天津高考圆锥曲线专题

合集下载

专题19 圆锥曲线的几何性质及其综合应用-2018年高考数学(理)母题题源系列(天津专版)

专题19 圆锥曲线的几何性质及其综合应用-2018年高考数学(理)母题题源系列(天津专版)

母题十九 圆锥曲线的几何性质及其综合应用【母题原题1】【2018天津,理19】设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B A 的坐标为(,0)b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若sin 4AQ AOQ PQ=∠(O 为原点),求k 的值. 【考点分析】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.【答案】(I )22194x y +=;(II )12或1128.试题解析:(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由222a b c =+,可得23a b =.由已知可得,FB a =,AB =,由FB AB ⋅=6ab =,从而,32a b ==,∴椭圆的方程为22194x y +=.(Ⅱ)设点P 的坐标为()11,x y ,点Q 的坐标为()22,x y .易知直线AB 的方程为20x y +-=,由方程组{ 20y kx x y =+-=,,消去x ,可得221ky k =+.由1259y y =,可得()15k +=25650110k k -+=,解得12k =,或1128k =,k ∴的值为12或1128. 【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.【母题原题2】【2017天津,理19】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为2AP 的方程.【答案】(1)22413y x +=,24y x =;(2)330x -=,或330x -=. 【解析】试题分析:由于A 为抛物线焦点,F 到抛物线的准线l 的距离为12,则12a c -=,又椭圆的离心率为12,求出,,c a b ,得出椭圆的标准方程和抛物线方程;则(1,0)A ,设直线AP 方程为设1(0)x my m =+≠,解出P Q 、两点的坐标,把直线AP 方程和椭圆方程联立解出B 点坐标,写出BQ 所在直线方程,求出点D 的坐标,最后根据APD △m ,得出直线AP 的方程.或2634m y m -=+.由点B 异于点A,可得点222346(,)3434m m B m m -+-++.由2(1,)Q m -,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+,故2223(,0)32m D m -+.∴2222236||13232m m AD m m -=-=++.又∵APD△的面积为,故221626232||2m m m ⨯⨯=+,整理得23||20m m -+=,解得||3m =,∴3m =±.∴直线AP 的方程为330x -=,或330x -=.解法二:设()1,,P t -则()1,,Q t --从而直线AP 的方程为()12t y x =--,代入椭圆方程22413y x +=,整理得()22223230t x t x t +-+-=.两根之积为22122233.1,.33A B t t x x x x t t --==∴=++代入()12ty x =--,得22233,33t t B t t ⎛⎫- ⎪++⎝⎭.∴直线BQ 的方程为:()222331313tt t y t x t t +++=+-++,即()2612t y t x t ++=+.令0y =,得()2612t t x t +=+,解得222226612,1666t t x AD t t t --=∴=-=+++.2112,,26APD S t t ∆=∴⨯⨯=+解得t =∴直线AP的方程为)1y x =-或)1y x =-,即330x -=,或330x -=.【考点】直线与椭圆综合问题【名师点睛】圆锥曲线问题在历年高考都是较有难度的压轴题,不论第一步利用椭圆的离心率及椭圆与抛物线的位置关系的特点,列方程组,求出椭圆和抛物线方程,还是第二步联立方程组求出点的坐标,写直线方程,利用面积求直线方程,都是一种思想,就是利用大熟地方法解决几何问题,坐标化,方程化,代数化是解题的关键.【母题原题3】【2016天津,理19】设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.【答案】(Ⅰ)22143x y +=;(Ⅱ)),46[]46,(+∞--∞ . 【解析】试题分析:(Ⅰ)求椭圆标准方程,只需确定量,由113||||||c OF OA FA +=,得113()cc a a a c +=-,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=. (Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k .解得2=x ,或346822+-=k k x ,由题⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M .在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(MMMM y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k .所以直线l 的斜率的取值范围为),46[]46,(+∞--∞ . 考点:椭圆的标准方程和几何性质,直线方程【名师点睛】在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围. 【母题原题4】【2015天津,理19】已知椭圆2222+=1(0)x y a b a b >>的左焦点为F -c (,0),点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c,(I )求直线FM 的斜率; (II )求椭圆的方程;(III )设动点P 在椭圆上,若直线FP,求直线OP (O 为原点)的斜率的取值范围.【答案】(I ) ; (II ) 22132x y += ;(III)22,,⎛⎛-∞ ⎝. 【解析】试题分析:(I ) 由椭圆知识先求出,,a b c 的关系,设直线直线FM 的方程为()y k x c =+,求出圆心到直线的距离,由勾股定理可求斜率k 的值; (II )由(I )设椭圆方程为2222132x y c c+=,直线与椭圆方程联立,求出点M 的坐标,由FM =可求出c ,从而可求椭圆方程.(III)设出直线FP :(1)y t x =+,与椭圆方程联立,求得t =>x 的范围,即可求直线OP 的斜率的取值范围. 试题解析:(I ) 由已知有2213c a =,又由222a b c =+,可得223a c =,222b c =,设直线FM 的斜率为(0)k k >,则直线FM 的方程为()y k x c =+,由已知有22222c b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得k = (II )由(I )得椭圆方程为2222132x y c c+=,直线FM 的方程为()y k x c =+,两个方程联立,消去y ,得312x -<<-或10x -<<,设直线OP 的斜率为m ,得ym x=,即(0)y mx x =≠,与椭圆方程联立,整理可得22223m x =-.①当3,12x ⎛⎫∈-- ⎪⎝⎭时,有(1)0y t x =+<,因此0m >,于是m =,得m ∈②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是m =,m ⎛∈-∞ ⎝综上,直线OP 的斜率的取值范围是22,,⎛⎛-∞ ⎝.【命题意图】本类题通常主要考查对椭圆的离心率、椭圆的几何性质、双曲线的离心率、双曲线的几何性质、双曲线的渐近线、抛物线的几何性质等基本知识的理解,以及对直线与圆锥曲线间的交点问题(含切线问题)、与圆锥曲线定义有关的问题、与曲线有关的最值问题(含三角形和四边形面积)等知识的理解与简单的应用. 【命题规律】这类试题在考查题型上,通常基本以选择题与填空题的形式出现,也会出现在解答题中第一问,难度一般中等,有时中等偏上,一般不会作为把关题,在考查内容上一般以求离心率,求双曲线的渐近线,求最值,求范围,利用性质求曲线方程等,着重考查对基本概念和基本性质的理解与应用,题型稳定,中规中矩,不偏不怪,内容及位置也很稳定,计算量比过去减少,但思考量增大,思维层次的要求并没有降低.若再按以前的“解几套路”解题显然难以成功.【答题模板】以2017年高考题为例,求取椭圆或双曲线离心率,一般可由下面三个方面着手: (1)根据已知条件确定,,a b c 的等量关系,然后把b 用,a c 代换,求ca的值; (2)已知条件构造出,,a b c 的等式或不等式,结合222a b c =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e 的值或范围.(3)求离心率的范围问题关键是确立一个关于,,a b c 的不等式,再根据,,a b c 的关系消掉b 得到关于,a c 的不等式,由这个不等式确定,a c 的关系.总体来说,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出,a c ,然后根据离心率的定义式求解;二是根据已知条件构造关于,a c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数. 【方法总结】1.圆锥曲线的定义反映了它们的基本特征,理解定义是掌握其性质的基础.因此,对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求1212PF PF F F +>,双曲线的定义中要求1212PF PF F F -<,抛物线的定义的实质可归结为“一动三定”:一个动点M ;一个定点F (抛物线的焦点);一条定直线l (抛物线的准线);一个定值1(点M 与定点F 的距离和它到定直线l 的距离之比等于1),常常利用抛物线的定义将抛物线上一点到焦点的焦半径问题与焦点到准线的距离问题互相转化.2.求圆锥曲线标准方程常用的方法:(1)定义法;(2)待定系数法,若顶点在原点,对称轴为坐标轴的抛物线,可设为22y ax =或22x ay = (0a ≠),避开对焦点在哪个半轴上的分类讨论,此时a 不具有p 的几何意义.若椭圆的焦点位置不确定,椭圆的标准方程可设为221(0,0)x y m n m n+=>>,也可设椭圆方程为221(0,0)Ax By A B +=>>,若双曲线的焦点位置不确定,双曲线的标准方程可设为221(0)x y mn m n-=>,也可设双曲线的方程为221Ax By +=,其中,A B 异号且都不为0,若已知双曲线的渐近线方程为0ax bx ±=,则可设双曲线的标准方程为ax bx λ±=(0λ≠)可避免分类讨论,这样可以避免讨论和繁琐的计算.3.求解与二次曲线性质有关的问题时要结合图像进行分析,即使不画图形,思考时也要联想到图像.对椭圆当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.对双曲线应围绕双曲线中的“六点”(两个顶点、两个焦点、虚轴的两个端点),“四线”(两条对称轴,两条渐近线),“两形”(中心、焦点、虚轴端点构成的特征三角形,双曲线上一点与两个交点构成的三角形),研究它们之间的关系,挖掘出它们之间的内在联系.4.椭圆取值范围实质实质是椭圆上点的横坐标、纵坐标的取值范围,在求解一些最值、取值范围以及存在性、判断性问题中有着重要的应用,椭圆上一点到椭圆一个焦点的距离的取值范围为[,a c a c -+].在椭圆中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在椭圆上,称该三角形为焦点三角形,则三角形12F PF 的周长为定值等于22a c +,面积等于212tan2F PF b ∠,其中b 是短半轴的长;过焦点垂直于对称轴的弦长即通径长为22b a.双曲线取值范围实质实质是双曲线上点的横坐标、纵坐标的取值范围,在求解一些最值、取值范围以及存在性、判断性问题中有着重要的应用,双曲线上一点到双曲线一个焦点的距离的取值范围为[,c a -+∞).在双曲线中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在双曲线上,称该三角形为焦点三角形,则面积等于212tan2b F PF ∠,其中b 是虚半轴的长;过焦点垂直于对称轴的弦长即通径长为22b a .抛物线中:抛物线上一点11(,)P x y ,F 为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p >0):22112:;2:22pp y px PF x y px PF x ==+=-=-+ 22112:;2:22ppx py PF y x py PF y ==+=-=-+.焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式.设过抛物线y2=2px (p >O )的焦点F 的弦为AB ,A 11(,)x y ,B 22(,)x y ,AB 的倾斜角为α,则有12AB x x p =++或22sin pAB α=,以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求.在抛物线中,以抛物线的焦点弦为直径的圆与该抛物的对应准线相切. 5.求椭圆、双曲线的离心率,关键是根据已知条件确定,,a b c 的等量关系,然后把b 用,a c 代换,求ca的值;椭圆求离心率问题,关键是先根据题中的已知条件构造出,,a b c 的等式或不等式,结合222a b c =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e 的值或范围.离心率e 与,a b 的关系为:222222c a b e a a -===221b a -⇒b a=.双曲线求离心率问题,关键是先根据题中的已知条件构造出,,a b c 的等式或不等式,结合222c b a =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e的值或范围.离心率e 与,a b 的关系为:222222c a b e a a +===221b a +⇒b a=,在双曲线中由于221b e a ⎛⎫=+ ⎪⎝⎭,故双曲线的渐近线与离心率密切相关.求离心率的范围问题关键是确立一个关于,,a b c 的不等式,再根据,,a b c 的关系消掉b 得到关于,a c 的不等式,由这个不等式确定,a c 的关系.求解圆锥曲线的离心率,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出,a c ,然后根据离心率的定义式求解;二是根据已知条件构造关于,a c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数.6.抛物线22y px =(0p >)上点的坐标可设为(200,2y y p),在计算时,可以降低计算量. 7. 焦点三角形问题的求解技巧(1)所谓焦点三角形,就是以椭圆或双曲线的焦点为顶点,另一个顶点在椭圆或双曲线上的三角形. (2)解决此类问题要注意应用三个方面的知识: ①椭圆或双曲线的定义; ②勾股定理或余弦定理;③基本不等式与三角形的面积公式.1.【2018天津部分区二模】已知抛物线的焦点与椭圆:的一个顶点重合,且这个顶点与椭圆的两个焦点构成的三角形面积为.(1)求椭圆的方程;(2)若椭圆的上顶点为,过作斜率为的直线交椭圆于另一点,线段的中点为,为坐标原点,连接并延长交椭圆于点,的面积为,求的值.【答案】(1);(2).又椭圆的顶点与其两个焦点构成的三角形的面积为,∴,∴,故椭圆的方程是.(2)由题意设直线的方程为,设点,由得,解得,∴,∴直线斜率,直线的方程为,∴的值为.【名师点睛】本题考查椭圆方程、椭圆性质、直线方程、理、弦长公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.2.【2018天津河东区二模】已知椭圆的一个焦点为,且离心率为.(1)求椭圆方程;(2)斜率为k的直线l过点F,且与椭圆交于A,B两点,P为直线x=3上的一点,若△ABP为等边三角形,求直线l的方程.【答案】(1) .(2) 或.【解析】分析:(1)列方程组求出a和b即得椭圆的方程.(2) 设直线的方程为,根据△ABP为等边三角形求出k的值,即得直线的方程.详解:(1)由已知,,可得,,所以椭圆的方程为.(2)设直线的方程为,直线与椭圆交点坐标为,,整理为,所以所以.【名师点睛】(1)本题主要考查椭圆方程的求法,考查直线和椭圆的位置关系,意在考查学生对这些基础知识的掌握能力、分析推理能力和计算能力.(2)解答本题的关键是求k,本题是根据等边三角形得到找到k的方程的,当然先要求出|AB|和|MP|.计算量比较大.3.【2018天津河北区二模】设椭圆C:的左、右焦点分别为、,上顶点为A,在x轴负半轴上有一点B,满足为线段的中点,且AB⊥.(I)求椭圆C的离心率;(II)若过A、B、三点的圆与直线:相切,求椭圆C的方程;(III)在(I)的条件下,过右焦点作斜率为k的直线与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,说明理由.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】分析:(Ⅰ)由题意可得在在直角三角形中有,即,整理可得.(Ⅱ)由题意可得过A、B、F2三点的圆的圆心为F1(-c,0),半径r==2c,根据直线与圆相切可得,解得c=1,从而,,可得椭圆的方程.(Ⅲ)由条件可设直线MN的方程为,与椭圆方程联立消元后得到一元二次方程,结合根据系数的关系可得MN的中点Q的坐标为,若以PM,PN为邻边的平行四边形是菱形,则,由此得到,整理得,最后可求得.(III)由(I)知,F2(1,0),直线MN的方程为,由消去y整理得∵直线与椭圆C交于M,N两点,∴.设M(,),N(,),则,∴,∴MN的中点Q的坐标为,若以PM,PN为邻边的平行四边形是菱形,则,∴整理得,∵,∴,∴.∴.故存在满足题意的点P,且m的取值范围是(.【名师点睛】(1)存在性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点或参数)存在,并用待定系数法设出,根据题意列出关于待定系数的方程(方程组),若方程(组)有实数解,则元素(点或参数)存在;否则元素(点或参数)不存在.(2)解析几何中求范围或最值时,首先建立关于某一参数为为变量的目标函数,再根据函数的特征求出范围或最值.4.【2018天津十二校二模】已知椭圆的两个焦点分别为和,过点的直线与椭圆交于轴上方的,两点,且.(Ⅰ)求椭圆的离心率;(Ⅱ)(ⅰ)求直线的斜率;(ⅱ)设点与点关于坐标原点对称,直线上有一点在的外接圆上,求的值.【答案】(I)离心率;(II).当时,得,由已知得,求出外接圆方程与直线的方程,联立可得结果.详解:(I)由得,从而,整理,得,故离心率.(II)解法一:(I)由(I)得,所以椭圆的方程可写设直线AB的方程为,即.由已知设,则它们的坐标满足方程组消去y整理,得.依题意,而①②w由题设知,点B为线段AE的中点,所以③(II)由(I)可知当时,得,由已知得.线段的垂直平分线l的方程为直线l与x轴的交点是外接圆的圆心,因此外接圆的方程为.直线的方程为,于是点H(m,n)的坐标满足方程组,由解得故【名师点睛】本题主要考查椭圆与直线的位置关系以及椭圆离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.5.【2018天津9校联考】已知过点的椭圆的左右焦点分别为、,为椭圆上的任意一点,且,,成等差数列.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线交椭圆于,两点,若点始终在以为直径的圆外,求实数的取值范围.【答案】(I).(2)或.由方程的根与系数关系求得x2、y2,由点A在以PQ为直径的圆外,得∠PAQ为锐角,•>0;由此列不等式求出k的取值范围.试题解析:(1)∵,,成等差数列,∴,由椭圆定义得,∴;又椭圆:()过点,∴;∴,解得,;可得;③由①②③,解得,; 由点在以为直径的圆外,得为锐角,即;由,,∴;即,整理得,,解得:或.∴实数的取值范围是或.【名师点睛】在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.6.【2018天津滨海新区七校联考】已知()0,2A -,椭圆2222:1(0)x y E a b a b+=>>的离心率2,F 是椭圆E 的右焦点,直线AF 的斜率为3,O 为坐标原点.(1)求椭圆的方程;(2)设过点A 的动直线l 与椭圆E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求直线l 的方程.【答案】(1)22182x y +=;(2)2y x =-或2y x =- 【解析】试题分析:(1)由离心率与斜率可求得a ,b ,c .(II )设:2l y kx =-,与椭圆组方程组,由弦长()22222,{ 1416801,82y kx k x kx x y =-⇒+-+=+=, ()221164104k k ∆=->⇒>, 设()11,P x y ,()22,Q x y ,121222168,1414k x x x x k k +==++,PQ == 又点O 到直线l 的距离d =∴△OPQ的面积21241OPQS PQ d k ∆==+,t =,则0t >,∴2222OPQ S t t t∆==≤++,【名师点睛】弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B x y,所以12AB x =-或12AB y =-.7.【2018天津十二校联考一】如图,已知椭圆22221(0)x y a b a b+=>>的左右顶点分别是,A B,离心率为2,设点()(,P a t t ≥,连接PA 交椭圆于点C ,坐标原点是O .(1)证明: OP BC ⊥;(2)设三角形ABC 的面积为1S ,四边形OBPC 的面积为2S ,若21S S 的最小值为1,求椭圆的标准方程. 【答案】(1)证明见解析;(2)2212x y +=. 【解析】试题分析:(1,可得22b c =,联立直线AP 与椭圆的方程即可求出点C 的坐标,从而可得直线BC 的斜率,再根据直线OP 的斜率,即可证明OP BC ⊥;(2)由(1)知,()3223122222222142444ABP AOC t tc tc S S S S t c t c t c ∆∆+=⨯⨯==-=+++,,根据21S S 的最小值为1,即可求出c的值,从而求出椭圆的标准方程.试题解析:(1)由cea=得,2212ca=,∴22212a bc-=,即22b c=.∴椭圆的方程为2222+12x yc c=,由)222212{x yc cy x+==+,整理得:()22222244280c t x x t c c+++-=,由Ax=可得∴椭圆方程为2212xy+=.8.【2018天津静海一中模拟】设椭圆C:22221(0)x ya ba b+=>>的一个顶点与抛物线2x=的焦点重合,12F F,分别是椭圆的左、右焦点,且离心率12e=,过椭圆右焦点2F的直线l与椭圆C交于M N,两点.(I)求椭圆C的方程;(2)若•2OM ON=-,求直线l的方程;(3)若AB是椭圆C经过原点O的弦,//MN AB,求证:2||ABMN为定值.【答案】(I)22143x y+=;(II)y(x-1)或y(x-1);(3)见解析.【解析】试题分析:(1)由题意,椭圆的标准方程为+=1;(2)设直线l的方程为y=k(x-1)(k≠0),·=x1x2+y1y2=-2,利用韦达定理,解得答案;(3)|MN|=|x1-x2|,|AB|=|x3-x4|,代入韦达定理计算,得到答案.试题解析:(I)椭圆的顶点为(0,),即b=,e==,∴a=2,∴椭圆的标准方程为+=1.(2)由题可知,直线l与椭圆必相交.①当直线斜率不存在时,经检验不合题意.由(2)可得|MN|=|x1-x2|===,由消去y并整理得x2=,|AB|=|x3-x4|=4,∴==4,为定值.9.【2018天津一中月考五】已知椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上,直线与椭圆交于,两点,与轴、轴分别相交于点和点,且,点是点关于轴的对称点,的延长线交椭圆于点,过点、分别做轴的垂线,垂足分别为、.(1)求椭圆的方程;(2)是否存在直线,使得点平分线段,?若存在,求出直线的方程;若不存在,请说明理由.【答案】(I);(2)答案见解析.【解析】试题分析:(I)由正三角形的高与边长的关系可求出,再由点在椭圆上,可求出的值,从而求出椭圆方程;(2)假设存在,由直线方程可求出点的坐标,由已知条件可求出点的坐标,设联立直线与椭圆的方程,消去,得到关于的一元二次方程,所以椭圆方程为.(2)存在设,∵∴∴①∴,联立∴②∴∴【名师点睛】本题主要考查了椭圆的方程以及直线与椭圆的位置关系,属于中档题.第一问求椭圆方程很容易,大部分学生能做对; 在第二问中,假设存在,当点平分线段点为的中点,利用中点坐标公式,求出的值,得出直线方程.注意本题涉及的点线位置关系比较复杂,容易弄错.10.【2018天津静海一中期末考】设椭圆C : 22221(0)x y a b a b+=>>的左、右焦点分别为12F F ,,上顶点为A ,过点A与2AF 垂直的直线交x 轴负半轴于点Q ,且1222F F QF =,若过A ,Q ,2F 三点的圆恰好与直线:30l x -=相切.过定点(02M ,)的直线1l 与椭圆C 交于G ,H 两点(点G 在点M ,H 之间). (Ⅰ)求椭圆C 的方程; (Ⅱ)若实数λ满足MG MH λ=,求的取值范围.【答案】(Ⅰ)22143x y += ;(Ⅱ))7⎡-⎣.【解析】试题分析:(1)由题意,得椭圆方程为.;(2)设直线方程为,,所以,利用韦达定理,就出的取值范围.(Ⅱ)①当直线斜率存在时, 设直线方程为,代入椭圆方程得.由,得. 设,,则,.又,所以.所以.所以,. 所以. 所以.整理得.因为,所以,即.所以.所以,即所求的取值范围是【名师点睛】本题考查直线和椭圆的位置关系.圆锥曲线问题关键是分析解题思路,逻辑思维要清晰.本题中要求线段长的比值,转化为横坐标的比值关系,则需要韦达定理,所以通过设直线,得到整个题目的思路.11.【2018天津静海一中模拟】设椭圆C : 22221(0)x y a b a b +=>>,定义椭圆C 的“相关圆”方程为22222b a b x y a b+=+,若抛物线24y x =的焦点与椭圆C 的一个焦点重合,且椭圆C 短轴的一个端点和其两个焦点构成直角三角形.(I )求椭圆C 的方程和“相关圆”E 的方程;(II )过“相关圆”E 上任意一点P 作“相关圆”E 的切线l 与椭圆C 交于A ,B 两点,O 为坐标原点. (i )证明∠AOB 为定值;(ii )连接PO 并延长交“相关圆”E 于点Q ,求△ABQ 面积的取值范围.【答案】(I ) 222221,23x y x y +=+= (II )(i )见解析(ii )43⎡⎢⎣ 【解析】试题分析:(Ⅰ)由抛物线24y x =的焦点与椭圆C 的一个焦点重合,且椭圆C 短轴的一个端点和两个焦点构成直角三角形,得到1b c ==, 由此能求出椭圆C 的方程. 进而求出“相关圆”E 的方程.(Ⅱ)当直线l 的斜率不存在时,直线AB 方程为2x AOB π=∠= ;当直线l 的斜率存在时,设其方程为y kx m =+,代入椭圆方程,得2222x kx m ++=(), 由此利用根的判别式、韦达定理、直线与圆相切,结合已知条件推导出2AOB π∠=为定值.(ii )要求ABQ 的面积的取值范围,只需求弦长AB 的范围,由此利用椭圆弦长公式能求出ABQ 面积的取值范围.当直线的斜率存在时,设其方程设为,设联立方程组得,即,△=,即因为直线与相关圆相切,所以为定值(ii )由于是“相关圆”的直径,所以,所以要求面积的取值范围,所以,所以当且仅当时取”=”②当时,.|AB |的取值范围为面积的取值范围是.【点睛】本题考查椭圆及圆的方程的求法,考查角为定值及三角形面积的求法,解题时要认真审题,注意根的判别式、韦达定理、直线与圆相切、椭圆弦长公式的合理运用.12.【2018天津一中期末考试】已知点,M N 分别是椭圆()2222:10x y C a b a b +=>>的左右顶点,F 为其右焦点,MF 与FN 12.(I )求椭圆C 的方程;(2)设不过原点O 的直线l 与该轨迹交于,A B 两点,若直线,,OA AB OB 的斜率依次成等比数列,求OAB 的面积的取值范围.【答案】(I ) 22143x y +=;(II)(.表示出三角形面积,求解范围即可.试题解析:(I ) MF a c =+,BN a c =-MF 与FN 的等比中项,∴()()3a c a c +-=,∴2223b a c =-=,又12c e a ==,解得2,1a c ==,∴椭圆C 的方程为22143x y +=. (2)由题意可知,直线l 的斜率存在且不为0,故可设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y ,联立直线和椭圆2234120{ x y y kx m+-==+,消去y 得,()2223484120k x kmx m +++-=,由题意可知,()()()22226444341248430km k m k m ∆=-+-=-+>,即2243k m +>,且122834kmx x k+=-+,212241234m x x k -=+, 又直线OA ,AB ,OB 的斜率依次成等比数列,所以21212y y k x x ⋅=, 将1y ,2y 代入并整理得()22430m k -=,因为0m ≠,k =,206m <<,且23m ≠, 设d 为点O 到直线l的距离,则有d =12AB x =-=,。

