的平均值作为测量结果。
流量测量采用超声波流量计,在风洞进口管道处进行测量。
在需要测量速度和湍流度的位置布置可视化窗口,用激光多普勒测速仪测量流速的平均值以及湍流度。
第二次作业随机过程实测动态信号的分析方法训练以汽轮机调节阀内不稳定流动模化试验工况条件下的气流动态压力及其诱发阀杆振动与噪声实测结果为例,进行随机信号分析方法的训练。
并结合流体力学相关知识和信号处理与分析方法,判断实测信号的平稳性、周期性,重点进行随机信号的功率谱估计,通过实测信号的时域统计分析和频谱分析,综合判断流动过程的特征,并依据调节阀阀座关键测点的压力平均值和脉动值分布的规律,解释该流动特征,同时说明动态脉动压力信号波形、阀杆振动波形和噪声波形间的相关性或耦合从属关系。
解题过程一、动压1.实测信号的平稳性、周期性分析、绘制信号的频谱图,并进行功率谱估计分析:各信号的数字特征:动压41:最大值=2.3209;最小值=2.3025;均值=2.3122;均方值=5.3462;方差=6.0528e-06 动压42:最大值=2.3279;最小值=2.3126;均值=2.3205;均方值=5.3848;方差=4.9065e-06 动压51:最大值=1.0299;最小值=1.0103;均值=1.0208;均方值=1.0420;方差= 5.0006e-06动压52:最大值=1.0330;最小值=1.0167;均值=1.0249;均方值=1.0504;方差=3.7459e-06 动压61:最大值=2.5105;最小值=2.4790;均值=2.4988;均方值=6.2438;方差=1.3104e-05 动压62:最大值=2.5142;最小值=2.4941;均值=2.5034;均方值=6.2672;方差=1.0947e-05 周期性判断:当自相关函数在τ很大时并不衰减,则随机信号具有周期性。
相反,不包含周期成分的随机信号,当τ稍大时自相关函数就将趋近于零。
从以上六幅图可以看出,动压脉动信号有较好的自相关性,自相关性特别明显,所以可认为动压脉动信号为周期信号。
平稳性判断:从六个信号的时域波形图中可以看出,信号均在平均值附近波动,信号波形的峰值峰谷变化比较均匀,所以认为动压脉动信号为平稳周期性信号。
功率谱估计:从各个动压的功率谱估计图中易看出动压能量较大的频率均是低频,且峰值在100Hz之内。
2.提取相关频段,寻找峰值对原始信号进行相关频段的提取,并过滤掉其他频段的信号。
滤波后的功率谱估计结果如下图。
分析:从滤波后的功率谱估计中可以看出,动压脉动信号的能量主要集中在频率为0~50Hz 的范围内。
至此,动压信号的功率谱分析完毕。
二、噪声1.实测信号的平稳性、周期性分析、绘制信号的频谱图,并进行功率谱估计分析:各信号的数字特征:噪声11:最大值=0.1069;最小值=3.4343e-06;均值=0.0013;均方值=1.8799e-05;方差=1.6988e-05噪声12:最大值=0.0727;最小值=2.3621e-07;均值=7.5126e-04;均方值=7.2594e-06;方差=6.6951e-06噪声21:最大值=0.0790;最小值=7.2308e-07;均值=8.6404e-04;均方值=7.4816e-06;方差= 6.7350e-06噪声22:最大值=0.0775;最小值=2.4394e-07;均值=5.3733e-04;均方值=4.1106e-06;方差=3.8219e-06周期性判断:当自相关函数在τ很大时并不衰减,则随机信号具有周期性。
相反,不包含周期成分的随机信号,当τ稍大时自相关函数就将趋近于零。
从以上四幅图可以看出,噪声脉动信号有自相关性差,所以可认为噪声脉动信号为非周期信号。
平稳性判断:从四个信号的时域波形图中可以看出,信号波动较大,信号波形的峰值峰谷变化剧烈,所以认为噪声脉动信号为非平稳信号。
功率谱估计:从各个噪声的功率谱估计图中易看出动压能量较大的频率均是低频,且峰值在500Hz之内。