专题05 圆锥曲线及其性质-2019年高考理数母题题源系列(天津专版)(解析版)

专题05 圆锥曲线及其性质-2019年高考理数母题题源系列(天津专版)(解析版)

【母题原题1】【2019年高考天津卷理数】已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 ABC .2 D【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为b y x a =±,则有(1,),(1,)b bA B a a---, ∴2b AB a =,24b a =,2b a =,∴c e a ===D . 【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.【母题原题2】【2018年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -= 【答案】C【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,专题05 圆锥曲线及其性质由22221c y a b -=可得2b y a=±, 不妨设22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为:0bx ay -=,据此可得21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====, 据此可得:23a =,则双曲线的方程为22139x y -=.故选C .【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可.解答本题时,由题意首先求得A ,B 的坐标,然后利用点到直线距离公式求得b 的值,之后求解a 的值即可确定双曲线方程.【母题原题3】【2017年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F,离心率为.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=【答案】B【解析】由题意得2240,14,10()88x y a b c a b c -==⇒===-=--,故选B .【名师点睛】利用待定系数法求圆锥曲线的方程是高考的常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程(组),解方程(组)求出,a b 的值.另外要注意巧设双曲线方程的技巧:①双曲线过两点可设为221(0)mx ny mn -=>,②与22221x y a b-=共渐近线的双曲线可设为2222x y a b-(0)λλ=≠,③等轴双曲线可设为22(0)x y λλ-=≠.【命题意图】要求掌握三种圆锥曲线(椭圆、双曲线、抛物线)的定义、几何图形、标准方程及简单性质.主要考查考生的数学运算能力及考生对数形结合思想、转化与化归思想的应用.【命题规律】圆锥曲线(椭圆、双曲线、抛物线)的定义、标准方程、几何性质一直是高考的命题热点,其中标准方程和几何性质考查比较频繁;直线与圆锥曲线的位置关系常与向量、圆、三角形等知识综合考查,难度中等偏上. 【答题模板】1.求椭圆的方程有两种方法(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程. (2)待定系数法.一般步骤如下:第一步,作判断.根据条件判断椭圆的焦点是在x 轴上,还是在y 轴上,或者是两个坐标轴上都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22x a +22y b =1(a>b>0)或22x b+22y a =1(a>b>0).第三步,找关系.根据已知条件,建立关于a ,b ,c 的方程(组)(注意椭圆中固有的等量关系c 2=a 2–b 2). 第四步,定结果.解方程组,将解代入所设方程,得所求. 注意当椭圆焦点位置不明确时,有两种解决方法:(1)分类讨论;(2)设椭圆方程为2x m +2y n=1(m>0,n>0,m ≠n ),或Ax 2+By 2=1(A>0,B>0,且A ≠B ).2.求椭圆离心率或其范围的方法(1)求出a,b或a,c的值,代入e2=22ca=222–a ba=1–(ba)2直接求;(2)根据条件得到关于a,b,c的齐次等式(不等式),结合b2=a2–c2转化为关于a,c的齐次等式(不等式),然后将该齐次等式(不等式)两边同时除以a或a2转化为关于e或e2的方程(不等式),解方程(不等式)即可得e(e的取值范围);(3)通过取特殊值或特殊位置,求出离心率.3.求双曲线的标准方程的方法(1)定义法.根据双曲线的定义确定a2,b2的值,再结合焦点位置,求出双曲线方程,常用的关系有:①c2=a2+b2;②双曲线上任意一点到双曲线两焦点的距离的差的绝对值等于2a.注意:求轨迹方程时,满足条件:|PF1|–|PF2|=2a(0<2a<|F1F2|)的双曲线为双曲线的一支,应注意合理取舍.(2)待定系数法.一般步骤如下:①判断:根据已知条件,确定双曲线的焦点是在x轴上,还是在y轴上,还是两个坐标轴都有可能;②设:根据①中的判断结果,设出所需的未知数或者标准方程;③列:根据题意,列出关于a,b,c的方程或者方程组;④解:求解得到方程.常见设法:①与双曲线2222–x ya b=1共渐近线的双曲线方程可设为2222–x ya b=λ(λ≠0);②若双曲线的渐近线方程为y=±bax,则双曲线方程可设为2222–x ya b=λ(λ≠0);③若双曲线过两个已知点,则双曲线方程可设为2xm+2yn=1(mn<0);④与双曲线2222–x ya b=1共焦点的双曲线方程可设为2222––x ya kb k+=1(–b2<k<a2);⑤与椭圆22xa+22yb=1(a>b>0)有共同焦点的双曲线方程可设为22–xaλ+22–ybλ=1(b2<λ<a2).注意:当焦点位置不确定时,有两种方法来解决:一种是分类讨论,注意考虑要全面;另一种是如果已知中心在原点,但不能确定焦点的具体位置,可以设双曲线的方程为mx2+ny2=1(mn<0).【知识总结】1.椭圆的几何性质2.椭圆的通径(过焦点且垂直于长轴的弦)长为22ba,通径是最短的焦点弦.3.若P是椭圆上一点,F为椭圆的焦点,则|PF|∈[a–c,a+c],即椭圆上的点到焦点的距离的最大值为a+c,最小值为a–c.4.椭圆的焦点三角形:椭圆上的点P(x0,y)与两焦点构成的△PF1F2叫作焦点三角形.如图所示,设∠F 1PF 2=θ. (1)当P 为短轴端点时,θ最大. (2)12PF F S △=12|PF 1|·|PF 2|·sin θ=b 2·sin 1cos θθ+=b 2tan 2θ=c|y 0|,当|y 0|=b ,即P 为短轴端点时,12PF F S △取最大值,最大值为bc .(3)焦点三角形的周长为2(a+c ). 5.双曲线的几何性质6.等轴双曲线(1)定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫作等轴双曲线. (2)性质:①a=b ;②;③渐近线互相垂直;④等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项. 7.共轭双曲线(1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线. (2)性质:①它们有共同的渐近线; ②它们的四个焦点共圆;③它们的离心率的倒数的平方和等于1. 8.双曲线中常用结论:(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a+c ,|PF 2|min =c –a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为22b a;异支的弦中最短的为实轴,其长为2a .(4)若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则12PF F S △=2tan 2b,其中θ为∠F 1PF 2.(5)若P 是双曲线2222–x y a b=1(a>0,b>0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a . 9.抛物线的标准方程与几何性质10.抛物线的焦半径与焦点弦抛物线上任意一点P (x 0,y 0)到焦点F 的距离称为焦半径.过抛物线焦点的直线与抛物线相交所形成的线段称为抛物线的焦点弦.设两交点分别为A (x 1,y 1),B (x 2,y 2),则有以下结论:11.抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p>0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则(1)x 1x 2=24p ,y 1y 2=–p 2;(2)|AF|=1?cos p α,|BF|=1cos p α+,弦长|AB|=x 1+x 2+p=22sin pα(α为弦AB 的倾斜角); (3)1||FA +1||FB =2p; (4)以弦AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上. 【方法总结】1.椭圆定义的应用(1)利用定义确定平面内的动点的轨迹是否为椭圆.(2)利用定义解决与焦点三角形相关的周长、面积及最值问题.利用定义和余弦定理可求得|PF 1|·|PF 2|,进而求得焦点三角形的周长和面积.(3)已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解. 2.椭圆几何性质的应用技巧(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形. (2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如,–a ≤x ≤a ,–b ≤y ≤b ,0<e<1,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系. 3.双曲线定义的应用(1)根据动点与两定点的距离的差判断动点的轨迹是否为双曲线.(2)利用双曲线的定义解决与双曲线的焦点有关的问题,如最值问题、距离问题.(3)利用双曲线的定义解决问题时应注意三点:①距离之差的绝对值;②2a<|F 1F 2|;③焦点所在坐标轴的位置.4.双曲线几何性质的应用 (1)求双曲线的渐近线的方法求双曲线2222–x y a b =1(a>0,b>0)或2222–y x a b =1(a>0,b>0)的渐近线方程的方法是令右边的常数等于0,即令2222–x y a b =0,得y=±b a x ;或令2222–y x a b =0,得y=±a b x .反之,已知渐近线方程为y=±ba x ,可设双曲线方程为2222–x y a b=λ(a>0,b>0,λ≠0).(2)求双曲线的离心率或其范围的方法①求a ,b ,c 的值,由22c a =222a b a =1+22b a直接求e . ②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2–a 2消去b ,然后转化成关于e 的方程(或不等式)求解.(3)双曲线的渐近线的斜率k 与离心率e 的关系:k=b a5.利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线.(2)距离问题:涉及抛物线上的点到焦点的距离和点到准线的距离问题时,注意在解题中利用两者之间的相互转化.注意:一定要验证定点是否在定直线上.6.应用的规律注意:建立函数关系后,一定要根据题目的条件探求自变量的取值范围,即函数的定义域.7.抛物线的标准方程的求法(1)定义法根据抛物线的定义,确定p的值(系数p是指焦点到准线的距离),再结合焦点位置,求出抛物线方程.标准方程有四种形式,要注意选择.(2)待定系数法①对于焦点在x轴上的抛物线,若开口方向不确定需分为y2=2px(p>0)和y2=–2px(p>0)两种情况求解.②焦点在x轴上的抛物线方程可设成y2=mx(m≠0),若m>0,开口向右;若m<0,开口向左;若m有两个解,则抛物线的标准方程有两个.同理,焦点在y轴上的抛物线的方程可以设成x2=my(m≠0).如果不确定焦点所在的坐标轴,应考虑x轴、y轴两种情况设方程.8.抛物线的几何性质及其应用(1)与抛物线的焦点弦长有关的问题,可直接应用公式及有关结论求解.解题时,需依据抛物线的标准方程,确定弦长公式是由交点横坐标定还是由交点纵坐标定,是p与交点横(纵)坐标的和还是与交点横(纵)坐标的差,这是正确解题的关键.(2)抛物线的定义在解决点到焦点距离及点到准线距离问题时经常用到,要学会转化(互化),见准线想焦点,见焦点想准线,许多抛物线问题均可根据定义简捷、直观地求解.“数想形,形悟数,数形结合”是灵活解题的一条捷径.1.【天津市河西区2018–2019学年高三第二学期总复习质量调查(二)数学】已知抛物线22(0)y px p =>与双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线在x 轴上方的一个交点,若直线AFA.13 B.23 CD【答案】B【解析】因为抛物线22(0)y px p =>与双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,所以2p c =, 由224y px cx ==,22221x y a b-=得2222222()4()0c a x a cx a c a ----=,解得12()(),a c a a c a x x c a c a +--==-+,所以(),A a c a x c a+=- 不妨设c,0F (),则222343()()A A AFA A A A y y k cx x c x c x c ==⇒=⇒=---, 因此2()()43()a c a a c a cc c a c a++=---,222224()3(2)ca c a a ac c ∴-=+-,2224324(1)3(12),31661630e e e e e e e e ∴-=+--+++=, 22(341)(43)0e e e e ∴----=,1e >,e ∴=2e =因为点A 在x 轴上方,所以()A a c a x c c a+=>-,220,1e e e ∴+-<>,12e ∴<<,因此23e =,故选B . 【名师点睛】本题考查双曲线的离心率,考查基本分析求解能力,属中档题.2.【天津市部分区2019届高三联考一模数学】已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别是12,F F ,双曲线的渐近线上点()3,4P 满足12PF PF ⊥,则双曲线的方程为A .221169x y -=B .22134x y -=C .221916x y -=D .22143x y -=【答案】C【解析】()3,4在22221x y a b-=的渐近线上,43b a ∴=,①又12PF PF ⊥,44133c c∴⋅=--+,② 又222+=a b c ,③由①②③得,229,16a b ==,∴双曲线方程为221916x y -=,故选C . 【名师点睛】本题主要考查双曲线的方程与简单性质,属于中档题.求解双曲线方程的题型一般步骤:(1)判断焦点位置;(2)设方程;(3)列方程组求参数;(4)得结论.3.【天津市河北区2019届高三一模数学】在平面直角坐标系中,经过点P ,渐近线方程为y =的双曲线的标准方程为A .22142-=x yB .221714x y -=C .22136x y -=D .221147y x -=【答案】B【解析】∵双曲线的渐近线方程为,y =∴设所求双曲线的标准方程为222x y -=k .又(在双曲线上,则k =16–2=14,即双曲线的方程为22214x y -=,∴双曲线的标准方程为221714x y -=,故选B . 【名师点睛】本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题.4.【天津市红桥区2019届高三一模数学】双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别|为1F 、2F ,点P 在C 上,且123PF PF b +=,1294PF PF ab ⋅=,则双曲线的离心率为 A .43 B .53C .3D【答案】B【解析】由双曲线的定义得:|PF 1|﹣|PF 2|=2a ,(不妨设该点在右支上) 又|PF 1|+|PF 2|=3b ,所以()()1211233222PF a b PF b a =+=-,, 两式相乘得()22199444b a ab -=.结合c 2=a 2+b 2得53c a =.故e 53=.故选B . 【名师点睛】本题考查了双曲线的定义,离心率的求法.主要是根据已知条件找到a ,b ,c 之间的关系化简即可.5.【天津市部分区2019届高三联考一模数学】已知离心率为53的双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是12,F F ,若点P 是抛物线212y x =的准线与C 的渐近线的一个交点,且满足12PF PF ⊥,则双曲线的方程是A .221169x y -=B .22134x y -=C .221916x y -=D .22143x y -=【答案】C【解析】对于A ,221169x y -=的离心率为54e =,不合题意; 对于B ,22134x y -=的离心率为3e =,不合题意; 对于D ,22143x y -=的离心率为e =对于C ,221916x y -=的离心率为53e =,符合题意.故选C .【名师点睛】本题主要考查双曲线的方程与性质,考查了抛物线的方程与性质,考查了选择题的特殊解法,属于中档题.用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法.若结果为定值,则可采用此法.特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性.6.【2019年塘沽一中、育华中学高三毕业班第三次模拟考试数学】已知双曲线22122:1(0,0)x y C a b a b -=>>的左、右焦点分别为1F 、2F ,抛物线2C 的顶点在原点,准线为2a x c=-,若双曲线1C 与抛物线2C 的交点P 满足212PF F F ⊥,则双曲线1C 的离心率为 ABCD .2【答案】C【解析】设抛物线的方程为:22y px =,依题意得:22p a c =,可得22a p c=,联立双曲线与抛物线可得2222212x y a by px⎧-=⎪⎨⎪=⎩,可得22221x pxa b -=, 把22,a x c p c==,代入整理得:42230e e --=,可得23e =或21()e =-舍去,可得e =C .【名师点睛】本题主要考查了双曲线的简单性质,解题的关键是利用题设的已知条件找出a 和c 的关系. 7.【天津市和平区2018–2019学年度第二学期高三年级第三次质量调查数学】设1e ,2e 分别为具有公共焦点1F ,2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足120PF PF ⋅=,则222111e e +的值为 A .12B .13C .2D .不确定【答案】C【解析】设椭圆、双曲线的长轴长分别为122,2a a ,焦距为2c ,则12112222PF PF a PF PF a ⎧+=⎪⎨-=⎪⎩,解得112212PF a a PF a a ⎧=+⎪⎨=-⎪⎩,由勾股定理可得()222122PF PF c +=,即()()22212124a a a a c ++-=,整理可得222122212112,2a a c e e +=∴+=.故选C . 【名师点睛】椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、勾股定理、|PF 1|+|PF 2|=2a ,得到a ,c 的关系.8.【天津市北辰区2019届高考模拟考试数学】已知双曲线2222:1x y C a b-=(0,0a b >>)的焦距为2c ,直线l 与双曲线C 的一条斜率为负值的渐近线垂直且在y 轴上的截距为2cb-;以双曲线C 的右焦点为圆心,半焦距为半径的圆Ω与直线l 交于,M N两点,若MN =,则双曲线C 的离心率为 A .35B .53 C .3 D .13【答案】C【解析】双曲线的渐近线的方程为by x a=±, ∵直线l 与双曲线C 的一条斜率为负值的渐近线垂直且在y 轴上的截距为2cb-,∴直线l 的方程为2a c y x b b=-,即20ax by c --=,∵双曲线的右焦点为(),0c ,其到l的距离d c a ==-,又∵半径为c 的圆Ω与直线l 交于,M N两点且MN =, ∴()22259c a c c -+=,化简得2251890c ac a -+=,即()()3530c a c a --=, 得3c a =或35c a =,即3c e a ==或35(舍去),故选C .【名师点睛】本题考查双曲线的渐近线方程,考查直线和圆相交的弦长公式,以及点到直线的距离公式,考查运算能力,属于中档题.9.【天津市南开中学2019届高三模拟数学】过抛物线24y x =焦点F 的直线与双曲线221(0)y x m m-=>的一条渐近线平行,并交抛物线于,A B 两点,若|||AF BF >且||3AF =,则m 的值为 A .8B .12x x CD .4【答案】A【解析】抛物线y 2=4x 的焦点F 的坐标为(1,0),准线方程为x 1=-,双曲线x 22y m-=1的一条渐近线方程为y,不妨设直线AB 为yx 1-),设A (x 0,y 0),则|AF |=x 013+=,∴x 0=2,又∵2004y x =且|AF |>|BF |,∴y 0>0,∴y 0=,代入y(x 1-),解得m =8,故选A .【名师点睛】本题考查了直线和抛物线的关系,以及抛物线的定义和双曲线的性质,属于中档题.10.【天津市南开区2018~2019学年度高三第二学期基础训练数学】以双曲线()2222:100x y C a b a b -=>>,上一点M 为圆心作圆,该圆与x 轴相切于C 的一个焦点F ,与y 轴交于P Q ,两点,若PQ =,则双曲线C 的离心率是 AB C .2 D 【答案】B【解析】不妨设点M 位于第一象限,由双曲线的性质可得2b M c a ⎛⎫⎪⎝⎭,,由圆的弦长公式可得:PQ ==,结合PQ =可得c =, 整理变形可得:422431030c a c a -+=,即()()4222310303310e e e e -+=--=,, 双曲线中21e >,故23e e ==,B .【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).11.【天津市河北区2019届高中学业水平考试模拟数学】已知椭圆C 的中心在原点,焦点在x 轴上,且短轴的长为2,离心率等于5,则该椭圆的标准方程为A .2215x y += B .2213x y +=C .2214x y +=D .2214y x += 【答案】A【解析】由题意设椭圆方程为22221(0)x y a b a b+=>>,则2b =2,b =1,又c a =,可得2245c a =,222a b c =+,∴可得a 2=5.∴椭圆C 的方程为2215x y +=.故选A . 【名师点睛】本题考查的知识点是椭圆的标准方程,是基础题.12.【天津市红桥区2019届高三二模数学】己知点A 是抛物线212(0)y px C p =>︰与双曲线222221(00)x y a C b a b-=>>︰,的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为p ,则双曲线的离心率为A B .2C D【答案】A【解析】由题意和抛物线、双曲线的对称性可设点A 的坐标为11(,)x y ,11(0,0)x y >>,根据抛物线的定义有1122p p x p x +=⇒=,1y p ⇒=,所以点A 的坐标为(,)2pp , 由题意可知:点A 在渐近线b y x a =上,所以有22242b p p b a b a a =⋅⇒=⇒=,而222c a b =+,所以有225c a e =⇒=A .【名师点睛】本题考查了求双曲线的离心率,解决本题的关键是利用抛物线的定义求出点的坐标.13.【天津市和平区2018–2019学年度第二学期高三年级第二次质量调查数学】已知双曲线2222:1x y C a b-=(0,0)a b >>的右焦点为(c,0)F ,直线2a x c=与一条渐近线交于点P ,POF △的面积为2a (O 为原点),则抛物线22by x a=的准线方程为 A .12y =B .1x =C .1x =- D.x =【答案】C【解析】不妨取双曲线的渐近线方程为0bx ay -=,与直线2a x c =联立可得2a x c aby c ⎧=⎪⎪⎨⎪=⎪⎩,即2,a ab P c c ⎛⎫⎪⎝⎭, 由题意可得2122POFab ab S c a c ⨯⨯==△,22,4b b a a∴>=, 抛物线方程为24y x =,其准线方程为1x =-.故选C .【名师点睛】本题主要考查双曲线的渐近线方程,抛物线准线方程的求解等知识,意在考查学生的转化能力和计算求解能力.14.【天津市十二重点中学2019届高三下学期毕业班联考(一)数学】已知双曲线22221x y a b-=(0,0)a b >>的一个焦点与抛物线28y x =的焦点F 重合,抛物线的准线与双曲线交于,A B 两点,且OAB △的面积为6(O 为原点),则双曲线的方程为A .221312x y -=B .2213632x y -=C .2213x y -=D .2213y x -=【答案】D 【解析】28,22py x =∴=,即28y x =焦点为()2,0, 即22221x y a b-=焦点为()2,0,224a b ∴+=,① 又OAB △的面积为6,x c =-时,2b y a =±,22,,,b b A c B c a a ⎛⎫⎛⎫∴--- ⎪ ⎪⎝⎭⎝⎭,212262AOBb S a=⨯⨯=△,得23b a =,② 由①②得,2213a b ⎧=⎨=⎩,双曲线的方程为2213y x -=,故选D .【名师点睛】本题主要考查抛物线的方程与性质以及双曲线的方程与性质,属于中档题.求解双曲线方程的题型一般步骤:(1)判断焦点位置;(2)设方程;(3)列方程组求参数;(4)得结论. 15.【天津市和平区2019届高三下学期第一次质量调查数学】设双曲线221mx ny +=的一个焦点与抛物线218y x =的焦点相同,离心率为2,则抛物线的焦点到双曲线的一条渐近线的距离为A .2 BC.D.【答案】B 【解析】抛物线28x y =的焦点为(0,2),221mx ny ∴+=的一个焦点为(0,2),∴焦点在y 轴上,2211,,2a b c n m∴==-=. 根据双曲线三个参数的关系得到22114a b n m=+=-,又离心率为2,即441n=,解得11,3n m ==-,∴此双曲线的渐近线方程为2203x y -=,则双曲线的一条渐近线方程为0x =,则抛物线的焦点()0,2到双曲线的一条渐近线的距离为:d ==B .【名师点睛】本题主要考查双曲线方程的求解,双曲线的渐近线方程,点到直线距离公式等知识,意在考查学生的转化能力和计算求解能力.16.【天津市十二重点中学2018届高三下学期毕业班联考(二)数学】已知双曲线C :22221(00)x y a b a b -=>>,,其中,双曲线半焦距为c ,若抛物线24y cx =的准线被双曲线C 截得的弦长为22(3ae e 为双曲线C 的离心率),则双曲线C的渐近线方程为A .12y x =±B .2y x =±C .32y x =±D .2y x =±【答案】B【解析】∵抛物线24y cx =的准线:x c =-,它正好经过双曲线C :22221(00)x ya b a b-=>>,的左焦点,∴准线被双曲线C 截得的弦长为:22ba,22223b ae a ∴=,22222223c b a c a b a ∴=⋅==+,222b a ∴=,2b a ∴=,∴则双曲线C 的渐近线方程为2y x =±.故选B .【名师点睛】本题考查了抛物线和双曲线的简单性质,考查了转化能力和运算能力,属于中档题. 17.【天津市七校(静海一中、宝坻一中、杨村一中等)2019届高三上学期期末考试数学】抛物线2(0)y ax a =>的准线与双曲线22:184x y C -=的两条渐近线所围成的三角形面积为a 的值为 A .8 B .6 C .4 D .2【答案】A【解析】抛物线2(0)y ax a =>的准线为4a x =-,双曲线22:184x y C -=的两条渐近线为2y x =±,可得两交点为4848aa ⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,即有三角形的面积为1244a ⨯⨯=8a =,故选A .【名师点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.18.【天津市河北区2019届高中学业水平考试模拟数学】抛物线22y x =-的准线方程是A.2y x =± B .y = C .12x =D .12x =-【答案】C【解析】由题意,抛物线的焦点在x 轴上,开口向左,且p =1,∴准线方程是12x =.故选C . 【名师点睛】本题的考点是抛物线的简单性质,主要考查根据抛物线的标准方程求准线方程,属于基础题.19.【天津南开中学第五次月考数学】已知双曲线()2222100x y a b a b-=>>,的左右焦点分别为()()1200F c F c -,,,,若直线2y x =与双曲线的一个交点P 的横坐标恰好为c ,则双曲线的离心率为A B .2C 1D 1【答案】C【解析】由题意,把直线2y x =代入双曲线的方程()2222100x ya b a b-=>>,,可得x =,所以c =222c a b =+,整理得422260c a c a -+=,又由c e a=,可得42610e e -+=,解得23e =+23e =-,即有1e =+故选C . 【名师点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c 的值,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).20.【天津市部分区2019年高三质量调查试题(二)数学】已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F ,,以线段12F F 为直径的圆与双曲线渐近线的一个交点的坐标为(4,3),则此双曲线的方程为A .221169x y -=B .22143x y -=C .221916x y -=D .22134x y -=【答案】A【解析】因为以线段12F F 为直径的圆与双曲线渐近线的一个交点的坐标为(4,3),所以坐标原点到交点(4,3)距离等于半径c ,即5,c ==因为(4,3)在双曲线渐近线22220x y a b-=上,所以221690a b -=,因为22225a b c +==,所以22169a b ==,,即双曲线的方程为221169x y -=,故选A .【名师点睛】本题考查双曲线渐近线与标准方程,考查基本分析求解能力,属基础题.21.【天津市南开区2019届高三第二学期模拟考试(一)数学】已知P 为抛物线2:C y =上一点,点M),若PM =POM (O 为坐标原点)的面积为___________.【答案】【解析】∵抛物线C 的方程为y 2,∴M ,0)为抛物线的焦点,设P (m ,n ),根据抛物线的定义,得|PM |=m 2p+=m =,解得m∵点P 在抛物线C 上,得n 2=24,∴n =±,∵|OM |=POF 的面积为S 12=|OM |×|n【名师点睛】本题考查了抛物线的定义及几何性质,熟练掌握抛物线上的点所满足的条件是解题的关键.。

天津数学高考中的圆锥曲线

天津数学高考中的圆锥曲线

天津数学高考中的圆锥曲线
天津数学高考中的圆锥曲线包括椭圆、双曲线和抛物线。

这些曲线在几何和代数方面都有其特定的性质和方程。

在天津的高考中,圆锥曲线是一个重要的考点,需要考生熟练掌握相关的知识点和解题技巧。

具体来说,需要掌握以下内容:1.圆锥曲线的标准方程:包括椭圆的标准方程、双曲线的标准方程和抛物线的
标准方程。

这些方程是解决圆锥曲线问题的基础。

2.圆锥曲线的几何性质:包括曲线的形状、大小、对称性、离心率等。

这些性
质对于解决圆锥曲线问题非常重要。

3.直线与圆锥曲线的位置关系:包括直线与圆锥曲线的交点个数、交点坐标等。

这些关系可以通过联立方程组来解决。

4.圆锥曲线的参数方程:参数方程是一种描述曲线的方法,可以通过参数的变
化来描述曲线的变化。

在解决某些问题时,参数方程可以简化计算过程。

5.圆锥曲线的实际应用:圆锥曲线在实际生活中有着广泛的应用,例如行星运
动轨迹、光学仪器等。

这些应用可以帮助考生理解圆锥曲线的意义和价值。

为了应对天津数学高考中的圆锥曲线题目,考生需要加强练习,熟练掌握上述知识点和解题技巧。

还需要注意数形结合的思想,将几何图形与代数方程结合起来,以更好地解决圆锥曲线问题。

1/ 1。

「精品」专题19 圆锥曲线的几何性质及其综合应用高考数学母题题源系列(天津专版)-精品

「精品」专题19 圆锥曲线的几何性质及其综合应用高考数学母题题源系列(天津专版)-精品

母题十九 圆锥曲线的几何性质及其综合应用【母题原题1】【2018天津,理19】设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B .点A 的坐标为(,0)b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若AQ AOQ PQ=∠(O 为原点),求k 的值. 【考点分析】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.【答案】(I )22194x y +=;(II )12或1128.试题解析:(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由222a b c =+,可得23a b =.由已知可得,FB a =,AB =,由FB AB ⋅=6ab =,从而,32a b ==,∴椭圆的方程为22194x y +=. (Ⅱ)设点P 的坐标为()11,x y ,点Q 的坐标为()22,x y .易知直线AB 的方程为20x y +-=,由方程组{20y kx x y =+-=,,消去x ,可得221ky k =+.由1259y y =,可得()15k +=25650110k k -+=,解得12k =,或1128k =,k ∴的值为12或1128. 【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 【母题原题2】【2017天津,理19】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △AP 的方程.【答案】(1)22413y x +=,24y x =;(2)330x +-=,或330x -=. 【解析】试题分析:由于A 为抛物线焦点,F 到抛物线的准线l 的距离为12,则12a c -=,又椭圆的离心率为12,求出,,c a b ,得出椭圆的标准方程和抛物线方程;则(1,0)A ,设直线AP 方程为设1(0)x my m =+≠,解出P Q 、两点的坐标,把直线AP 方程和椭圆方程联立解出B 点坐标,写出BQ 所在直线方程,求出点D 的坐标,最后根据APD △m ,得出直线AP 的方程.或2634m y m -=+.由点B 异于点A ,可得点222346(,)3434m m B m m -+-++.由2(1,)Q m -,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+,故2223(,0)32m D m -+.∴2222236||13232m m AD m m -=-=++.又∵APD △的面积为2,故22162232||2m m m ⨯⨯=+,整理得23|20m m -+=,解得||m =,∴m =.∴直线AP的方程为330x +-=,或330x --=.解法二:设()1,,P t -则()1,,Q t --从而直线AP 的方程为()12ty x =--,代入椭圆方程22413y x +=,整理得()22223230t x t x t +-+-=.两根之积为22122233.1,.33A B t t x x x x t t --==∴=++代入()12t y x =--,得22233,33t t B t t ⎛⎫- ⎪++⎝⎭.∴直线BQ 的方程为:()222331313tt t y t x t t +++=+-++,即()2612t y t x t ++=+.令0y =,得()2612t t x t +=+,解得222226612,1666t t x AD t t t --=∴=-=+++.2112,,26APD S t t ∆=∴⨯⨯=+解得t =∴直线AP的方程为)1y x =-或)1y x =-,即330x -=,或330x -=. 【考点】直线与椭圆综合问题【名师点睛】圆锥曲线问题在历年高考都是较有难度的压轴题,不论第一步利用椭圆的离心率及椭圆与抛物线的位置关系的特点,列方程组,求出椭圆和抛物线方程,还是第二步联立方程组求出点的坐标,写直线方程,利用面积求直线方程,都是一种思想,就是利用大熟地方法解决几何问题,坐标化,方程化,代数化是解题的关键. 【母题原题3】【2016天津,理19】设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.【答案】(Ⅰ)22143x y +=;(Ⅱ)),46[]46,(+∞--∞ . 【解析】试题分析:(Ⅰ)求椭圆标准方程,只需确定量,由113||||||c OF OA FA +=,得113()cc a a a c +=-,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=. (Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k .解得2=x ,或346822+-=k k x ,由题⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M .在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(MMMM y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k .所以直线l 的斜率的取值范围为),46[]46,(+∞--∞ . 考点:椭圆的标准方程和几何性质,直线方程【名师点睛】在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围. 【母题原题4】【2015天津,理19】已知椭圆2222+=1(0)x y a b a b >>的左焦点为F -c (,0),点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c,(I )求直线FM 的斜率; (II )求椭圆的方程;(III )设动点P 在椭圆上,若直线FPOP (O 为原点)的斜率的取值范围.【答案】(I ); (II ) 22132x y += ;(III) 22,,⎛⎛-∞ ⎝. 【解析】试题分析:(I ) 由椭圆知识先求出,,a b c 的关系,设直线直线FM 的方程为()y k x c =+,求出圆心到直线的距离,由勾股定理可求斜率k 的值; (II )由(I )设椭圆方程为2222132x y c c+=,直线与椭圆方程联立,求出点M 的坐标,由FM =可求出c ,从而可求椭圆方程.(III)设出直线FP :(1)y t x =+,与椭圆方程联立,求得t =>x 的范围,即可求直线OP 的斜率的取值范围. 试题解析:(I ) 由已知有2213c a =,又由222a b c =+,可得223a c =,222b c =,设直线FM 的斜率为(0)k k >,则直线FM 的方程为()y k x c =+,由已知有22222c b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得k = (II )由(I )得椭圆方程为2222132x y c c+=,直线FM 的方程为()y k x c =+,两个方程联立,消去y ,得312x -<<-或10x -<<,设直线OP 的斜率为m ,得ym x=,即(0)y mx x =≠,与椭圆方程联立,整理可得22223m x =-.①当3,12x ⎛⎫∈-- ⎪⎝⎭时,有(1)0y t x =+<,因此0m >,于是m =m ∈②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是m =,m ⎛∈-∞ ⎝综上,直线OP 的斜率的取值范围是22,,⎛⎛-∞ ⎝.【命题意图】本类题通常主要考查对椭圆的离心率、椭圆的几何性质、双曲线的离心率、双曲线的几何性质、双曲线的渐近线、抛物线的几何性质等基本知识的理解,以及对直线与圆锥曲线间的交点问题(含切线问题)、与圆锥曲线定义有关的问题、与曲线有关的最值问题(含三角形和四边形面积)等知识的理解与简单的应用.【命题规律】这类试题在考查题型上,通常基本以选择题与填空题的形式出现,也会出现在解答题中第一问,难度一般中等,有时中等偏上,一般不会作为把关题,在考查内容上一般以求离心率,求双曲线的渐近线,求最值,求范围,利用性质求曲线方程等,着重考查对基本概念和基本性质的理解与应用,题型稳定,中规中矩,不偏不怪,内容及位置也很稳定,计算量比过去减少,但思考量增大,思维层次的要求并没有降低.若再按以前的“解几套路”解题显然难以成功.【答题模板】以2017年高考题为例,求取椭圆或双曲线离心率,一般可由下面三个方面着手: (1)根据已知条件确定,,a b c 的等量关系,然后把b 用,a c 代换,求ca的值; (2)已知条件构造出,,a b c 的等式或不等式,结合222a b c =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e 的值或范围.(3)求离心率的范围问题关键是确立一个关于,,a b c 的不等式,再根据,,a b c 的关系消掉b 得到关于,a c 的不等式,由这个不等式确定,a c 的关系.总体来说,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出,a c ,然后根据离心率的定义式求解;二是根据已知条件构造关于,a c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数. 【方法总结】1.圆锥曲线的定义反映了它们的基本特征,理解定义是掌握其性质的基础.因此,对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求1212PF PF F F +>,双曲线的定义中要求1212PF PF F F -<,抛物线的定义的实质可归结为“一动三定”:一个动点M ;一个定点F (抛物线的焦点);一条定直线l (抛物线的准线);一个定值1(点M 与定点F 的距离和它到定直线l 的距离之比等于1),常常利用抛物线的定义将抛物线上一点到焦点的焦半径问题与焦点到准线的距离问题互相转化. 2.求圆锥曲线标准方程常用的方法:(1)定义法;(2)待定系数法,若顶点在原点,对称轴为坐标轴的抛物线,可设为22y ax =或22x ay = (0a ≠),避开对焦点在哪个半轴上的分类讨论,此时a 不具有p 的几何意义.若椭圆的焦点位置不确定,椭圆的标准方程可设为221(0,0)x y m n m n+=>>,也可设椭圆方程为221(0,0)Ax By A B +=>>,若双曲线的焦点位置不确定,双曲线的标准方程可设为221(0)x y mn m n-=>,也可设双曲线的方程为221Ax By +=,其中,A B 异号且都不为0,若已知双曲线的渐近线方程为0ax bx ±=,则可设双曲线的标准方程为ax bx λ±=(0λ≠)可避免分类讨论,这样可以避免讨论和繁琐的计算.3.求解与二次曲线性质有关的问题时要结合图像进行分析,即使不画图形,思考时也要联想到图像.对椭圆当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.对双曲线应围绕双曲线中的“六点”(两个顶点、两个焦点、虚轴的两个端点),“四线”(两条对称轴,两条渐近线),“两形”(中心、焦点、虚轴端点构成的特征三角形,双曲线上一点与两个交点构成的三角形),研究它们之间的关系,挖掘出它们之间的内在联系.4.椭圆取值范围实质实质是椭圆上点的横坐标、纵坐标的取值范围,在求解一些最值、取值范围以及存在性、判断性问题中有着重要的应用,椭圆上一点到椭圆一个焦点的距离的取值范围为[,a c a c -+].在椭圆中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在椭圆上,称该三角形为焦点三角形,则三角形12F PF 的周长为定值等于22a c +,面积等于212tan2F PF b ∠,其中b 是短半轴的长;过焦点垂直于对称轴的弦长即通径长为22b a.双曲线取值范围实质实质是双曲线上点的横坐标、纵坐标的取值范围,在求解一些最值、取值范围以及存在性、判断性问题中有着重要的应用,双曲线上一点到双曲线一个焦点的距离的取值范围为[,c a -+∞).在双曲线中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P在双曲线上,称该三角形为焦点三角形,则面积等于212tan2b F PF ∠,其中b 是虚半轴的长;过焦点垂直于对称轴的弦长即通径长为22b a.抛物线中:抛物线上一点11(,)P x y ,F 为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p >0):22112:;2:22p py px PF x y px PF x ==+=-=-+ 22112:;2:22p px py PF y x py PF y ==+=-=-+ .焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式.设过抛物线y2=2px (p >O )的焦点F 的弦为AB ,A 11(,)x y ,B 22(,)x y ,AB 的倾斜角为α,则有12AB x x p =++或22sin pAB α=,以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求.在抛物线中,以抛物线的焦点弦为直径的圆与该抛物的对应准线相切.5.求椭圆、双曲线的离心率,关键是根据已知条件确定,,a b c 的等量关系,然后把b 用,a c 代换,求c a的值;椭圆求离心率问题,关键是先根据题中的已知条件构造出,,a b c 的等式或不等式,结合222a b c =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e 的值或范围.离心率e 与,a b的关系为:222222c a b e a a -===221b a -⇒b a=.双曲线求离心率问题,关键是先根据题中的已知条件构造出,,a b c 的等式或不等式,结合222c b a =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e 的值或范围.离心率e 与,a b 的关系为:222222c a b e a a +===221b a +⇒b a =,在双曲线中由于221b e a ⎛⎫=+ ⎪⎝⎭,故双曲线的渐近线与离心率密切相关.求离心率的范围问题关键是确立一个关于,,a b c 的不等式,再根据,,a b c 的关系消掉b 得到关于,a c 的不等式,由这个不等式确定,a c 的关系.求解圆锥曲线的离心率,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出,a c ,然后根据离心率的定义式求解;二是根据已知条件构造关于,a c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数.6.抛物线22y px =(0p >)上点的坐标可设为(20,2y y p),在计算时,可以降低计算量. 7. 焦点三角形问题的求解技巧(1)所谓焦点三角形,就是以椭圆或双曲线的焦点为顶点,另一个顶点在椭圆或双曲线上的三角形. (2)解决此类问题要注意应用三个方面的知识: ①椭圆或双曲线的定义; ②勾股定理或余弦定理;③基本不等式与三角形的面积公式.1.【2018天津部分区二模】已知抛物线的焦点与椭圆:的一个顶点重合,且这个顶点与椭圆的两个焦点构成的三角形面积为.(1)求椭圆的方程;(2)若椭圆的上顶点为,过作斜率为的直线交椭圆于另一点,线段的中点为,为坐标原点,连接并延长交椭圆于点,的面积为,求的值.【答案】(1);(2).又椭圆的顶点与其两个焦点构成的三角形的面积为,∴,∴,故椭圆的方程是.(2)由题意设直线的方程为,设点,由得,解得,∴,∴直线斜率,直线的方程为,∴的值为.【名师点睛】本题考查椭圆方程、椭圆性质、直线方程、理、弦长公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.2.【2018天津河东区二模】已知椭圆的一个焦点为,且离心率为.(1)求椭圆方程;(2)斜率为k的直线l过点F,且与椭圆交于A,B两点,P为直线x=3上的一点,若△ABP为等边三角形,求直线l的方程.【答案】(1) .(2) 或.【解析】分析:(1)列方程组求出a和b即得椭圆的方程.(2) 设直线的方程为,根据△ABP 为等边三角形求出k的值,即得直线的方程.详解:(1)由已知,,可得,,所以椭圆的方程为.(2)设直线的方程为,直线与椭圆交点坐标为,,整理为,所以所以.【名师点睛】(1)本题主要考查椭圆方程的求法,考查直线和椭圆的位置关系,意在考查学生对这些基础知识的掌握能力、分析推理能力和计算能力.(2)解答本题的关键是求k,本题是根据等边三角形得到找到k的方程的,当然先要求出|AB|和|MP|.计算量比较大.3.【2018天津河北区二模】设椭圆C:的左、右焦点分别为、,上顶点为A,在x轴负半轴上有一点B,满足为线段的中点,且AB⊥.(I)求椭圆C的离心率;(II)若过A、B、三点的圆与直线:相切,求椭圆C的方程;(III)在(I)的条件下,过右焦点作斜率为k的直线与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,说明理由.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】分析:(Ⅰ)由题意可得在在直角三角形中有,即,整理可得.(Ⅱ)由题意可得过A、B、F2三点的圆的圆心为F1(-c,0),半径r==2c,根据直线与圆相切可得,解得c=1,从而,,可得椭圆的方程.(Ⅲ)由条件可设直线MN的方程为,与椭圆方程联立消元后得到一元二次方程,结合根据系数的关系可得MN的中点Q的坐标为,若以PM,PN为邻边的平行四边形是菱形,则,由此得到,整理得,最后可求得.(III)由(I)知,F2(1,0),直线MN的方程为,由消去y整理得∵直线与椭圆C交于M,N两点,∴.设M(,),N(,),则,∴,∴MN的中点Q的坐标为,若以PM,PN为邻边的平行四边形是菱形,则,∴整理得,∵,∴,∴.∴.故存在满足题意的点P,且m的取值范围是(.【名师点睛】(1)存在性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点或参数)存在,并用待定系数法设出,根据题意列出关于待定系数的方程(方程组),若方程(组)有实数解,则元素(点或参数)存在;否则元素(点或参数)不存在.(2)解析几何中求范围或最值时,首先建立关于某一参数为为变量的目标函数,再根据函数的特征求出范围或最值.4.【2018天津十二校二模】已知椭圆的两个焦点分别为和,过点的直线与椭圆交于轴上方的,两点,且.(Ⅰ)求椭圆的离心率;(Ⅱ)(ⅰ)求直线的斜率;(ⅱ)设点与点关于坐标原点对称,直线上有一点在的外接圆上,求的值.【答案】(I)离心率;(II).当时,得,由已知得,求出外接圆方程与直线的方程,联立可得结果.详解:(I)由得,从而,整理,得,故离心率.(II)解法一:(I)由(I)得,所以椭圆的方程可写设直线AB的方程为,即.由已知设,则它们的坐标满足方程组消去y整理,得.依题意,而①②w由题设知,点B为线段AE的中点,所以③(II)由(I)可知当时,得,由已知得.线段的垂直平分线l的方程为直线l与x轴的交点是外接圆的圆心,因此外接圆的方程为.直线的方程为,于是点H(m,n)的坐标满足方程组,由解得故【名师点睛】本题主要考查椭圆与直线的位置关系以及椭圆离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.5.【2018天津9校联考】已知过点的椭圆的左右焦点分别为、,为椭圆上的任意一点,且,,成等差数列.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线交椭圆于,两点,若点始终在以为直径的圆外,求实数的取值范围.【答案】(I).(2)或.由方程的根与系数关系求得x2、y2,由点A在以PQ为直径的圆外,得∠PAQ为锐角,•>0;由此列不等式求出k的取值范围.试题解析:(1)∵,,成等差数列,∴,由椭圆定义得,∴;又椭圆:()过点,∴;∴,解得,;可得;③由①②③,解得,; 由点在以为直径的圆外,得为锐角,即;由,,∴;即,整理得,,解得:或.∴实数的取值范围是或.【名师点睛】在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.6.【2018天津滨海新区七校联考】已知()0,2A -,椭圆2222:1(0)x y E a b a b+=>>,F 是椭圆E 的右焦点,直线AF 的斜率为3,O 为坐标原点. (1)求椭圆的方程;(2)设过点A 的动直线l 与椭圆E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求直线l 的方程.【答案】(1)22182x y +=;(2)2y x =-或2y =- 【解析】试题分析:(1)由离心率与斜率可求得a ,b ,c .(II )设:2l y kx =-,与椭圆组方程组,由弦长()22222,{ 1416801,82y kx k x kx x y =-⇒+-+=+=, ()221164104k k ∆=->⇒>, 设()11,P x y ,()22,Q x y ,121222168,1414k x x x x k k+==++,PQ ==又点O 到直线l 的距离d =∴△OPQ的面积21241OPQS PQ d k ∆==+, t =,则0t>,∴2222OPQ S t t t∆==≤++,【名师点睛】弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B x y ,所以12AB x =-或12AB y =-.7.【2018天津十二校联考一】如图,已知椭圆22221(0)x y a b a b +=>>的左右顶点分别是,A B,离心率为2,设点()(,P a t t ≥,连接PA 交椭圆于点C ,坐标原点是O .(1)证明: OP BC ⊥;(2)设三角形ABC 的面积为1S ,四边形OBPC 的面积为2S ,若21S S 的最小值为1,求椭圆的标准方程. 【答案】(1)证明见解析;(2)2212x y +=. 【解析】试题分析:(122b c =,联立直线AP 与椭圆的方程即可求出点C 的坐标,从而可得直线BC 的斜率,再根据直线OP 的斜率,即可证明OP BC ⊥;(2)由(1)知,()3223122222222142444ABP AOCt tc tc S S S S t c t c t c ∆∆+=⨯⨯==-=+++,,根据21S S 的最小值为1,即可求出c 的值,从而求出椭圆的标准方程.试题解析:(1)由=2c e a = 得,2212c a =,∴22212a b c -=,即22b c =.∴椭圆的方程为2222+12x y c c=,由)222212{x yc cy x+==,整理得:()22222244280c t x x t c c+++-=,由Ax=可得∴椭圆方程为2212xy+=.8.【2018天津静海一中模拟】设椭圆C:22221(0)x ya ba b+=>>的一个顶点与抛物线2x=的焦点重合,12F F,分别是椭圆的左、右焦点,且离心率12e=,过椭圆右焦点2F的直线l与椭圆C交于M N,两点.(I)求椭圆C的方程;(2)若•2OM ON=-,求直线l的方程;(3)若AB是椭圆C经过原点O的弦,//MN AB,求证:2||ABMN为定值.【答案】(I)22143x y+=;(II)y(x-1)或y(x-1);(3)见解析.【解析】试题分析:(1)由题意,椭圆的标准方程为+=1;(2)设直线l的方程为y=k(x-1)(k≠0),·=x1x2+y1y2=-2,利用韦达定理,解得答案;(3)|MN|=|x1-x2|,|AB|=|x3-x4|,代入韦达定理计算,得到答案.试题解析:(I)椭圆的顶点为(0,),即b =,e ==,∴a=2,∴椭圆的标准方程为+=1.(2)由题可知,直线l与椭圆必相交.①当直线斜率不存在时,经检验不合题意.由(2)可得|MN|=|x1-x2|===,由消去y并整理得x2=,|AB|=|x3-x4|=4,∴==4,为定值.9.【2018天津一中月考五】已知椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上,直线与椭圆交于,两点,与轴、轴分别相交于点和点,且,点是点关于轴的对称点,的延长线交椭圆于点,过点、分别做轴的垂线,垂足分别为、.(1)求椭圆的方程;(2)是否存在直线,使得点平分线段,?若存在,求出直线的方程;若不存在,请说明理由.【答案】(I);(2)答案见解析.【解析】试题分析:(I)由正三角形的高与边长的关系可求出,再由点在椭圆上,可求出的值,从而求出椭圆方程;(2)假设存在,由直线方程可求出点的坐标,由已知条件可求出点的坐标,设联立直线与椭圆的方程,消去,得到关于的一元二次方程,所以椭圆方程为.(2)存在设,∵∴∴①∴,联立∴②∴∴【名师点睛】本题主要考查了椭圆的方程以及直线与椭圆的位置关系,属于中档题.第一问求椭圆方程很容易,大部分学生能做对; 在第二问中,假设存在,当点平分线段点为的中点,利用中点坐标公式,求出的值,得出直线方程.注意本题涉及的点线位置关系比较复杂,容易弄错.10.【2018天津静海一中期末考】设椭圆C : 22221(0)x y a b a b+=>>的左、右焦点分别为12F F ,,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且1222FF QF =,若过A ,Q ,2F 三点的圆恰好与直线:30l x --=相切.过定点(02M ,)的直线1l 与椭圆C 交于G ,H 两点(点G 在点M ,H 之间).(Ⅰ)求椭圆C 的方程; (Ⅱ)若实数λ满足MG MH λ=,求的取值范围.【答案】(Ⅰ)22143x y += ;(Ⅱ))7⎡-⎣.【解析】试题分析:(1)由题意,得椭圆方程为.;(2)设直线方程为,,所以,利用韦达定理,就出的取值范围.(Ⅱ)①当直线斜率存在时,设直线方程为,代入椭圆方程得.由,得.设,,则,.又,所以.所以.所以,.所以.所以.整理得.因为,所以,即.所以.所以,即所求的取值范围是【名师点睛】本题考查直线和椭圆的位置关系.圆锥曲线问题关键是分析解题思路,逻辑思维要清晰.本题中要求线段长的比值,转化为横坐标的比值关系,则需要韦达定理,所以通过设直线,得到整个题目的思路.11.【2018天津静海一中模拟】设椭圆C : 22221(0)x y a b a b +=>>,定义椭圆C 的“相关圆”方程为22222b a b x y a b+=+,若抛物线24y x =的焦点与椭圆C 的一个焦点重合,且椭圆C 短轴的一个端点和其两个焦点构成直角三角形.(I )求椭圆C 的方程和“相关圆”E 的方程;(II )过“相关圆”E 上任意一点P 作“相关圆”E 的切线l 与椭圆C 交于A ,B 两点,O 为坐标原点. (i )证明∠AOB 为定值;(ii )连接PO 并延长交“相关圆”E 于点Q ,求△ABQ 面积的取值范围.【答案】(I ) 222221,23x y x y +=+= (II )(i )见解析(ii )43⎡⎢⎣ 【解析】试题分析:(Ⅰ)由抛物线24y x =的焦点与椭圆C 的一个焦点重合,且椭圆C 短轴的一个端点和两个焦点构成直角三角形,得到1b c ==, 由此能求出椭圆C 的方程. 进而求出“相关圆”E 的方程.(Ⅱ)当直线l 的斜率不存在时,直线AB 方程为2x AOB π=∠= ;当直线l 的斜率存在时,设其方程为y kx m =+,代入椭圆方程,得2222x kx m ++=(),由此利用根的判别式、韦达定理、直线与圆相切,结合已知条件推导出2AOB π∠=为定值.(ii )要求ABQ 的面积的取值范围,只需求弦长AB 的范围,由此利用椭圆弦长公式能求出ABQ 面积的取值范围.当直线的斜率存在时,设其方程设为,设联立方程组得,即,△=,即因为直线与相关圆相切,所以为定值(ii )由于是“相关圆”的直径,所以,所以要求面积的取值范围,所以,所以当且仅当时取”=”②当时,.|AB |的取值范围为面积的取值范围是.【点睛】本题考查椭圆及圆的方程的求法,考查角为定值及三角形面积的求法,解题时要认真审题,注意根的判别式、韦达定理、直线与圆相切、椭圆弦长公式的合理运用.12.【2018天津一中期末考试】已知点,M N 分别是椭圆()2222:10x y C a b a b+=>>的左右顶点,F 为其右焦点,MF 与FN ,椭圆的离心率为12. (I )求椭圆C 的方程;(2)设不过原点O 的直线l 与该轨迹交于,A B 两点,若直线,,OA AB OB 的斜率依次成等比数列,求OAB的面积的取值范围.【答案】(I ) 22143x y +=;(II)(.表示出三角形面积,求解范围即可.试题解析:(I ) MF a c =+,BN a c =-MF 与FN 的等比中项,∴()()3a c a c +-=,∴2223b a c =-=,又12c e a ==,解得2,1a c ==,∴椭圆C 的方程为22143x y +=. (2)由题意可知,直线l 的斜率存在且不为0,故可设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y ,联立直线和椭圆2234120{ x y y kx m+-==+,消去y 得,()2223484120k x kmx m +++-=,由题意可知,()()()22226444341248430km k m k m ∆=-+-=-+>,即2243k m +>,且122834kmx x k +=-+,212241234m x x k -=+,又直线OA ,AB ,OB 的斜率依次成等比数列,所以21212y y k x x ⋅=, 将1y ,2y 代入并整理得()22430m k -=,因为0m ≠,k =,206m <<,且23m ≠, 设d 为点O 到直线l的距离,则有d =12AB x =-=, ∴12OABSAB d ==<,∴三角形面积的取值范围为(. 13.【2018天津和平区期末考】已知椭圆E 的方程为22221x y a b+= (0a b >> ),圆C 的。

天津市高三数学理一轮复习专题突破训练:圆锥曲线

天津市高三数学理一轮复习专题突破训练:圆锥曲线

天津市高三数学理一轮复习专题突破训练圆锥曲线一、选择、填空题1、(天津市高考)已知双曲线2224=1x y b-(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y - 2、(天津市高考)已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(3 ,且双曲线的一个焦点在抛物线247y x = 的准线上,则双曲线的方程为(A )2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22143x y -=3、(天津市八校高三12月联考)抛物线:212y x =-的准线与双曲线:22193x y -=的两条渐近线所围成的三角形的面积为( ).A .33B .23C .2D 34、(和平区高三第四次模拟)已知双曲线2213x y -=的渐近线上的一点A 到其右焦点F 的距离等于2,抛物线()220y px p =>过点A ,则该抛物线的方程为( )A .22y x =B .2y x =C .212y x =D .214y x =5、(河北区高三总复习质量检测(三))双曲线22221(00)y x a b a b-=>>,的右焦点F 是抛物线28y x =的焦点,两曲线的一个公共点为P ,且5PF =,则该双曲线的离心率为(A 23(B 5(C 5 (D )26、(河北区高三总复习质量检测(一))已知双曲线22221(00)x y =a >b >a b,-的一条渐近线平行于直线l :+2+5=0x y ,且双曲线的一个焦点在直线l 上,则双曲线的方程为(A )22=1205x y - (B )22=1520x y -(C )2233=125100x y - (D )2233=110025x y -7、(河东区高三第二次模拟)已知双曲线的一个焦点为)0,5(1F 它的 渐近线方程为x y 34±=,则该双曲线的方程为( ) A .191622=-y x B . 191622=-x y C .116922=-y x D . 116922=-x y 8、(河西区高三第二次模拟)已知双曲线1C :1163222=-p y x 0(>a ,)0>b 的左焦点在抛物线2C :)0(22>=p px y 的准线上,则双曲线1C 的离心率为(A )34(B )3(C )332 (D )49、(河西区高三下学期总复习质量调查(一))已知双曲线1C :12222=-by a x (0>a ,0>b )的焦距是实轴长的2倍,若抛物线2C :py x 22=(0>p )的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A )y x 3382=(B )y x 33162=(C )y x 82=(D )y x 162=10、(红桥区高三上学期期末考试)已知双曲线2219x y m -=的一个焦点在圆22450x y x +--=上,则它的渐近线方程为(A ) 43y x =±(B )22y x = (C )23y x =± (D )34y x =±11、(天津市六校高三上学期期末联考)已知双曲线1:2222=-by a x C )0,0(>>b a 与抛物线)0(22>=p px y 的交点为A 、B ,直线AB 经过抛物线的焦点F ,且线段AB 的长等于双曲线的虚轴长,则双曲线的离心率为.A 12+ .B 3 .C 2 .D 212、(天津市十二区县重点高中高三毕业班第一次联考)已知双曲线C :22221(0,0)y x a b a b-=>>的离心率52e =P 是抛物线24y x =上的一动点,P 到双曲线C 的上焦点1(0,)F c 的距离与到直线1x =-6,则该双曲线的方程为A .22123y x -=B . 2214y x -=C .2214x y -= D .22132y x -= 13、(天津市十二区县重点学校高三下学期毕业班联考(二))已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为3,且双曲线的一条渐近线与抛物线的准线的交点坐标为()1,1--,则双曲线的标准方程为A .22122x y -=B .22144x y -=C .2214x y -= D .2212x y -= 14、(武清区高三5月质量调查(三))已知双曲线()0,012222>>=-b a b y a x 的左、右焦点分别为21,F F ,以点2F 为圆心的圆与双曲线的渐近线相切,切点为P .若3221π=∠PF F ,则双曲线的离心率为( )(A )313 (B )321 (C )5 (D )37二、解答题1、(天津市高考)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程; (Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.2、(天津市高考)已知椭圆2222+=1(0)x y a b a b 的左焦点为F -c (,0),3,点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y截得的线段的长为c ,43. (I)求直线FM 的斜率;(II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FP 2,求直线OP (O 为原点)的斜率的取值范围.3、(和平区高三第四次模拟)椭圆()2222:10x y C a b a b +=>>的上顶点为()40,,,33b A b P ⎛⎫⎪⎝⎭是椭圆C 上一点,以AP 为直径的圆经过椭圆C 的右焦点F . (Ⅰ)求椭圆C 的方程;(Ⅱ)若动直线l 与椭圆C 只有一个公共点,且x 轴上存在着两个定点,它们到直线l 的距离之积等于1,求出这两个定点的坐标.4、(河北区高三总复习质量检测(三)) 已知圆2219:()24E x y +-=经过椭圆2222:1(0)x y C a b a b+=>>的左、右焦点12F F ,,且与椭圆C 在第一象限的交点为A ,且1F E A ,,三点共线,直线l 交椭圆 C 于M N ,两点,且λ(λ0)MN =OA >.(Ⅰ)求椭圆C 的方程;(Ⅱ)当AMN ∆的面积取到最大值时,求直线l 的方程.F 2F 1xyAE O5、(河北区高三总复习质量检测(一)) 已知椭圆C :22221(0)x y +=a >b >ab的短轴长为2,离心率2=2e .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l :y =kx+m 与椭圆交于不同的两点A B ,,与圆222+=3x y 相切于点M .(i )证明:OA OB ⊥(O 为坐标原点); (ii )设AM λ=BM,求实数λ的取值范围.6、(河东区高三第二次模拟)椭圆)0( 1:2222>>=+b a by a x C 的右顶点为Q ,O 为坐标原点,过OQ 的中点作x 轴的垂线与椭圆在第一象限交于点A ,点A 的纵坐标为c 23,c 为半焦距. (1)求椭圆的离心率; (2)过点A 斜率为21的直线l 与椭圆交于另一点B ,以AB 为直径的圆过点P(21,29),求三角形APB 的面积.7、(河西区高三第二次模拟) 已知抛物线C 的顶点为0(O ,)0,焦点为0(F ,)1.(Ⅰ)求抛物线C 的方程;(Ⅱ)过点F 作直线交抛物线C 于A ,B 两点,若直线AO ,BO 分别交直线2:-=x y l 于M 、N 两点,求MN 的最小值.8、(河西区高三下学期总复习质量调查(一))如图,1F ,2F 分别是椭圆12222=+by a x )0(>>b a 的左、右焦点,B 为上顶点,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(Ⅰ)若点C 的坐标为34(,)31,且22=BF ,求椭圆的方程;(Ⅱ)若AB C F ⊥1,求椭圆的离心率e .OC BAyF 1F 29、(红桥区高三上学期期末考试)已知圆22:4C x y +=. (Ⅰ)直线l 过点(1,2)P ,且与圆C 相切,求直线l 的方程; (Ⅱ)过圆C 上一动点M 作平行于y 轴的直线m ,设m 与x 轴的交点为N ,若向量OQ OM ON =+(O 为坐标原点),求动点Q 的轨迹方程.(Ⅲ)若点R 的坐标为(1,0),在(Ⅱ)的条件下,求RQ 的最小值.10、(天津市六校高三上学期期末联考)椭圆1:2222=+by a x C )0(>>b a 的焦距为4,且以双曲线1422=-x y 的实轴为短轴,斜率为k 的直线l 经过点)1,0(M ,与椭圆C 交于不同两点A 、B .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)当椭圆C 的右焦点F 在以AB 为直径的圆内时,求k 的取值范围.11、(天津市十二区县重点高中高三毕业班第一次联考)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为41.(Ⅰ)求椭圆E 的离心率e ;(Ⅱ)PQ 是圆C :215)1()2(22=-++y x 的一条直径,若椭圆E 经过P ,Q 两点,求椭圆E 的方程.12、(天津市十二区县重点学校高三下学期毕业班联考(二))已知椭圆22122:1(0)x y C a b a b+=>>和圆2222:(0)C x y r r +=>,已知圆2C 的直径是椭圆1C 2倍,且圆2C 的面积为4π,椭圆1C 的离心率为6,过椭圆1C 的上顶点A 有一条斜率为k (0)k >的直线l 与椭圆1C 的另一个交点是B ,与圆2C 相交于点,.E F(I)求椭圆1C 的方程;(II)当37AB EF =时,求直线l 的方程,并求2F AB ∆的面积(其中2F 为椭圆1C 的右焦点).13、(武清区高三5月质量调查(三)) 已知椭圆)0(12222>>=+b a by ax 的左、右焦点分别为21F F 、,在第一象限椭圆上的一点M 满足212F F MF ⊥,且||3||21MF MF =.(1)求椭圆的离心率;(2)设1MF 与y 轴的交点为N ,过点N 与直线1MF 垂直的直线交椭圆于B A ,两点,若175411=⋅+⋅F F ,求椭圆的方程.参考答案一、填空、选择题1、【答案】D2、【答案】D考点:1.双曲线的标准方程及几何性质;2.抛物线的标准方程及几何性质.3、A4、B5、D6、A7、C8、C9、D10、A11、B12、B13、B14、B二、解答题1、【答案】(Ⅰ)22143x y+=(Ⅱ)),46[]46,(+∞--∞【解析】(2)(Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k . 解得2=x ,或346822+-=k k x ,由题意得346822+-=k k x B ,从而34122+-=k ky B . 由(Ⅰ)知,)0,1(F ,设),0(H y H ,有),1(H y FH -=,)3412,3449(222++-=k kk k BF .由HF BF ⊥,得0=⋅HF BF ,所以034123449222=+++-k ky k k H ,解得k k y H 12492-=.因此直线MH 的方程为kk x k y 124912-+-=.设),(M M y x M ,由方程组⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M .在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(M M MM y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k . 所以,直线l 的斜率的取值范围为),46[]46,(+∞--∞ . 考点:椭圆的标准方程和几何性质,直线方程2、【答案】3; (II) 22132x y += ;(III) 23223,,⎛⎛-∞ ⎝. 试题解析:(I) 由已知有2213c a =,又由222a b c =+,可得223a c =,222b c =,设直线FM 的斜率为(0)k k >,则直线FM 的方程为()y k x c =+,由已知有2222221c b k ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭+,解得3k =(II)由(I)得椭圆方程为2222132x y c c+=,直线FM 的方程为()y k x c =+,两个方程联立,消去y ,整理得223250x cx c +-=,解得53x c =-或x c =,因为点M 在第一象限,可得M 的坐标为23c ⎛⎫ ⎪⎝⎭,由222343()03FM c c c ⎛⎫=++-= ⎪⎝⎭,解得1c =,所以椭圆方程为22132x y += (III)设点P 的坐标为(,)x y ,直线FP 的斜率为t ,得1yt x =+,即(1)y t x =+(1)x ≠-,与椭圆方程联立22(1)132y t x x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得22223(1)6x t x ++=,又由已知,得226223(1)x t x -=>+ 312x -<<-或10x -<<, 设直线OP 的斜率为m ,得ym x=,即(0)y mx x =≠,与椭圆方程联立,整理可得22223m x =-. ①当3,12x ⎛⎫∈-- ⎪⎝⎭时,有(1)0y t x =+<,因此0m >,于是2223m x =-223m ∈②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是2223m x =--,得23,m ⎛∈-∞ ⎝综上,直线OP 的斜率的取值范围是23223,,⎛⎛-∞ ⎝ 考点:1.椭圆的标准方程和几何性质;2.直线和圆的位置关系;3.一元二次不等式.3、解:(Ⅰ)∵()()40,,,,,033b Ab P Fc ⎛⎫⎪⎝⎭, ∴()4,0,,33b FA c FP c ⎛⎫=-=-⎪⎝⎭.……………………………………………………………1分由0FA FP ⋅=,得224033b c c -+=.………………………………………………………2分 由点P 在椭圆C 上,得22216199b a b+=,解得22a =.再由222240,332,b c c c b ⎧-+=⎪⎨⎪+=⎩解得21,1c b ==. ∴椭圆C 的方程为2212x y +=.………………………………………………………5分(Ⅱ)当直线l 的斜率存在时,设其方程为y kx m =+,代入椭圆方程,消去y , 整理,得()222214220k x kmx m +++-=.…………………………………………6分 由2216880k m ∆=-+=,得2221m k =+.…………………………………8分 假设存在着定点()()1122,0,,0M M λλ满足题设条件.1M 、2M 到直线l 的距离分别为1d 、2d ,则由()()()()2121212122221111k km k m k m d d k k λλλλλλ++++++⋅===++对于k R ∀∈恒成立,可得121221,0,λλλλ+=⎧⎨+=⎩………………………………………………………10分解得121,1,λλ=⎧⎨=-⎩或121,1.λλ=-⎧⎨=⎩故()()121,0,1,0M M -满足条件.……………………………12分当直线l 的斜率不存在时,经检验,12,M M 仍符合题意.………………………………14分4、解:(Ⅰ)如图,圆E 经过椭圆C 的左、右焦点12F F ,,∴2219(0)24c +-=,解得2c =∵1F E A ,,三点共线, ∴1AF 为圆E 的直径. ∴212AF F F ⊥. ∵2222112981AF AF F F =-=-=, ∴123142AF AF a ==+=+. ∴2a =.由222+a b c =, 得2b =∴椭圆C 的方程为22142x y +=. …………… 5分 (Ⅱ)由(Ⅰ)得,点A 的坐标为(21),, ∵λ(λ0)MN OA =≠ ∴直线l 22l 的方程为22y m =+.联立222142y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩ , 得22220x mx m +-=.设1122()()M x y N x y ,,,,由22(2)4(2)0m m ∆=-->,得22m -<<.∵1221222x x m x x m ⎧+=⎪⎨=-⎪⎩,,∴222222111()4232MN k x x x x x m =+-++-=-111=1. 又点A 到直线l 的距离为63d ,222221162322322(4)(4)2222AMN S MN d m mm m m m ∆==--+=-=1,当且仅当224m =m -,即2m = ∴直线l 的方程为222y =或222y x =. …………… 13分5、解:(Ⅰ)∵22b =,∴1b =.…… 1分又2c e a =,222a b c =+,∴ 22a =. ……3分∴ 椭圆C 的方程为 2212x y +=. …… 4分(Ⅱ)(i )∵直线l :y =kx +m 与圆2223x +y =相切,∴2231m d k =+222(1)3m k =+. ……5分 由2212y =kx +m x y ⎧⎪⎨+=⎪⎩, 消去y 并整理得,222(12)4220k x kmx m +++-=. 设11()A x y ,,22()B x y ,, 则12221224122212km x +x =+k m x x =+k ⎧⎪⎪⎨⎪⎪⎩--. …… 7分 ∵12121212()()OA OB =x x +y y =x x +kx +m kx +m ⋅. 221212(1)()=+k x x +km x +x +m22222224(1)()1212m km =+k +km +m +k +k-- 2222223222(1)2201212m k +k k ===+k +k ----,∴OA OB ⊥. …… 9分(ii )∵直线l :y =kx+m 与椭圆交于不同的两点A B ,,∴222212121122x x +y =+y =,.∴22212211222222222132321323x x +y +AM OA r λ==BMOB rx x +y +---- …… 11分 由(Ⅱ)(i )知1212+=0x x y y ,∴1212=x x y y -,222222121212==(1)(1)22x x x x y y --,即22122142=2+3x x x -.∴2121221+2+323==41+23x x λx . …… 13分∵122x -∴λ的取值范围是122λ≤≤. …… 14分6、(1)由已知可知椭圆过点)23,2(ca A ,代入方程有 14942222=+bc a a ,222223c b a c b +==∴ 224c a =,21=∴e ……5分(2)点)23,(c c A ,直线c x y l +=21:⎪⎪⎩⎪⎪⎨⎧=++=134212222c y c x c x y 解为)0,2(c B -,由已知0=•代入解得2=c …11分 直线042:=+-y x l )3,2(A )0,4(-B 53=AB d1059=-AB P d ,4271059532121=⨯⨯==-∆AB P AB APB d d S ……13分7、(Ⅰ)解:由题意,设抛物线C 的方程为py x 22=(0>p ), 则12=p,2=p , 所以抛物线C 的方程为y x 42=.…………4分(Ⅱ)解:由题意,直线AB 的斜率存在,设1(x A ,)1y ,2(x B ,)2y , 直线AB 的方程为1+=kx y ,…………5分由⎩⎨⎧=+=yx kx y 412,消去y ,整理得0442=--kx x , k x x 421=+,421-=x x ,…………8分从而14221+=-k x x ,…………9分由⎪⎩⎪⎨⎧-==211x y xx y y ,解得点M 的横坐标1112y x x x M -=121114842x x x x -=-=, 同理点N 的横坐标248x x N -=, 所以NM x x MN -=216)(428212121++--=x x x x x x 341282-+=k k , ……11分 令t k =-34,0≠t ,则43+=t k , 当0>t 时,1625222++=t tMN 22>, 当0<t 时,2516)535(222++=t MN 258≥,综上所述,当325-=t ,即34-=k 时,MN 的最小值是258. …………13分 8、(Ⅰ)解:由22=BF ,可知2=a ,…………1分设椭圆方程为12222=+b y x ,代入点34(,)31, 解得12=b ,…………3分所以椭圆的方程为1222=+y x .…………4分(Ⅱ)解:设直线AB 的方程为1=+byc x ,联立方程组⎪⎪⎩⎪⎪⎨⎧=+=+112222b y a x byc x ,得⎪⎪⎩⎪⎪⎨⎧+-=+=222212221)(2c a a c b y c a c a x 或⎩⎨⎧==b y x 220, 所以点A 的坐标为2222(c a c a +,))(2222c a a c b +-,…………7分从而点C 的坐标为2222(c a c a +,))(2222c a c a b +-,…………8分所以直线C F 1的斜率为32223)(c c a c a b +-,直线AB的斜率为c b-, …………10分因为AB C F ⊥1,所以32223)(c c a c a b +-1)(-=-⋅c b,又222c a b -=, 整理得225c a =,55=e…………13分所以椭圆的离心率e 为55.…………14分9、解:(Ⅰ)显然直线l 不垂直于x 轴,设其方程为2(1)y k x -=-,即20kx y k --+= ………2分设圆心到此直线的距离为d ,则2221k d k -+==+,得0k =或43k =-………4分 故所求直线方程为2y =或43100x y +-=. ………5分(Ⅱ)设点M 的坐标为00(,)x y ,Q 点坐标为(,)x y ,则N 点坐标是0(,0)x∵OQ OM ON =+,∴),2(),(00y x y x = 即20xx =,y y =0 ………7分又∵42020=+y x ,∴4422=+y x …………9分由已知,直线m //oy 轴,所以,0≠x ,∴Q 点的轨迹方程是4422=+y x (0≠x ) ………………10分(Ⅲ)设Q 坐标为(x,y),),1(y x -=,RQ 22)1(y x +-=, …………11分又4422=+y x (0≠x )可得:RQ3114344)34(344)1(222≥+-=-+-=x x x . ………………13分[)(]333RQ 34x 4,00,4取到最小值时当=∴⋃-∈x …………14分10、解:(1)∵焦距为4,∴ c=2………………………………………………2分又以双曲线1422=-x y 的实轴为短轴 ∴b=2………………………… 4分∴标准方程为14822=+y x ………………………………………5分 (2)设直线l 方程:y=kx+1,A (x 1,y 1),B (x 2,y 2),由⎪⎩⎪⎨⎧=++=148122y xkx y 得064)21(22=-++kx x k∴x 1+x 2=2214k k +-,x 1x 2=2216k+- ……………………7分由(1)知右焦点F 坐标为(2,0),∵右焦点F 在圆内部,∴BF AF ⋅<0………………………………9分 ∴(x 1 -2)(x 2-2)+ y 1y 2<0即x 1x 2-2(x 1+x 2)+4+k 2 x 1x 2+k (x 1+x 2)+1<0…………………… 10分 ∴222221185214)2(216)1(k k k k k k k +-=++-⋅-++-⋅+<0…………… 12分 ∴k <81……………………………………… 13分11、(I )A()0a ,B()0b ,点M在线段AB 上,满足2BM MA =∴M )3,32(ba……1分412==a b k OM21=∴a b ……2分 23)(12=-=∴a b a c ∴椭圆E 的离心率e 为23 ……4分(II)解法一:由(I )知,椭圆E 的方程为22244xy b . (1) ……5分依题意,圆心)1,2(-C 是线段PQ 的中点,且30=PQ . ……6分 易知,PQ 不与x 轴垂直,设其直线方程为(2)1y k x , ……7分代入(1)得2222(14)8(21)4(21)40k xk k x k b ……8分设),(,),(2211y x Q y x P 则22141)12(8k k k x x ++-=+, 22221414)12(4k b k x x +-+=……9分 由124x x ,得28(21)4,14k k k 解得12k. ……10分 从而21282x x b .于是4254)(25)21(1221221212-=-+=-+=b x x x x x x PQ ……11分 由30=PQ ,得304252=-b ,6422=-b 解得52=b . ……12分故椭圆E 的方程为152022=+y x . ……13分 解法二:由(I )知,椭圆E 的方程为22244xy b .(1) ……5分依题意点Q P 、关于圆)1,2(-C 对称且30=PQ ……6分),(,),(2211y x Q y x P 则⎪⎩⎪⎨⎧=+=+22222221214444by x by x ……7分 两式相减得0)(8)(42121=-+--y y x x 易知PQ 不与x 轴垂直,则21x x ≠ ,212121=--x x y y ……8分∴PQ 的斜率为21,设其直线方程为2211)2(21+=++=x x y ,代入(1)得 028422=-++b x x ∴124x x21282x x b . ……10分于是4254)(25)21(1221221212-=-+=-+=b x x x x x x PQ……11分 由30=PQ ,得304252=-b ,6422=-b 解得52=b . ……12分故椭圆E 的方程为152022=+y x . ……13分 12、解:(Ⅰ)依题意24,0,2r r r ππ=>∴= (1)分222,2r c r c ∴=∴= 2c ∴=………2分又6e =,222a b c +=3,1a b ∴==∴椭圆方程为2213x y += ………4分 (Ⅱ)由1)知圆2C 的圆心(0,0),2,(0,1).O r A =设直线:1l y kx =+圆心O 到直线l 的距离21d k =+, ……………5分22214324211k EF k k +=-=++ ……………6分 22113y kx x y =+⎧⎪⎨+=⎪⎩得22(31)60k x kx ++= 设11(,)B x y 12631k x k -∴=+ …………7分 22222211226166(1)3131k k k k AB x y k k +⎛⎫--⎛⎫∴=+-=+= ⎪ ⎪++⎝⎭⎝⎭ ……………8分 2222611243432371k k k k k AB EF k +++∴===+ 42670k k ∴+-= 22(7)(1)0k k ∴+-= ………10分 2101k k k ∴=>∴=∴直线:1l y x =+ ………11分322AB =,点2F 到直线l 的距离122d =23223(21)2242F AB S ∆∴==…………13分13、(1)由椭圆定义a MF MF 2||||21=+,∵||3||21MF MF =,∴a MF 2||42=,∴2224||16a MF = …………………2分在直角12F MF ∆中,222214||||c MF MF =-,即2224||8c MF =……………4分∴214422=a c ,即22=a c ,∴椭圆的离心率为22…………………5分 (2)∵22=a c ,∴c b c a ==,2,∴椭圆方程为122222=+cy c x ,即022222=-+c y x …………………6分易知点M 的坐标为⎪⎪⎭⎫ ⎝⎛c c 22,,∵点N 是线段2MF 的中点,∴点N 的坐标为⎪⎪⎭⎫⎝⎛c 42,0∵直线1MF 的斜率为42,∴直线AB 的斜率为22-, ∴直线AB 的方程为c x y 4222+-=…………………8分 与椭圆方程联立消去y 得04741722=--c cx x …………………9分设点A 的坐标为()11,y x ,点B 的坐标为()22,y x ,∴1747221⨯-=c x x∵AB 垂直平分线段1MF ,∴172711=⋅=⋅B F A F MB MA …………………10分∴172722,22,2211=⎪⎪⎭⎫ ⎝⎛--⋅⎪⎪⎭⎫ ⎝⎛--c y c x c y c x ∴17274222,4222,2211=⎪⎪⎭⎫ ⎝⎛---⋅⎪⎪⎭⎫ ⎝⎛---c x c x c x c x ∴()()1727422242222121=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--+--c x c x c x c x 化简得17381221=+c x x ,∴173********=+⨯-c c ,∴82=c …………………12分∴8,1622222====c b c a ,∴椭圆的方程为181622=+y x …………………13分。

专题05 圆锥曲线及其性质-2019年高考理数母题题源系列(天津专版)(原卷版)

专题05 圆锥曲线及其性质-2019年高考理数母题题源系列(天津专版)(原卷版)

【母题原题1】【2019年高考天津卷理数】已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 ABC .2 D【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为b y x a =±,则有(1,),(1,)b bA B a a---, ∴2b AB a =,24b a =,2b a =,∴c e a ===D . 【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.【母题原题2】【2018年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .221412x y -= B .221124x y -=专题05 圆锥曲线及其性质C .139-= D .193-= 【答案】C【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b -=可得2b y a=±, 不妨设22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为:0bx ay -=,据此可得21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====, 据此可得:23a =,则双曲线的方程为22139x y -=.故选C .【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可.解答本题时,由题意首先求得A ,B 的坐标,然后利用点到直线距离公式求得b 的值,之后求解a 的值即可确定双曲线方程.【母题原题3】【2017年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F,离心率为.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .148-=D .184-=【答案】B【解析】由题意得2240,14,10()88x y a b c a b c -==⇒===-=--,故选B . 【名师点睛】利用待定系数法求圆锥曲线的方程是高考的常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程(组),解方程(组)求出,a b 的值.另外要注意巧设双曲线方程的技巧:①双曲线过两点可设为221(0)mx ny mn -=>,②与22221x y a b-=共渐近线的双曲线可设为2222x y a b-(0)λλ=≠,③等轴双曲线可设为22(0)x y λλ-=≠.【命题意图】要求掌握三种圆锥曲线(椭圆、双曲线、抛物线)的定义、几何图形、标准方程及简单性质.主要考查考生的数学运算能力及考生对数形结合思想、转化与化归思想的应用.【命题规律】圆锥曲线(椭圆、双曲线、抛物线)的定义、标准方程、几何性质一直是高考的命题热点,其中标准方程和几何性质考查比较频繁;直线与圆锥曲线的位置关系常与向量、圆、三角形等知识综合考查,难度中等偏上. 【答题模板】1.求椭圆的方程有两种方法(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程. (2)待定系数法.一般步骤如下:第一步,作判断.根据条件判断椭圆的焦点是在x 轴上,还是在y 轴上,或者是两个坐标轴上都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22x a +22y b =1(a>b>0)或22x b +22y a=1(a>b>0).第三步,找关系.根据已知条件,建立关于a ,b ,c 的方程(组)(注意椭圆中固有的等量关系c 2=a 2–b 2). 第四步,定结果.解方程组,将解代入所设方程,得所求.注意当椭圆焦点位置不明确时,有两种解决方法:(1)分类讨论;(2)设椭圆方程为2xm+2yn=1(m>0,n>0,m≠n),或Ax2+By2=1(A>0,B>0,且A≠B).2.求椭圆离心率或其范围的方法(1)求出a,b或a,c的值,代入e2=22ca=222–a ba=1–(ba)2直接求;(2)根据条件得到关于a,b,c的齐次等式(不等式),结合b2=a2–c2转化为关于a,c的齐次等式(不等式),然后将该齐次等式(不等式)两边同时除以a或a2转化为关于e或e2的方程(不等式),解方程(不等式)即可得e(e的取值范围);(3)通过取特殊值或特殊位置,求出离心率.3.求双曲线的标准方程的方法(1)定义法.根据双曲线的定义确定a2,b2的值,再结合焦点位置,求出双曲线方程,常用的关系有:①c2=a2+b2;②双曲线上任意一点到双曲线两焦点的距离的差的绝对值等于2a.注意:求轨迹方程时,满足条件:|PF1|–|PF2|=2a(0<2a<|F1F2|)的双曲线为双曲线的一支,应注意合理取舍.(2)待定系数法.一般步骤如下:①判断:根据已知条件,确定双曲线的焦点是在x轴上,还是在y轴上,还是两个坐标轴都有可能;②设:根据①中的判断结果,设出所需的未知数或者标准方程;③列:根据题意,列出关于a,b,c的方程或者方程组;④解:求解得到方程.常见设法:①与双曲线2222–x ya b=1共渐近线的双曲线方程可设为2222–x ya b=λ(λ≠0);②若双曲线的渐近线方程为y=±bax,则双曲线方程可设为2222–x ya b=λ(λ≠0);③若双曲线过两个已知点,则双曲线方程可设为2xm+2yn=1(mn<0);④与双曲线2222–x ya b=1共焦点的双曲线方程可设为2222––x ya kb k+=1(–b2<k<a2);⑤与椭圆22xa+22yb=1(a>b>0)有共同焦点的双曲线方程可设为22–xaλ+22–ybλ=1(b2<λ<a2).注意:当焦点位置不确定时,有两种方法来解决:一种是分类讨论,注意考虑要全面;另一种是如果已知中心在原点,但不能确定焦点的具体位置,可以设双曲线的方程为mx2+ny2=1(mn<0).【知识总结】1.椭圆的几何性质2.椭圆的通径(过焦点且垂直于长轴的弦)长为22ba,通径是最短的焦点弦.3.若P 是椭圆上一点,F 为椭圆的焦点,则|PF|∈[a –c ,a+c ],即椭圆上的点到焦点的距离的最大值为a+c ,最小值为a –c .4.椭圆的焦点三角形:椭圆上的点P (x 0,y )与两焦点构成的△PF 1F 2叫作焦点三角形.如图所示,设∠F 1PF 2=θ.(1)当P 为短轴端点时,θ最大. (2)12PF F S △=12|PF 1|·|PF 2|·sin θ=b 2·sin 1cos θθ+=b 2tan 2θ=c|y 0|,当|y 0|=b ,即P 为短轴端点时,12PF F S △取最大值,最大值为bc .(3)焦点三角形的周长为2(a+c ). 5.双曲线的几何性质6.等轴双曲线(1)定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫作等轴双曲线. (2)性质:①a=b ;②点距离的等比中项. 7.共轭双曲线(1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线. (2)性质:①它们有共同的渐近线; ②它们的四个焦点共圆;③它们的离心率的倒数的平方和等于1. 8.双曲线中常用结论:(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a+c ,|PF 2|min =c –a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为22b a;异支的弦中最短的为实轴,其长为2a .(4)若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则12PF F S △=2tan 2b θ,其中θ为∠F 1PF 2.(5)若P 是双曲线2222–x y a b=1(a>0,b>0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a .9.抛物线的标准方程与几何性质10.抛物线的焦半径与焦点弦抛物线上任意一点P (x 0,y 0)到焦点F 的距离称为焦半径.过抛物线焦点的直线与抛物线相交所形成的线段称为抛物线的焦点弦.设两交点分别为A (x 1,y 1),B (x 2,y 2),则有以下结论:11.抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p>0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则(1)x 1x 2=24p ,y 1y 2=–p 2;(2)|AF|=1?cos p α,|BF|=1cos p α+,弦长|AB|=x 1+x 2+p=22sin pα(α为弦AB 的倾斜角); (3)1||FA +1||FB =2p; (4)以弦AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上.【方法总结】1.椭圆定义的应用(1)利用定义确定平面内的动点的轨迹是否为椭圆.(2)利用定义解决与焦点三角形相关的周长、面积及最值问题.利用定义和余弦定理可求得|PF1|·|PF2|,进而求得焦点三角形的周长和面积.(3)已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解.2.椭圆几何性质的应用技巧(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形.(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如,–a≤x≤a,–b≤y≤b,0<e<1,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.3.双曲线定义的应用(1)根据动点与两定点的距离的差判断动点的轨迹是否为双曲线.(2)利用双曲线的定义解决与双曲线的焦点有关的问题,如最值问题、距离问题.(3)利用双曲线的定义解决问题时应注意三点:①距离之差的绝对值;②2a<|F1F2|;③焦点所在坐标轴的位置.4.双曲线几何性质的应用(1)求双曲线的渐近线的方法求双曲线2222–x ya b=1(a>0,b>0)或2222–y xa b=1(a>0,b>0)的渐近线方程的方法是令右边的常数等于0,即令2222–x ya b=0,得y=±bax;或令2222–y xa b=0,得y=±abx.反之,已知渐近线方程为y=±bax,可设双曲线方程为2222–x ya b=λ(a>0,b>0,λ≠0).(2)求双曲线的离心率或其范围的方法①求a,b,c的值,由22ca=222a ba=1+22ba直接求e.②列出含有a,b,c的齐次方程(或不等式),借助于b2=c2–a2消去b,然后转化成关于e的方程(或不等式)求解.(3)双曲线的渐近线的斜率k 与离心率e 的关系:k=b a 5.利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线. (2)距离问题:涉及抛物线上的点到焦点的距离和点到准线的距离问题时,注意在解题中利用两者之间的相互转化.注意:一定要验证定点是否在定直线上. 6.应用的规律注意:建立函数关系后,一定要根据题目的条件探求自变量的取值范围,即函数的定义域. 7.抛物线的标准方程的求法 (1)定义法根据抛物线的定义,确定p 的值(系数p 是指焦点到准线的距离),再结合焦点位置,求出抛物线方程.标准方程有四种形式,要注意选择. (2)待定系数法①对于焦点在x 轴上的抛物线,若开口方向不确定需分为y 2=2px (p>0)和y 2=–2px (p>0)两种情况求解.②焦点在x 轴上的抛物线方程可设成y 2=mx (m ≠0),若m>0,开口向右;若m<0,开口向左;若m 有两个解,则抛物线的标准方程有两个.同理,焦点在y 轴上的抛物线的方程可以设成x 2=my (m ≠0).如果不确定焦点所在的坐标轴,应考虑x 轴、y 轴两种情况设方程. 8.抛物线的几何性质及其应用(1)与抛物线的焦点弦长有关的问题,可直接应用公式及有关结论求解.解题时,需依据抛物线的标准方程,确定弦长公式是由交点横坐标定还是由交点纵坐标定,是p 与交点横(纵)坐标的和还是与交点横(纵)坐标的差,这是正确解题的关键.(2)抛物线的定义在解决点到焦点距离及点到准线距离问题时经常用到,要学会转化(互化),见准线想焦点,见焦点想准线,许多抛物线问题均可根据定义简捷、直观地求解.“数想形,形悟数,数形结合”是灵活解题的一条捷径.1.【天津市河西区2018–2019学年高三第二学期总复习质量调查(二)数学】已知抛物线22(0)y px p =>与双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线在x 轴上方的一个交点,若直线AFA BC D 2.【天津市部分区2019届高三联考一模数学】已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别是12,F F ,双曲线的渐近线上点()3,4P 满足12PF PF ⊥,则双曲线的方程为A .221169x y -= B .22134x y -= C .221916x y -=D .22143x y -=3.【天津市河北区2019届高三一模数学】在平面直角坐标系中,经过点P ,渐近线方程为y =的双曲线的标准方程为A .22142-=x yB .221714x y -=C .22136x y -=D .221147y x -=4.【天津市红桥区2019届高三一模数学】双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别|为1F 、2F ,点P 在C 上,且123PF PF b +=,1294PF PF ab ⋅=,则双曲线的离心率为 A .43B .53CD5.【天津市部分区2019届高三联考一模数学】已知离心率为53的双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是12,F F ,若点P 是抛物线212y x =的准线与C 的渐近线的一个交点,且满足12PF PF ⊥,则双曲线的方程是A .221169x y -=B .22134x y -=C .221916x y -=D .22143x y -=6.【2019年塘沽一中、育华中学高三毕业班第三次模拟考试数学】已知双曲线22122:1(0,0)x y C a b a b -=>>的左、右焦点分别为1F 、2F ,抛物线2C 的顶点在原点,准线为2a x c=-,若双曲线1C 与抛物线2C 的交点P 满足212PF F F ⊥,则双曲线1C 的离心率为 ABCD .27.【天津市和平区2018–2019学年度第二学期高三年级第三次质量调查数学】设1e ,2e 分别为具有公共焦点1F ,2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足120PF PF ⋅=,则222111e e +的值为 A .12B .13C .2D .不确定8.【天津市北辰区2019届高考模拟考试数学】已知双曲线2222:1x y C a b-=(0,0a b >>)的焦距为2c ,直线l 与双曲线C 的一条斜率为负值的渐近线垂直且在y 轴上的截距为2cb-;以双曲线C 的右焦点为圆心,半焦距为半径的圆Ω与直线l 交于,M N两点,若MN =,则双曲线C 的离心率为 A .35B .53 C .3D .139.【天津市南开中学2019届高三模拟数学】过抛物线24y x =焦点F 的直线与双曲线221(0)y x m m-=>的一条渐近线平行,并交抛物线于,A B 两点,若|||AF BF >且||3AF =,则m 的值为 A .8B .12x xCD .410.【天津市南开区2018~2019学年度高三第二学期基础训练数学】以双曲线()2222:100x y C a b a b-=>>,上一点M 为圆心作圆,该圆与x 轴相切于C 的一个焦点F ,与y 轴交于P Q ,两点,若PQ =,则双曲线C 的离心率是 ABC .2D11.【天津市河北区2019届高中学业水平考试模拟数学】已知椭圆C 的中心在原点,焦点在x 轴上,且短轴的长为2,离心率等于5,则该椭圆的标准方程为A .2215x y +=B .2213x y +=C .2214x y +=D .2214y x += 12.【天津市红桥区2019届高三二模数学】己知点A 是抛物线212(0)y px C p =>︰与双曲线222221(00)x y a C b a b-=>>︰,的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为p ,则双曲线的离心率为A B .2C D13.【天津市和平区2018–2019学年度第二学期高三年级第二次质量调查数学】已知双曲线2222:1x y C a b-=(0,0)a b >>的右焦点为(c,0)F ,直线2a x c=与一条渐近线交于点P ,POF △的面积为2a (O 为原点),则抛物线22by x a=的准线方程为 A .12y =B .1x =C .1x =-D .x =14.【天津市十二重点中学2019届高三下学期毕业班联考(一)数学】已知双曲线22221x y a b-=(0,0)a b >>的一个焦点与抛物线28y x =的焦点F 重合,抛物线的准线与双曲线交于,A B 两点,且OAB △的面积为6(O 为原点),则双曲线的方程为A .221312x y -=B .2213632x y -=C .2213x y -=D .2213y x -=15.【天津市和平区2019届高三下学期第一次质量调查数学】设双曲线221mx ny +=的一个焦点与抛物线218y x =的焦点相同,离心率为2,则抛物线的焦点到双曲线的一条渐近线的距离为A .2 BC .D .16.【天津市十二重点中学2018届高三下学期毕业班联考(二)数学】已知双曲线C :22221(00)x y a b a b -=>>,,其中,双曲线半焦距为c ,若抛物线24y cx =的准线被双曲线C 截得的弦长为22(3ae e 为双曲线C 的离心率),则双曲线C的渐近线方程为A .12y x =±B .2y x =±C .32y x =±D .y x = 17.【天津市七校(静海一中、宝坻一中、杨村一中等)2019届高三上学期期末考试数学】抛物线2(0)y ax a =>的准线与双曲线22:184x yC -=的两条渐近线所围成的三角形面积为,则a 的值为 A .8 B .6 C .4D .218.【天津市河北区2019届高中学业水平考试模拟数学】抛物线22y x =-的准线方程是A .2y x =±B .y =C .12x =D .12x =-19.【天津南开中学第五次月考数学】已知双曲线()2222100x y a b a b-=>>,的左右焦点分别为()()1200F c F c -,,,,若直线2y x =与双曲线的一个交点P 的横坐标恰好为c ,则双曲线的离心率为A B .2C 1D 120.【天津市部分区2019年高三质量调查试题(二)数学】已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F ,,以线段12F F 为直径的圆与双曲线渐近线的一个交点的坐标为(4,3),则此双曲线的方程为A .221169x y -=B .22143x y -=C .221916x y -=D .22134x y -=21.【天津市南开区2019届高三第二学期模拟考试(一)数学】已知P 为抛物线2:C y =上一点,点M),若PM =,则△POM (O 为坐标原点)的面积为___________.。

2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)

2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)

圆锥曲线中的“设而不求”考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.、解题秘籍(一)“设而不求”的实质及注意事项1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.1(2023届山西省临汾市等联考高三上学期期中)已知椭圆C :x 2a2+y 2b 2=1a >b >0 的长轴长为4,F 1,F 2为C 的左、右焦点,点P x 0,y 0 y 0≠0 在C 上运动,且cos ∠F 1PF 2的最小值为12.连接PF 1,PF 2并延长分别交椭圆C 于M ,N 两点.(1)求C 的方程;(2)证明:S △OPF 1S △OMF1+S△OPN S △OF 2N 为定值.2024年高考数学专项复习圆锥曲线中的“设而不求”(解析版)2(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.(二)设点的坐标在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.3(2023届湖南省郴州市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的离心率为22,过坐标原点O 的直线交椭圆E 于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,△PAC 的面积为2.(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:∠APB 是否为定值,若是,求出这个定值;若不是,说明理由.4(2023届江苏省南通市如皋市高三上学期期中)作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△PAB 的内切圆的圆心在一条定直线上.(三)设参数在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.5(2022届湖南省益阳市高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1,F 2,其离心率为32,P 为椭圆C 上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆C 的方程;(2)过右焦点F 2的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA ⋅QB为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.(四)中点弦问题中的设而不求与中点弦有个的问题一般是设出弦端点坐标P x 1,y1,Q x2,y2代入圆锥曲线方程作差,得到关于y1-y2x1-x2,x1+x2,y1+y2的关系式,再结合题中条件求解.6中心在原点的双曲线E焦点在x轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A2,3;②该曲线的渐近线与圆x2-8x+y2+4=0相切;③点P在该双曲线上,F1、F2为该双曲线的焦点,当点P的纵坐标为32时,恰好PF1⊥PF2.(1)求双曲线E的标准方程;(2)过定点Q1,1能否作直线l,使l与此双曲线相交于Q1、Q2两点,且Q是弦Q1Q2的中点?若存在,求出l的方程;若不存在,说明理由.三、跟踪检测1(2023届河南省洛平许济高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,离心率为12,上顶点为0,3 .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,与y 轴交于点M ,若MP =λPF ,MQ =μQF,判断λ+μ是否为定值?并说明理由.2(2023届江西省南昌市金太阳高三上学期10月联考)如图,长轴长为4的椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 与y 轴分别交于M ,N 两点,当直线PQ 的斜率为22时,PQ =23.(1)求椭圆C 的方程.(2)试问是否存在定点T ,使得∠MTN =90°恒成立?若存在,求出定点T 的坐标;若不存在,说明理由.3(2023届黑龙江省大庆铁人中学高三上学期月考)已知椭圆C:x2a2+y2b2=1a>b>0的离心率为12,椭圆的短轴端点与双曲线y22-x2=1的焦点重合,过点P4,0且不垂直于x轴的直线l与椭圆相交于A,B两点.(1)求椭圆C的方程;(2)若点B关于x轴的对称点为点E,证明:直线AE与x轴交于定点.4(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C:x2a2-y2b2=1经过点2,-3,两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程.(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M m,0,使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.5(2023届内蒙古自治区赤峰市高三上学期月考)平面内一动点P到定直线x=4的距离,是它与定点F1,0的距离的两倍.(1)求点P的轨迹方程C;(2)过F点作两条互相垂直的直线l1,l2(直线l1不与x轴垂直).其中,直线l1交曲线C于A,B两点,直线l2交曲线C于E,N两点,直线l2与直线x=m m>2交于点M,若直线MB,MF,MA的斜率k MB,k MF,k MA构成等差数列,求m的值.6(2023届福建省福州华侨中学高三上学期考试)在平面直角坐标系xOy中,已知点F(2,0),直线l:x=12,点M到l的距离为d,若点M满足|MF|=2d,记M的轨迹为C.(1)求C的方程;(2)过点F(2,0)且斜率不为0的直线与C交于P,Q两点,设A(-1,0),证明:以P,Q为直径的圆经过点A.7(2023届河南省安阳市高三上学期10月月考)已知椭圆M1:x2a2+y2b2=1a>b>0的左、右焦点分别为F1,F2,F1F2=2,面积为487的正方形ABCD的顶点都在M1上.(1)求M1的方程;(2)已知P为椭圆M2:x22a2+y22b2=1上一点,过点P作M1的两条切线l1和l2,若l1,l2的斜率分别为k1,k2,求证:k1k2为定值.8(2023届浙江省浙里卷天下高三上学期10月测试)已知F1,F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1(-1,0)且与x轴不重合的直线与椭圆C交于A,B两点,△ABF2的周长为8.(1)若△ABF2的面积为1227,求直线AB的方程;(2)过A,B两点分别作直线x=-4的垂线,垂足分别是E,F,证明:直线EB与AF交于定点.9(2023届江苏省南京市六校高三上学期10月联考)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点P 2,33(1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为k 1,k 2的两直线l 1与l 2,直线l 1交双曲线Γ于A ,B 两点,直线l 2交双曲线Γ于C ,D 两点,设M ,N 分别为AB 与CD 的中点,若k 1⋅k 2=-1,试求△OMN 与△FMN 的面积之比.10(2022届北京市海淀区高三上学期期末)已知点A 0,-1 在椭圆C :x 23+y 2b 2=1上.(1)求椭圆C 的方程和离心率;(2)设直线l :y =k x -1 (其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N .当△AMN 的面积为33时,求k 的值.11(2022届天津市第二中学高三上学期12月月考)已知椭圆x2a2+y2b2=1a>b>0的长轴长是4,且过点B0,1.(1)求椭圆的标准方程;(2)直线l:y=k x+2交椭圆于P,Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.12(2022届广东省华南师范大学附属中学高三上学期1月模拟)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为12,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得弦的长度为42.(1)求椭圆C1和抛物线C2的方程.(2)过点A(-4,0)的直线l与椭圆C1交于M,N两点,点M关于x轴的对称点为E.当直线l绕点A旋转时,直线EN是否经过一定点?请判断并证明你的结论.13(2022届河北省高三上学期省级联测)已知椭圆P焦点分别是F1(0,-3)和F2(0,3),直线y= 3与椭圆P相交所得的弦长为1.(1)求椭圆P的标准方程;(2)将椭圆P绕原点逆时针旋转90°得到椭圆Q,在椭圆Q上存在A,B,C三点,且坐标原点为△ABC的重心,求△ABC的面积.14(2022届广东省佛山市高三上学期期末)已知双曲线C的渐近线方程为y=±33x,且过点P(3,2).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ与C交于另一点D,求证:直线AD过定点.15(2022届江苏省盐城市、南京市高三上学期1月模拟)设双曲线C:x2a2-y2b2=1(a,b>0)的右顶点为A,虚轴长为2,两准线间的距离为26 3.(1)求双曲线C的方程;(2)设动直线l与双曲线C交于P,Q两点,已知AP⊥AQ,设点A到动直线l的距离为d,求d的最大值.16(2022届浙江省普通高中强基联盟高三上学期统测)如图,已知椭圆C1:x24+y23=1,椭圆C2:y29+x24=1,A-2,0、B2,0.P为椭圆C2上动点且在第一象限,直线PA、PB分别交椭圆C1于E、F两点,连接EF交x轴于Q点.过B点作BH交椭圆C1于G,且BH⎳PA.(1)证明:k BF⋅k BG为定值;(2)证明直线GF过定点,并求出该定点;(3)若记P、Q两点的横坐标分别为x P、x Q,证明:x P x Q为定值.17(2022届湖北省新高考联考协作体高三上学期12月联考)已知圆O :x 2+y 2=2,椭圆C :x 2a 2+y 2b2=1a >b >2 的离心率为22,P 是C 上的一点,A 是圆O 上的一点,PA 的最大值为6+2.(1)求椭圆C 的方程;(2)点M 是C 上异于P 的一点,PM 与圆O 相切于点N ,证明:PO 2=PM ⋅PN .18已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为8,离心率e =54.(1)求双曲线C 的方程;(2)直线l 与双曲线C 相交于P ,Q 两点,弦PQ 的中点坐标为A 8,3 ,求直线l 的方程.圆锥曲线中的“设而不求”考情分析研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.、解题秘籍(一)“设而不求”的实质及注意事项1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.1(2023届山西省临汾市等联考高三上学期期中)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的长轴长为4,F 1,F 2为C 的左、右焦点,点P x 0,y 0 y 0≠0 在C 上运动,且cos ∠F 1PF 2的最小值为12.连接PF 1,PF 2并延长分别交椭圆C 于M ,N 两点.(1)求C 的方程;(2)证明:S △OPF 1S △OMF 1+S △OPN S △OF 2N为定值.【解析】(1)由题意得a =2,设PF 1 ,PF 2 的长分别为m ,n ,m +n =2a =4则cos ∠F 1PF 2=m 2+n 2-4c 22mn =m +n 2-4c 2-2mn 2mn =2b 2mn-1≥2b 2m +n 22-1=2b 2a2-1,当且仅当m=n 时取等号,从而2b 2a 2-1=12,得b 2a 2=34,∴b 2=3,则椭圆的标准方程为x 24+y 23=1;(2)由(1)得F 1-1,0 ,F 21,0 ,设M x 1,y 1 ,N x 2,y 2 ,设直线PM 的方程为x =x 0+1y 0y -1,直线PN 的方程为x =x 0-1y 0y +1,由x =x 0+1y 0y -1x 24+y 23=1,得3x 0+1 2y 02+4 y 2-6x 0+1 y 0y -9=0,则y 0y 1=-93x 0+1 2y 02+4=-9y 023x 0+1 2+4y 02=-9y 023x 02+4y 02+6x 0+3=-3y 022x 0+5,∴y 1=-3y 02x 0+5,同理可得y 2=-3y 05-2x 0,所以S △OPF 1S △OMF 1+S △OPN S △OF 2N =12OF 1 y 0 12OF 1 y 1 +12OF 2y 0 +y 2 12OF 2 y 2 =-y 0y 1+y 0y 2+1=-y 0-3y 02x 0+5+y 0-3y 05-2x 0+1=133.所以S △OPF 1S △OMF 1+S △OPN S △OF 2N 为定值133.2(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.【解析】(1)∵椭圆的焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆的方程为y 22+x 2=1,当直线l 与x 轴垂直时与题意不符,设直线l 的方程为y =kx +1,C x 1,y 1 ,D x 2,y 2 ,将直线l 的方程代入椭圆的方程化简得k 2+2 x 2+2kx -1=0,则x 1+x 2=-2k k 2+2,x 1⋅x 2=-1k 2+2,∴CD =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅-2k k 2+22+4⋅1k 2+2=22(k 2+1)k 2+2=322,解得k =±2.∴直线l 的方程为y =±2x +1;(2)当l ⊥x 轴时,AC ⎳BD ,不符合题意,当l 与x 轴不垂直时,设l :y =kx +t ,则P -tk ,0 ,设C x 1,y 1 ,D x 2,y 2 ,联立方程组y =kx +tx 2+y 22=1 得2+k 2 x 2+2ktx +t 2-2=0,∴x 1+x 2=-2kt 2+k 2,x 1x 2=t 2-22+k 2,又直线AD :y =y 2x 2+1(x +1),直线BC :y =y 1x 1-1(x -1),由y =y2x 2+1(x +1)y =y 1x 1-1(x -1) 可得y 2x 2+1(x +1)=y 1x 1-1(x -1),即kx 2+t x 2+1(x +1)=kx 1+t x 1-1(x -1),kx 2+t x 1-1 (x +1)=kx 1+t x 2+1 (x -1),kx 1x 2-kx 2+tx 1-t x +1 =kx 1x 2+kx 1+tx 2+t x -1 ,k x 1+x 2 +t x 2-x 1 +2t x =2kx 1x 2-k x 2-x 1 +t x 1+x 2 ,k ⋅-2kt 2+k 2+t x 2-x 1 +2t x =2k ⋅t 2-22+k 2-k x 2-x 1 +t ⋅-2kt 2+k 2,4t 2+k 2+t x 2-x 1 x =-4k 2+k 2-k x 2-x 1 ,即t 42+k 2+x 2-x 1 x =-k 42+k 2+x 2-x 1 ,得x =-k t,∴Q 点坐标为Q -kt,y Q ,∴OP ⋅OQ =-t k ,0 ⋅-k t ,y Q =-t k-kt +0⋅y Q =1,所以OP ⋅OQ=1为定值.(二)设点的坐标在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.3(2023届湖南省郴州市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的离心率为22,过坐标原点O 的直线交椭圆E 于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC .当C 为椭圆的右焦点时,△PAC 的面积为2.(1)求椭圆E 的方程;(2)若B 为AC 的延长线与椭圆E 的交点,试问:∠APB 是否为定值,若是,求出这个定值;若不是,说明理由.【解析】(1)∵椭圆离心率e =c a =22,∴c 2=12a 2,则b 2=a 2-c 2=12a 2,当C 为椭圆右焦点时,PC =b 2a =12a ;∵S △PAC =2S △POC =2×12c ⋅12a =12ac =24a 2=2,解得:a 2=4,∴b 2=2,∴椭圆E 的方程为:x 24+y 22=1.(2)由题意可设直线AP :y =kx k >0 ,P x 0,kx 0 ,B x 1,y 1 ,则A -x 0,-kx 0 ,C x 0,0 ,∴k AC =kx 0x 0+x0=k2,∴直线AC :y =k2x -x 0 ;由y =k 2x -x 0x24+y22=1得:k 2+2 x 2-2k 2x 0x +k 2x 20-8=0,∴-x 0+x 1=2k 2x 0k 2+2,则x 1=2k 2x 0k 2+2+x 0,∴y 1=k 2x 1-x 0 =k 22k 2x 0k 2+2+x 0-x 0=k 3x 0k 2+2,∴B 2k 2x 0k 2+2+x 0,k 3x 0k 2+2;∴PB =2k 2x 0k 2+2,-2kx 0k 2+2,又PA =-2x 0,-2kx 0 ,∴PA ⋅PB =-2x 0⋅2k 2x 0k 2+2+-2kx 0 ⋅-2kx 0k 2+2=0,则PA ⊥PB ,∴∠APB 为定值90°.4(2023届江苏省南通市如皋市高三上学期期中)作斜率为32的直线l 与椭圆C :x 24+y 29=1交于A ,B 两点,且P 2,322在直线l 的左上方.(1)当直线l 与椭圆C 有两个公共点时,证明直线l 与椭圆C 截得的线段AB 的中点在一条直线上;(2)证明:△PAB 的内切圆的圆心在一条定直线上.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,AB 中点坐标为x 0,y 0 ,AB :y =32x +m 所以有x 0=x 1+x 22y 0=y 1+y 22,联立x 24+y 29=1y =32x +m,得9x 2+6mx +2m 2-18=0,得Δ=6m 2-4×92m 2-18 >0,得m 2<18,由韦达定理可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以y 1+y 2=32x 1+m +32x 2+m =32x 1+x 2 +2m =m ,所以x 0=-m 3y 0=m 2,化简得:y 0=-32x 0,所以线段AB 的中点在直线y =-32x 上.(2)由题可知PA ,PB 的斜率分别为k PA =y 1-322x 1-2,k PB =y 2-322x 2-2,所以k PA +k PB =y 1-322x 1-2+y 2-322x 2-2=y 1-322 x 2-2 +y 2-322 x 1-2x 1x 2-2x 1+x 1 +2,因为y 1=32x 1+m ,y 2=32x 2+m 得k PA +k PB =3x 1x 2+m -32 x 1+x 1 -22m +6x 1x 2-2x 1+x 1 +2由(1)可知x 1+x 2=-2m 3,x 1x 2=2m 2-189,所以k PA +k PB =32m 2-189 +m -32 -23m -22m +62m 2-189-2-23m+2=0,又因为P 2,322在直线l 的左上方,所以∠APB 的角平分线与y 轴平行,所以△PAB 的内切圆的圆心在x =2这条直线上.(三)设参数在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.5(2022届湖南省益阳市高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1,F 2,其离心率为32,P 为椭圆C 上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆C 的方程;(2)过右焦点F 2的直线l 与椭圆C 交于A ,B 两点,试问:在x 轴上是否存在定点Q ,使得QA ⋅QB为定值?若存在,求出点Q 的坐标;若不存在,请说明理由.【解析】(1)设椭圆C 的半焦距为c ,因离心率为32,则c a =32,由椭圆性质知,椭圆短轴的端点到直线F 1F 2的距离最大,则有S △F 1PF 2max =12⋅2c ⋅b =bc ,于是得bc =3,又a 2=b 2+c 2,联立解得a =2,b =1,c =3,所以椭圆C 的方程为:x 24+y 2=1.(2)由(1)知,点F 23,0 ,当直线斜率存在时,不妨设l :y =k (x -3),A x 1,y 1 ,B x 2,y 2 ,由y =k (x -3)x 2+4y 2=4消去y 并整理得,(1+4k 2)x 2-83k 2x +12k 2-4=0,x 1+x 2=83k 21+4k 2,x 1x 2=12k 2-41+4k2,假定在x 轴上存在定点Q 满足条件,设点Q (t ,0),则QA ⋅QB=(x 1-t )(x 2-t )+y 1y 2=x 1x 2-t (x 1+x 2)+t 2+k 2(x 1-3)(x 2-3)=(1+k 2)x 1x 2-(3k 2+t )(x 1+x 2)+t 2+3k 2=(1+k 2)⋅12k 2-41+4k 2-(3k 2+t )⋅83k 21+4k 2+t 2+3k2=(4t 2-83t +11)k 2+t 2-41+4k 2,当t 2-4=4t 2-83t +114,即t =938时,QA ⋅QB =t 2-4=-1364,当直线l 斜率不存在时,直线l :x =-3与椭圆C 交于点A ,B ,由对称性不妨令A 3,12 ,B 3,-12,当点Q 坐标为938,0时,QA =-38,12 ,QB =-38,-12 ,QA ⋅QB =-38,12⋅-38,-12 =-1364,所以存在定点Q 938,0,使得QA ⋅QB 为定值-1364.(四)中点弦问题中的设而不求与中点弦有个的问题一般是设出弦端点坐标P x 1,y 1 ,Q x 2,y 2 代入圆锥曲线方程作差,得到关于y 1-y 2x 1-x 2,x 1+x 2,y 1+y 2的关系式,再结合题中条件求解.6中心在原点的双曲线E 焦点在x 轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A 2,3 ;②该曲线的渐近线与圆x 2-8x +y 2+4=0相切;③点P 在该双曲线上,F 1、F 2为该双曲线的焦点,当点P 的纵坐标为32时,恰好PF 1⊥PF 2.(1)求双曲线E 的标准方程;(2)过定点Q 1,1 能否作直线l ,使l 与此双曲线相交于Q 1、Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出l 的方程;若不存在,说明理由.【解析】(1)设双曲线E 的标准方程为x 2a 2-y 2b 2=1a >b >0 .选①:由题意可知,双曲线E 的两个焦点分别为F 1-2,0 、F 22,0 ,由双曲线的定义可得2a =AF 1 -AF 2 =42+32-3 =2,则a =1,故b =c 2-a 2=3,所以,双曲线E 的标准方程为x 2-y 23=1.选②:圆x 2-8x +y 2+4=0的标准方程为x -4 2+y 2=12,圆心为4,0 ,半径为23,双曲线E 的渐近线方程为y =±bax ,由题意可得4b a 1+b a2=23,解得ba=3,即b =3a ,因为c =a 2+b 2=2a =2,则a =1,b =3,因此,双曲线E 的标准方程为x 2-y 23=1.选③:由勾股定理可得PF 1 2+PF 2 2=4c 2=16=PF 1 -PF 2 2+2PF 1 ⋅PF 2 =4a 2+2PF 1 ⋅PF 2 ,所以,PF 1 ⋅PF 2 =2c 2-a 2 =2b 2,则S △F 1PF 2=12PF 1 ⋅PF 2 =b 2=12×32×4,则b =3,故a =c 2-b 2=1,所以,双曲线E 的标准方程为x 2-y 23=1.(2)假设满足条件的直线l 存在,设点Q 1x 1,y 1 、Q 2x 2,y 2 ,则x 1+x 2=2y 1+y 2=2,由题意可得x 21-y 213=1x 22-y 223=1,两式作差得x 1-x 2 x 1+x 2 =y 1-y 2 y 1+y 23,所以,直线l 的斜率为k =y 1-y 2x 1-x 2=3,所以,直线l 的方程为y -1=3x -1 ,即y =3x -2.联立y =3x -2x 2-y 23=1 ,整理可得6x 2-12x +7=0,Δ=122-4×6×7<0,因此,直线l 不存在.三、跟踪检测1(2023届河南省洛平许济高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,离心率为12,上顶点为0,3 .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于P ,Q 两点,与y 轴交于点M ,若MP =λPF ,MQ =μQF,判断λ+μ是否为定值?并说明理由.【解析】(1)由题意可得b =3e =c a =12a 2=b 2+c 2,解得a =2b =3c =1,故椭圆C 的方程x 24+y 23=1.(2)λ+μ为定值-83,理由如下:由(1)可得F 1,0 ,由题意可知直线l 的斜率存在,设直线l :y =k x -1 ,P x 1,y 1 ,Q x 2,y 2 ,则M 0,-k ,联立方程y =k x -1x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2x +4k 2-12=0,则Δ=-8k 2 2-44k 2+3 4k 2-12 =144k 2+1 >0,x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,MP =x 1,y 1+k ,PF =1-x 1,-y 1 ,MQ =x 2,y 2+k ,QF=1-x 2,-y 2 ,∵MP =λPF ,MQ =μQF ,则x 1=λ1-x 1 x 2=μ1-x 2 ,可得λ=x11-x 1μ=x 21-x2,λ+μ=x 11-x 1+x 21-x 2=x 1+x 2 -2x 1x 21-x 1+x 2 +x 1x 2=8k 24k 2+3-24k 2-12 4k 2+31-8k 24k 2+3+4k 2-124k 2+3=-83(定值).2(2023届江西省南昌市金太阳高三上学期10月联考)如图,长轴长为4的椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 与y 轴分别交于M ,N 两点,当直线PQ 的斜率为22时,PQ =23.(1)求椭圆C 的方程.(2)试问是否存在定点T ,使得∠MTN =90°恒成立?若存在,求出定点T 的坐标;若不存在,说明理由.【解析】(1)由题意可知2a =4,a =2,则椭圆方程C :x 2a 2+y 2b 2=1a >b >0 即x 24+y 2b 2=1,当直线PQ 的斜率为22时,PQ =23,故设P x 0,22x 0 ,∴x 20+22x 0 2=3,解得x 20=2,将P x 0,22x 0 代入x 24+y 2b 2=1得x 024+x 022b 2=1,即24+22b2=1,故b 2=2,所以椭圆的标准方程为x 24+y 22=1;(2)设P (x 0,y 0),x 0∈[-2,2],则Q (-x 0,-y 0),则x 204+y 202=1,∴x 20+2y 20=4,由椭圆方程x 24+y 22=1可得A (-2,0),∴直线PA 方程为︰y =y 0x 0+2(x +2),令x =0可得M 0,2y 0x 0+2,直线QA 方程为:y =y 0x 0-2(x +2),令x =0得N 0,2y 0x 0-2,假设存在定点T ,使得∠MTN =90°,则定点T 必在以MN 为直径的圆上,以MN 为直径的圆为x 2+y -2x 0y 0x 02-42=16y 02x 20-42,即x 2+y 2-4x 0y 0x 20-4y +4y 20x 20-4=0,∵x 20+2y 20=4,即x 20-4=-2y 20,∴x 2+y 2+2x 0y 0y -2=0,令y =0,则x 2-2=0,解得x =±2,∴以MN 为直径的圆过定点(±2,0),即存在定点T (±2,0),使得∠MTN =90°.3(2023届黑龙江省大庆铁人中学高三上学期月考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的离心率为12,椭圆的短轴端点与双曲线y 22-x 2=1的焦点重合,过点P 4,0 且不垂直于x 轴的直线l 与椭圆相交于A ,B 两点.(1)求椭圆C 的方程;(2)若点B 关于x 轴的对称点为点E ,证明:直线AE 与x 轴交于定点.【解析】(1)由双曲线y 22-x 2=1得焦点0,±3 ,得b =3,由题意可得b =3a 2=b 2+c 2e =c a =12 ,解得a =2,c =1,故椭圆C 的方程为;x 24+y 23=1.(2)设直线l :y =k x -4 ,点A x 1,y 1 ,B x 2,y 2 ,则点E x 2,-y 2 .由y =k x -4x 24+y 23=1,得4k 2+3 x 2-32k 2x +64k 2-12=0,Δ=32k 2 2-44k 2+3 64k 2-12 >0,解得-12<k <12,从而x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3,直线AE 的方程为y -y 1=y 1+y 2x 1-x 2x -x 1 ,令y =0得x =x 1y 2+x 2y 1y 1+y 2,又∵y 1=k x 1-4 ,y 2=k x 2-4 ,则x =kx 1x 2-4 +kx 2x 1-4 k x 1-4 +k x 2-4 =2x 1x 2-4x 1+x 2x 1+x 2-8,即x =2⋅64k 2-124k 2+3-4⋅32k 24k 2+332k 24k 2+3-8=1,故直线AE 与x 轴交于定点1,0 .4(2023届江西省赣州厚德外国语学校、丰城中学高三上学期10月联考)已知双曲线C :x 2a 2-y 2b 2=1经过点2,-3 ,两条渐近线的夹角为60°,直线l 交双曲线于A ,B 两点.(1)求双曲线C 的方程.(2)若动直线l 经过双曲线的右焦点F 2,是否存在x 轴上的定点M m ,0 ,使得以线段AB 为直径的圆恒过M 点?若存在,求实数m 的值;若不存在,请说明理由.【解析】(1)∵两条渐近线的夹角为60°,∴渐近线的斜率±b a =±3或±33,即b =3a 或b =33a ;当b =3a 时,由4a 2-9b 2=1得:a 2=1,b 2=3,∴双曲线C 的方程为:x 2-y 23=1;当b =33a 时,方程4a 2-9b2=1无解;综上所述:∴双曲线C 的方程为:x 2-y 23=1.(2)由题意得:F 22,0 ,假设存在定点M m ,0 满足题意,则MA ⋅MB =0恒成立;方法一:①当直线l 斜率存在时,设l :y =k x -2 ,A x 1,y 1 ,B x 2,y 2 ,由y =k x -2x 2-y 23=1得:3-k 2x 2+4k 2x -4k 2+3 =0,∴3-k 2≠0Δ=361+k 2 >0 ,∴x 1+x 2=4k 2k 2-3,x 1x 2=4k 2+3k 2-3,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+k 2x 1x 2-2x 1+x 2 +4 =1+k 2 x 1x 2-2k 2+m x 1+x 2 +4k 2=4k 2+3 1+k 2k 2-3-4k 22k 2+mk 2-3+m 2+4k 2=0,∴4k 2+3 1+k 2 -4k 22k 2+m +m 2+4k 2 k 2-3 =0,整理可得:k 2m 2-4m -5 +3-3m 2 =0,由m 2-4m -5=03-3m 2=0得:m =-1;∴当m =-1时,MA ⋅MB=0恒成立;②当直线l 斜率不存在时,l :x =2,则A 2,3 ,B 2,-3 ,当M -1,0 时,MA =3,3 ,MB =3,-3 ,∴MA ⋅MB=0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.方法二:①当直线l 斜率为0时,l :y =0,则A -1,0 ,B 1,0 ,∵M m ,0 ,∴MA =-1-m ,0 ,MB=1-m ,0 ,∴MA ⋅MB=m 2-1=0,解得:m =±1;②当直线l 斜率不为0时,设l :x =ty +2,A x 1,y 1 ,B x 2,y 2 ,由x =ty +2x 2-y 23=1得:3t 2-1 y 2+12ty +9=0,∴3t 2-1≠0Δ=123t 2+3 >0 ,∴y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,∴MA ⋅MB=x 1-m x 2-m +y 1y 2=x 1x 2-m x 1+x 2 +m 2+y 1y 2=ty 1+2 ty 2+2 -m ty 1+2+ty 2+2+m 2+y 1y 2=t 2+1 y 1y 2+2t -mt y 1+y 2 +4-4m +m 2=9t 2+1 3t 2-1-12t 2t -mt 3t 2-1+4-4m +m 2=12m -15 t2+93t 2-1+2-m 2=0;当12m -153=9-1,即m =-1时,MA ⋅MB =0成立;综上所述:存在M -1,0 ,使得以线段AB 为直径的圆恒过M 点.5(2023届内蒙古自治区赤峰市高三上学期月考)平面内一动点P 到定直线x =4的距离,是它与定点F 1,0 的距离的两倍.(1)求点P 的轨迹方程C ;(2)过F 点作两条互相垂直的直线l 1,l 2(直线l 1不与x 轴垂直).其中,直线l 1交曲线C 于A ,B 两点,直线l 2交曲线C 于E ,N 两点,直线l 2与直线x =m m >2 交于点M ,若直线MB ,MF ,MA 的斜率k MB ,k MF ,k MA 构成等差数列,求m 的值.【解析】(1)设点P x ,y ,由题,有PFx -4 =12,即x -1 2+y 2x -4=12,解得3x 2+4y 2=12,所以所求P 点轨迹方程为x 24+y 23=1(2)由题,直线l 1的斜率存在且不为0,设直线l 1的方程为y =k x -1 ,与曲线C 联立方程组得y =k x -1x 24+y 23=1,解得4k 2+3 x 2-8k 2x +4k 2-12=0,设A x 1,y 1 ,B x 2,y 2 ,则有x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3依题意有直线l 2的斜率为-1k ,则直线l 2的方程为y =-1k x -1 ,令x =m ,则有M 点的坐标为m ,-m -1k,由题,k MF =m -1k 1-m =-1k ,k MA +k MB =y 1+m -1kx 1-m+y 2+m -1kx 2-m=y 1x 1-m +y 2x 2-m +1k m -1x 1-m+m -1x 2-m=k x 1-1 x 1-m +k x 2-1 x 2-m +1k m -1x 1-m+m -1x 2-m=k ×2x 1x 2-1+m x 1+x 2 +2m x 1x 2-x 1+x 2 m +m 2+1k ×m -1 x 1+x 2-2m x 1x 2-x 1+x 2 m +m 2=k ×6m -244k 2+34k 2-124k 2+3-m ×8k 24k 2+3+m2+1k×m -18k 24k 2+3-2m4k 2-124k 2+3-m ×8k 24k 2+3+m 2,因为2k MF =k MA +k MB ,所以k ×6m -244k 2+34k 2-124k 2+3-m ×8k 24k 2+3+m 2+1k×m -18k 24k 2+3-2m4k 2-124k 2+3-m ×8k 24k 2+3+m 2=-2k解得m -4 k 2+1 =0,则必有m -4=0,所以m =4.6(2023届福建省福州华侨中学高三上学期考试)在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =12,点M 到l 的距离为d ,若点M 满足|MF |=2d ,记M 的轨迹为C .(1)求C 的方程;(2)过点F (2,0)且斜率不为0的直线与C 交于P ,Q 两点,设A (-1,0),证明:以P ,Q 为直径的圆经过点A .【解析】(1)设点M x ,y ,则d =x -12,MF =(x -2)2+y 2,由MF =2d ,得(x -2)2+y 2=2x -12,两边平方整理得3x 2-y 2=3,则所求曲线C 的方程为x 2-y 23=1.(2)设直线m 的方程为x =ty +2,P x 1,y 1 ,Q x 2,y 2 ,联立方程x =ty +2,3x 2-y 2=3,消去x 并整理得3t 2-1 y 2+12ty +9=0,,因为直线m 与C 交于两点,故t ≠±33,此时Δ=(12t )2-43t 2-1 ⋅9=36t 2+1 >0,所以y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,而x 1+x 2=t y 1+y 2 +4,x 1x 2=ty 1+2 ty 2+2 =t 2y 1y 2+2t y 1+y 2 +4.又AP =x 1+1,y 1 ,AQ=x 2+1,y 2 ,所以AP ⋅AQ=x 1+1 x 2+1 +y 1y 2=y 1y 2+x 1+x 2+x 1x 2+1=t 2+1 y 1y 2+3t y 1+y 2 +9=9t 2+93t 2-1-36t 23t 2-1+9=9-3t 2+1 3t 2-1+9=0.所以AP ⊥AQ ,即以P ,Q 为直径的圆经过点A .7(2023届河南省安阳市高三上学期10月月考)已知椭圆M 1:x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,F 1F 2 =2,面积为487的正方形ABCD 的顶点都在M 1上.(1)求M 1的方程;(2)已知P 为椭圆M 2:x 22a 2+y 22b 2=1上一点,过点P 作M 1的两条切线l 1和l 2,若l 1,l 2的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)根据对称性,不妨设正方形的一个顶点为A x ,x ,由x 2a 2+x 2b 2=1,得x 2=a 2b 2a 2+b 2,所以2a 2b 2a 2+b 2×2a 2b 2a 2+b2=487,整理得12a 2+b 2 =7a 2b 2.①又a 2-b 2=F 1F 222=1,②由①②解得a 2=4,b 2=3,故所求椭圆方程为x 24+y 23=1.(2)由已知及(1)可得M 2:x 28+y 26=1,设点P x 0,y 0 ,则y 20=61-x 208.设过点P 与M 1相切的直线l 的方程为y -y 0=k x -x 0 ,与x 24+y 23=1联立消去y 整理可得4k 2+3 x 2+8k y 0-kx 0 x +4y 0-kx 0 2-3 =0,令Δ=8k y 0-kx 0 2-4×4k 2+3 ×4y 0-kx 0 2-3 =0,整理可得x 20-4 k 2-2kx 0y 0+y 20-3=0,③根据题意k 1和k 2为方程③的两个不等实根,所以k 1k 2=y 20-3x 20-4=61-x 28 -3x 20-4=-34x 20-4 x 20-4=-34,即k 1k 2为定值-34.8(2023届浙江省浙里卷天下高三上学期10月测试)已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1(-1,0)且与x 轴不重合的直线与椭圆C 交于A ,B 两点,△ABF 2的周长为8.(1)若△ABF 2的面积为1227,求直线AB 的方程;(2)过A ,B 两点分别作直线x =-4的垂线,垂足分别是E ,F ,证明:直线EB 与AF 交于定点.【解析】(1)因△ABF 2的周长为8,由椭圆定义得4a =8,即a =2,而半焦距c =1,又a 2=b 2+c 2,则b 2=3,椭圆C 的方程为x 24+y 23=1,依题意,设直线AB 的方程为x =my -1,由x =my -13x 2+4y 2=12消去x 并整理得3m 2+4 y 2-6my -9=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,|y 1-y 2|=(y 1+y 2)2-4y 1y 2=6m 3m 2+42+363m 2+4=12m 2+13m 2+4,因此S △F 2AB =12F 1F 2 ⋅y 1-y 2 =12×2×12m 2+13m 2+4=1227,解得m =±1,所以直线AB 的方程为x -y +1=0或x +y +1=0.(2)由(1)知A x 1,y 1 ,B x 2,y 2 ,则E -4,y 1 ,F -4,y 2 ,设直线EB 与AF 交点为M (x ,y ),则FA =(x 1+4,y 1-y 2),FM =(x +4,y -y 2),EB =(x 2+4,y 2-y 1),EM =(x +4,y -y 1),而FA ⎳FM ,EB ⎳EM ,则(x +4)(y 1-y 2)=(y -y 2)(x 1+4),(x +4)(y 2-y 1)=(y -y 1)(x 2+4),两式相加得:y (x 1+x 2+8)-y 2(my 1+3)-y 1(my 2+3)=0,而x 1+x 2+8>0,则y (x 1+x 2+8)=2my 1y 2+3(y 1+y 2)=2m ⋅-93m 2+4+3⋅6m3m 2+4=0,因此y =0,两式相减得:2(x +4)(y 1-y 2)=-y 2(x 1+4)+y 1(x 2+4)=-y 2(my 1+3)+y 1(my 2+3)=3(y 1-y 2),而y 1-y 2≠0,则x =-52,即M -52,0 ,所以直线EB 与AF 交于定点M -52,0 .9(2023届江苏省南京市六校高三上学期10月联考)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点P 2,33(1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为k 1,k 2的两直线l 1与l 2,直线l 1交双曲线Γ于A ,B 两点,直线l 2交双曲线Γ于C ,D 两点,设M ,N 分别为AB 与CD 的中点,若k 1⋅k 2=-1,试求△OMN 与△FMN 的面积之比.【解析】(1)由题意得2c =4,得c =2,所以a 2+b 2=4,因为点P 2,33在双曲线上,所以4a 2-13b 2=1,解得a 2=3,b 2=1,所以双曲线方程为x 23-y 2=1,(2)F (-2,0),设直线l 1方程为y =k 1(x +2),A (x 1,y 1),B (x 2,y 2),由y =k 1(x +2)x 23-y 2=1,得(1-3k 12)x 2-12k 12x -12k 12-3=0则x 1+x 2=12k 121-3k 12,x 1x 2=-12k 12-31-3k 12,所以x 1+x 22=6k 121-3k 12,所以AB 的中点M 6k 121-3k 12,2k 11-3k 12,因为k 1⋅k 2=-1,所以用-1k 1代换k 1,得N 6k 12-3,-2k 1k 12-3,当6k 121-3k 12=61-3k 12,即k 1=±1时,直线MN 的方程为x =-3,过点E (-3,0),当k 1≠±1时,k MN =2k 11-3k 12--2k 1k 12-36k121-3k 12-6k 12-3=-2k 13(k 12-1),直线MN 的方程为y -2k 11-3k 12=-2k 13(k 12-1)x -6k 121-3k 12,令y =0,得x =3(k 12-1)1-3k 12+6k 121-3k 12=-3,所以直线MN 也过定点E (-3,0),所以S △OMN S △FMN =12y N-y M OE 12y M-y N FE =OE FE =310(2022届北京市海淀区高三上学期期末)已知点A 0,-1 在椭圆C :x 23+y 2b 2=1上.(1)求椭圆C 的方程和离心率;(2)设直线l :y =k x -1 (其中k ≠1)与椭圆C 交于不同两点E ,F ,直线AE ,AF 分别交直线x =3于点M ,N .当△AMN 的面积为33时,求k 的值.【解析】(1)将点A 0,-1 代入x 23+y 2b 2=1,解得b 2=1,所以椭圆C 的方程为x 23+y 2=1又c 2=a 2-b 2=3-1=2,离心率e =c 2a 2=23=63(2)联立y =k x -1x 23+y 2=1,整理得(1+3k 2)x 2-6k 2x +3k 2-3=0设点E ,F 的坐标分别为(x 1,y 1),(x 2,y 2)由韦达定理得:x 1+x 2=6k 21+3k 2,x 1x 2=3k 2-31+3k 2直线AE 的方程为y +1=y 1+1x 1x ,令x =3,得y =3y 1+3x 1-1,即M 3,3y 1+3x 1-1直线AF 的方程为y +1=y 2+1x 2x ,令x =3,得y =3y 2+3x 2-1,即N 3,3y 2+3x 2-1MN =3y 2+3x 2-1-3y 1+3x 1-1=3×x 1y 2-x 2y 1+x 1-x 2x 1x 2 =3×k -1 x 1-x2x 1x 2=3×k -1x 1+x 22-4x 1x 2x 1x 22=3×k -1 ×232k 2+1k 2-1 =23×2k 2+1k +1 所以△AMN 的面积S =12×MN ×3=32×MN =33×2k 2+1k +1 =33即2k 2+1k +1 =1⇒2k 2+1=k +1 ,解得k =0或k =2所以k 的值为0或211(2022届天津市第二中学高三上学期12月月考)已知椭圆x 2a 2+y 2b 2=1a >b >0 的长轴长是4,且过点B 0,1 .(1)求椭圆的标准方程;(2)直线l :y =k x +2 交椭圆于P ,Q 两点,若点B 始终在以PQ 为直径的圆内,求实数k 的取值范围.【解析】(1)由题意,得2a =4,b =1,所以椭圆的标准方程为x 24+y 2=1;(2)设P (x 1,y 1),Q (x 2,y 2),联立y =k (x +2)x 24+y 2=1,得x 2+4k 2(x +2)2-4=0,即(1+4k 2)x 2+16k 2x +16k 2-4=0,则x 1+x 2=-16k 21+4k 2,因为直线y =k x +2 恒过椭圆的左顶点(-2,0),所以x 1=-2,y 1=0,则x 2=-16k 21+4k 2+2=2-8k 21+4k 2,y 2=k (x 2+2)=4k1+4k 2,因为点B 始终在以PQ 为直径的圆内,所以π2<∠PBQ ≤π,即BP ·BQ <0,又BP =-2,-1 ,BQ=(x 2,y 2-1),则BP ·BQ=-2x 2-y 2+1<0,即4-16k 21+4k 2+4k 1+4k 2-1>0,即20k 2-4k -3<0,解得-310<k<12,所以实数k的取值范围为-310<k<12.12(2022届广东省华南师范大学附属中学高三上学期1月模拟)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右顶点与抛物线C2:y2=2px(p>0)的焦点重合,椭圆C1的离心率为12,过椭圆C1的右焦点F且垂直于x轴的直线截抛物线所得弦的长度为42.(1)求椭圆C1和抛物线C2的方程.(2)过点A(-4,0)的直线l与椭圆C1交于M,N两点,点M关于x轴的对称点为E.当直线l绕点A旋转时,直线EN是否经过一定点?请判断并证明你的结论.【解析】(1)设椭圆C1的半焦距为c.依题意,可得a=p2,则C2:y2=4ax,代入x=c,得y2=4ac,即y=±2ac,所以4ac=42,则有ac=2ca=12a2=b2+c2,所以a=2,b=3,所以椭圆C1的方程为x24+y23=1,抛物线C2的方程为y2=8x.(2)依题意,当直线l的斜率不为0时,设其方程为x=ty-4,由x=ty-43x2+4y2=12,得(3t2+4)y2-24ty+36=0.设M(x1,y1),N(x2,y2),则E(x1,-y1).由Δ>0,得t<-2或t>2,且y1+y2=24t3t2+4,y1y2=363t2+4.根据椭圆的对称性可知,若直线EN过定点,此定点必在x轴上,设此定点为Q(m,0).因为k NQ=k EQ,所以y2x2-m=-y1x1-m,(x1-m)y2+(x2-m)y1=0,即(ty1-4-m)y2+(ty2-4-m)y1=0,2ty1y2-(m+4)(y1+y2)=0,即2t·363t2+4-(m+4)·24t3t2+4=0,得(3-m-4)t=(-m-1)t=0,由t是大于2或小于-2的任意实数知m=-1,所以直线EN过定点Q(-1,0).当直线l的斜率为0时,直线EN的方程为y=0,也经过点Q(-1,0),所以当直线l绕点A旋转时,直线EN恒过一定点Q(-1,0).13(2022届河北省高三上学期省级联测)已知椭圆P焦点分别是F1(0,-3)和F2(0,3),直线y= 3与椭圆P相交所得的弦长为1.(1)求椭圆P的标准方程;(2)将椭圆P绕原点逆时针旋转90°得到椭圆Q,在椭圆Q上存在A,B,C三点,且坐标原点为△ABC的重心,求△ABC的面积.。

直线与圆锥曲线的位置关系(解析版)

直线与圆锥曲线的位置关系(解析版)

直线与圆锥曲线的位置关系第一部分真题分类1.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB =.则双曲线的离心率为()AB C .2D .3【答案】A【解析】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.2.(2021·全国高考真题(文))已知12,F F 为椭圆C :221164x y +=的两个焦点,P ,Q 为C上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.3.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>.(1)证明:a =;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程;②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【解析】(1)3c e a =====,3b a ∴=,因此,a =;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝⎭在椭圆C的内部时,2229331010b ⎛⎫⎛⎫+⋅-< ⎪ ⎪ ⎪⎝⎭⎝⎭,可得10b >.设点()11,P x y 、()22,Q x y,则12129210210x x y y +⎧=⎪⎪⎨+⎪=-⎪⎩,所以,1212y y x x +=+由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=,所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝,所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝⎭,即y =所以,直线l0y -=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥ ,而()11,OP x y = ,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.4.(2021·天津高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.【答案】(1)2215x y +=;(2)0x y -=.【解析】(1)易知点(),0F c 、()0,B b,故BF a ===因为椭圆的离心率为c e a ==2c =,1b ==,因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215xy +=上一点,先证明直线MN 的方程为0015x xy y +=,联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭,直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+,在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭,因为//MP BF ,则MPBF k k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=,所以,005x y =-,因为222000615x y y +==,00y ∴>,故06y =,06x =-,所以,直线l的方程为166x y +=,即0x y -=.5.(2021·全国高考真题)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F ,且离心率为3.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN .【答案】(1)2213x y +=;(2)证明见解析.【解析】(1)由题意,椭圆半焦距c =3c e a ==,所以a 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意;当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F三点共线,可设直线(:MN y k x =-即0kx y -=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212,324x x x x +=⋅=,所以MN =所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=,由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=,所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==213k=+=化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩,所以直线:MN y x =y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立;所以M ,N,F 三点共线的充要条件是||MN =6.(2021·全国高考真题)在平面直角坐标系xOy 中,已知点()10F、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0.【解析】因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,即1112y k x t k =+-,联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >.由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-,所以,()()()()22122121121122112111111222416t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭,设直线PQ 的斜率为2k ,同理可得()()2222212116tk TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=.因此,直线AB 与直线PQ 的斜率之和为0.7.(2021·全国高考真题(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.【答案】(1)2p =;(2)【解析】(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅==-△,()()2222000000041441215621x y y y y y y -=-+-=---=-++ ,由已知可得053y -≤≤-,所以,当05y =-时,PAB△的面积取最大值321202⨯=8.(2020·海南高考真题)已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18.【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y+=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=,直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:5514d ==+,由两点之间距离公式可得22||(24)335AM ++=.所以△AMN 的面积的最大值:1125351825⨯.9.(2020·江苏高考真题)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【解析】(1)∵椭圆E 的方程为22143x y +=∴()11,0F -,()21,0F 由椭圆定义可得:124AF AF +=.∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭∵准线方程为4x =∴()4,QQ y ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F -∴直线1AF 的方程为()314y x =+∵点O 到直线AB 的距离为35,213S S =∴2113133252S S AB AB d==⨯⨯⨯=⋅∴95d =∴113439x y -+=①∵2211143x y +=②∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩.∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭.第二部分模拟训练一、单选题1.已知抛物线26y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点,且12FA FB ⋅=,则AB =()A .6B .7C .8D .9【答案】C【解析】由26y x =得3p =,所以3(,0)2F ,准线为32x =-,设直线3:2AB x ty =+,联立2326x ty y x⎧=+⎪⎨⎪=⎩,消去x 并整理得2690y ty --=,设1122(,),(,)A x y B x y ,则126y y t +=,129y y =-,所以21212()363x x t y y t +=++=+,222121212()966364y y y y x x =⨯==,因为13||2AF x =+,23||2BF x =+,12FA FB ⋅=,所以1233()()1222x x ++=,所以()1212391224x x x x +++=,所以()1293912424x x +++=,所以125x x +=,所以121233||||||3822AB AF BF x x x x =+=+++=++=.故选:C2.已知过抛物线2y =焦点F 的直线与抛物线交于A ,B 两点,且2AF FB =,则AOB (O 为坐标原点)的面积为()A .32B.2C .3D.【答案】D【解析】由题意,抛物线2y =的焦点坐标为F ,设直线AB为x my =,()11,A x y ,()22,B x y ,因为2AF FB =,可得122y y =-,由2y x my ⎧=⎪⎨=+⎪⎩280y --=,所以128y y =-,又由121282y y y y =-⎧⎨=-⎩,可得224y =,解得22y =-或22y =,当22y =-时,14y =,可得1211||622AOB S OF y y ∆=⨯⨯-==;当22y =时,14y =-,可得1211||622AOB S OF y y ∆=⨯⨯-==.故选:D.3.已知抛物线()2:20C y px p =>的焦点为F ,直线(2)y k x =+与抛物线C 交于点()1,2A ,B ,则FB =()A .3B .4C .5D .6【答案】C【解析】由点()1,2A 在抛物线C 上得2p =,设2,4t B t ⎛⎫ ⎪⎝⎭,由直线过定点()2,0-得()()221224tk t==----,解得4t =(舍去2),()4,4B ,所以||452pFB =+=.故选:C .4.已知点()15,0F -,()25,0F .设点P 满足126PF PF -=,且12MF =,21NF =,则PM PN -的最大值为()A .7B .8C .9D .10【答案】C【解析】解:因为12610PF PF -=<,所以点P 在以1F ,2F 为焦点,实轴长为6,焦距为10的双曲线的右支上,则双曲线的方程为221916x y -=.由题意知M 在圆()221:54F x y ++=上,N 在圆()222:51F x y -+=上,如图所示,12PM PF ≤+,21PN PF ≥-,则()()12122139PM PN PF PF PF PF -≤+--=-+=.当M 是1PF 延长线与圆1F 的交点,N 是2PF 与圆2F 的交点时取等号.故选:C .5.已知双曲线C 的方程为2214y x -=,点P ,Q 分别在双曲线的左支和右支上,则直线PQ 的斜率的取值范围是()A .()2,2-B .11,22⎛⎫-⎪⎝⎭C .()(),22,-∞-+∞ D .11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A【解析】由双曲线的方程2214y x -=可得其渐近线方程为2y x =±,故当点P ,Q 分别在双曲线的左支和右支上时,直线PQ 的斜率的取值范围是()2,2-.故选:A.6.已知F 是抛物线()2:20C y px p =>的焦点,M 是抛物线C 上一点,MF 的延长线交y 轴于点N .若:2:1MF NF =,2NF =,则抛物线C 的方程为()A .2y x =B .24y x =C .28y x =D .216y x=【答案】B【解析】由题意,抛物线()2:20C y px p =>,可得焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,作MA 垂直于y 轴交y 轴于点A ,因为:2:1MF NF =,2NF =,所以F 为线段MN 的三等分点,且24MF NF ==,由NFO NMA △△∽,得13OF MA =,即332p MA OF ==,所以32422p pMF p =+==,所以抛物线C 的方程为24y x =.故选:B.二、填空题7.过抛物线22y px =(0p >)的焦点作与抛物线对称轴垂直的直线交抛物线于A 、B 两点,且||4AB =,则p =___________.【答案】2【解析】设抛物线的焦点坐标为,02p F ⎛⎫⎪⎝⎭,由条件可知2A B F p x x x ===,所以222A B p pAB AF BF x x p =+=+++=,又AB 4=,所以2p =,故答案为:2.8.已知抛物线C :y 2=x ,过C 的焦点的直线与C 交于A ,B 两点.弦AB 长为2,则线段AB 的中垂线与x 轴交点的横坐标为__________.【答案】54【解析】抛物线的焦点为1,04⎛⎫⎪⎝⎭,则可设直线AB 为:()104x ky k =+≠,联立2y x =,消x 得,2104y ky --=,设()()1122,,,A x y B x y ,12y y k +=,212121111122442AB x x ky ky k ⎛⎫⎛⎫=++=++++=+= ⎪ ⎪⎝⎭⎝⎭得1k =±,当1k =时,得12122y y +=,所以AB 中点坐标为31,42⎛⎫ ⎪⎝⎭,则AB 的中垂线方程为1324y x ⎛⎫-=-- ⎪⎝⎭,则与x 轴的交点的横坐标为54;同理,当1k =-时,线段AB 的中垂线与x 轴交点的横坐标为54.故答案为:549.已知双曲线()222210,0x y a b a b-=>>的右顶点为A ,若以点A 为圆心、双曲线的实半轴长为半径的圆与双曲线的一条渐近线交于点B ,与x 轴正半轴交于点D ,且线段BD 交双曲线于点C ,3DC CB =,则双曲线的离心率是______.【解析】由题意知(),0A a 、()2,0D a ,以点A 为圆心、双曲线的实半轴长为半径的圆的方程为()222x a y a -+=.不妨设点B 在第一象限,联立()2220x a y a b y x a x ⎧-+=⎪⎪=⎨⎪>⎪⎩,解得322222a x ca by c ⎧=⎪⎪⎨⎪=⎪⎩,即点322222,a a b B cc ⎛⎫⎪⎝⎭,设点(),C m n ,()2,DC m a n =- ,322222,a a bCB m n c c ⎛⎫=-- ⎪⎝⎭ ,可得322222323a m a m c a b n n c ⎧⎛⎫-=-⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩,解得2231232a m e bn e ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎪=⎪⎩,根据点C 在双曲线()222210,0x y a b a b -=>>上,得22223314e e ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,得22e =,所以,e =..10.已知椭圆()222210x y a b a b+=>>右顶点为()2,0A ,上顶点为B ,该椭圆上一点P 与A 的连线的斜率114k =-,中点为E ,记OE 的斜率为OE k ,且满足140OE k k +=.若C 、D 分别是x 轴、y 轴负半轴上的动点,且四边形ABCD 的面积为2,则三角形COD 面积的最大值是______.【答案】3-【解析】解:设()11,P x y ,()22,A x y ,PA 中点()00,E x y ,则有2211221x y a b +=,2222221x y a b+=,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=,即2121221212y y y y b x x x x a+-⋅=-+-,则212OEb k k a⋅=-,由()2,0A 为椭圆右顶点,所以2a =,又114k =-,140OE k k +=,得到1OE k =,1b =.设(),0C m -,()0,D n -,0m >,0n >,则由四边形ABCD 的面积为2,又B 为上顶点,则()()12122m n ++=,即22mn m n ++=,由基本不等式得2mn ≥+2≤,所以三角形COD 的面积(2112322S mn =≤=-,当且仅当2m n =,即2m =-,1n =时取等号.故答案为:3-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线专题(理)
1.(2005天津)抛物线C 的方程为)0(2
<=a ax y ,过抛物线C 上一点()()000,0P x y x ≠作斜率为12,k k 的两条直线分别交抛物线C 于()()1122,,,A x y B x y 两点(,,P A B 三点互不相同),且满足)10(012-≠≠=+λλλ且k k 。

(Ⅰ)求抛物线C 的焦点坐标和准线方程
(Ⅱ)设直线AB 上一点M ,满足MA BM λ=,证明:线段PM 的中点在y 轴上.(Ⅲ)当λ=1时,若点P 的坐标为()1,1-,求PAB ∠为钝角时点A 的纵坐标1y 的取值范
围.
2.(2006别以a 和b (1)证明c (2)设直线BF 交椭圆于P 、Q 两点,证明:212
OP OQ b ⋅=uuu r uuu r .
3.(2007天津)设椭圆22221(0)y x a b a b
+=>>的左、右焦点分别为12,,F F A 是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为11||3
OF .
(Ⅰ)证明:a =;
(Ⅱ)设12,Q Q 为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线,OD 垂足为
,D 求点D 的轨迹方程.
4.(2008天津)已知中心在原点的双曲线C 的一个焦点是()0,31-F ,一条渐近线的方程是025=-y .
(Ⅰ)求双曲线C 的方程;
(Ⅱ)若以()0≠k k 为斜率的直线l 与双曲线C 相交于两个不同的点,M N ,线段MN 的垂直平分线与两坐标轴围成的三角形的面积为2
81,求k 的取值范围.
5.(2009天津)已知椭圆22
221(0)x y a b a b
+=>>的两个焦点分别12(,0)(,0)(0)F c F c c ->和,过点2
(,0)a E c
的直线与椭圆相交与,A B 两点,且1212//,2F A F B F A F B =。

(Ⅰ)求椭圆的离心率;
(Ⅱ)求直线AB 的斜率;
(Ⅲ)设点C 与点A 关于坐标原点对称,直线2F B 上有一点(,)(0)H m n m ≠在∆1AF C 的
6.(2010(Ⅱ)0(0,)Q y 在
线段AB 的垂直平分线上,且4QA QB ⋅=uur uuu r ,求0y 的值.
7.(2011天津)在平面直角坐标系xOy 中,点()(),0P a b a b >>为动点,1F ,
2F 分别为椭圆22221x y a b
+=的左右焦点,已知12F PF ∆为等腰三角形.(Ⅰ)求椭圆的离心率e ;
(Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,
满足2AM BM ⋅=-uuur uuur ,求点M 的轨迹方程.
8.(2012于A,B (Ⅱ)若|
9.(2013天津)设椭圆()22
2210x y a b a b
+=>>的左焦点为F ,离心率为3,过点F 且与
x 轴垂直的直线被椭圆截得的线段长为
3。

(Ⅰ)求椭圆的方程;
(Ⅱ)设,A B 分别为椭圆的左右顶点,过点F 且斜率为k 的直线与椭圆交于,C D 两点。

若8AC DB AD CB ⋅+⋅=uuu r uuu r uuu r uur ,求k 的值。

10.(2014A ,上顶点为B (Ⅱ)设P 1线l 与该圆相切.求直线的斜率.
11.(2015天津)已知椭圆22
22+=1(0)x y a b a b
>>的左焦点为(),0F c -,离心率为3,点M
在椭圆上且位于第一象限,直线FM 被圆4
22
+4b x y =截得的线段的长为c ,|FM|=3.(Ⅰ)求直线FM 的斜率;
(Ⅱ)求椭圆的方程;
(Ⅲ)设动点P 在椭圆上,若直线FP 的斜率大于,求直线OP (O 为原点)的斜率的
取值范围.
12.(A ,已知||1OF +l 交于点M ,
与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.
13.(2017天津)设椭圆22
221(0)x y a b a b
+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12
.(Ⅰ)求椭圆的方程和抛物线的方程;
(Ⅱ)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直
线BQ 与x 轴相交于点D .若APD △的面积为62
,求直线AP 的方程.14.(B .已知椭(Ⅱ)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若52sin 4AQ AOQ PQ =∠(O 为原点),求k 的值.。

相关文档
最新文档