高中数学指数函数模型知识点与解题规律技巧典型例题讲解及答案解析
高一数学上册第二章--指数函数知识点及练习题(含答案)

课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。
4.2 指数函数(精讲)(解析版)--人教版高中数学精讲精练必修一

4.2指数函数(精讲)一.指数函数的概念1.定义:一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,定义域是R.2.具有三个特征:(1)底数a 为大于0且不等于1的常数;(2)指数位置是自变量x ;(3)a x 的系数是1.二.指数函数的图象和性质a >10<a <1图象性质定义域R 值域(0,+∞)过定点过定点(0,1),即x =0时,y =11.由指数函数y=a x的图象与直线x=1相交于点(1,a)可知在y轴右侧,图象从下到上相应的底数由小变大.2.由指数函数y=a x的图象与直线x=-11y轴左侧,图象从下到上相应的底数由大变小.如图所示,指数函数底数的大小关系为0<a4<a3<1<a2<a1.四.单调性的应用3.解指数型不等式(1)形如a f(x)>a g(x)的不等式,可借助y=a x的单调性求解;(2)形如a f(x)>b的不等式,可将b化为以a为底数的指数幂的形式,再借助y=a x的单调性求解;(3)形如a x>b x的不等式,可借助两函数y=a x,y=b x的图象求解.4.与指数函数复合的函数单调性一般地,形如y=a f(x)(a>0,且a≠1)函数的性质有:(1)函数y=a f(x)与函数y=f(x)有相同的定义域.(2)当a>1时,函数y=a f(x)与y=f(x)具有相同的单调性;当0<a<1时,函数y=a f(x)与y=f(x)具有相反的单调性.一.函数图象1.抓住特殊点:指数函数的图象过定点(0,1),求指数型函数图象所过的定点时,只要令指数为0,求出对应的y的值,即可得函数图象所过的定点.2.巧用图象变换:函数图象的平移变换(左右平移、上下平移).3.利用函数的性质:奇偶性与单调性.4.在y轴右侧,图象从上到下相应的底数由大变小,即“底数大图象高”;在y轴左侧,图象从上到下相应的底数由小变大,即“底数大图象低”.二.y =a f (x )型函数的定义域、值域的求法(1)形如y =a f (x )的函数的定义域就是f (x )的定义域.(2)形如y =a f (x )的函数的值域,先求出u =f (x )的值域,再结合y =a u 的单调性求出y =a f (x )的值域.若a 的取值范围不确定,则需对a 进行分类讨论.2.y =f (a x )型函数的定义域、值域的求法三.比较指数幂大小的常用方法1.底数相同,指数不同:利用指数函数的单调性来判断2.底数不同,指数相同:利用底数不同的指数函数的图象的变化规律来判断或者按幂函数性质判断3.底数不同,指数不同:通过中间量来比较考点一指数函数的概念【例1-1】(2023秋·高一课时练习)下列函数:①23x y =⨯;②13x y +=;③πx y =;④x y x =.其中为指数函数的个数是()A .0B .1C .2D .3【答案】B【解析】指数函数解析式为(0xy a a =>且)1a ≠,对于①②④,23x y =⨯、13x y +=和x y x =不符合指数函数解析式特征,①②④错误;对于③,πx y =符合指数函数解析式特征,③正确.故选:B.【例1-2】(2023秋·吉林长春·高一长春外国语学校校考期末)若函数()222xy m m m =--⋅是指数函数,则m等于()A .1-或3B .1-C .3D .13【答案】C【解析】因为函数()222xy m m m =--⋅是指数函数,所以2221031m m m m m ⎧--=⎪>⇒=⎨⎪≠⎩.故选:C【一隅三反】1.(2023·全国·高一课堂例题)下列函数为指数函数的是()A .4x y =-B .()4xy =-C .πxy =D .24xy =【答案】C【解析】根据指数函数的定义()0,1xy a a a =>≠知,可得函数4x y =-不是指数函数;函数()4xy =-不是指数函数;函数πx y =是指数函数;函数24x y =不是指数函数.故选:C.2.(2023秋·高一课时练习)(多选)下列函数是指数函数的是()A .25x y =B .4x y =-C .3y x =D .()63xy a =-(12a >且23a ≠)【答案】AD【解析】对于A 选项,2525x x y ==为指数函数;对于B 选项,4x y =-不是指数函数;对于C 选项,3y x =不是指数函数;对于D 选项,当12a >且23a ≠时,630a ->且631a -≠,则()63xy a =-(12a >且23a ≠)为指数函数.故选:AD.3.(2023·全国·高一假期作业)(多选)下列函数中,是指数函数的是()A .()3x y =-B .()121,12x y m m m ⎛⎫=->≠ ⎪⎝⎭C .()0.19xy =D .23xy =⋅【答案】BC【解析】由指数函数形式为x y a =且0,1a a >≠,显然A 、D 不符合,C 符合;对于B ,210m ->且211m -≠,故符合.故选:BC考点二指数函数的解析式与函数值【例2】(2023春·新疆)指数函数()(0xf x a a =>且)0a ≠图像经过点()3,27,则()2f =()A .3B .6C .9D .12【答案】C【解析】由题意327a =,得3a =,故()2239f ==,故选:C 【一隅三反】1.(2023·全国·高一专题练习)函数()(0xf x a a =>,且1)a ≠的图象经过点()3,27P ,则()2f =()A .19B C .13D .9【答案】D【解析】由题意可知,327a =,0a >,且1a ≠,得3a =,所以()3x f x =,()2239f ==.故选:D2.(2023秋·高一课时练习)若指数函数()y f x =的图象经过点12,16⎛⎫- ⎪⎝⎭,则32f ⎛⎫-= ⎪⎝⎭.【答案】18/0.125【解析】设指数函数()(0xf x a a =>且)1a ≠,()f x 过点12,16⎛⎫- ⎪⎝⎭,2116a -∴=,解得:4a =,()4x f x ∴=,3231428f -⎛⎫∴-=== ⎪⎝⎭.故答案为:18.3.(2023春·贵州黔东南·高一校考期末)已知指数函数()f x 的图像经过点12,16⎛⎫- ⎪⎝⎭,则12f ⎛⎫-= ⎪⎝⎭.【答案】12/0.5【解析】设()x f x a =(0a >,且1a ≠),由于其图像经过点12,16⎛⎫- ⎪⎝⎭,所以2116a -=,解得4a =或4a =-(舍去),因此()4xf x =,故1211422f -⎛⎫-== ⎪⎝⎭.故答案为:12.考点三定义域与值域【例3-1】(2023秋·高一课前预习)求下列函数的定义域:(1)y =;(2)y =【答案】(1)[0,)+∞;(2)()(],33,2-∞--- .【解析】(1)由题意可得210x -≥,即022x ≥,又指数函数()2x f x =单调递增,得0x ≥.所以函数y =[)0,+∞;(2)由题意,得31903120x x +⎧⎛⎫-≥⎪ ⎪⎨⎝⎭⎪-≠⎩,得230113322x x -+⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎪≠⎩,又指数函数()13xg x ⎛⎫= ⎪⎝⎭单调递减,2x ∴≤-且3x ≠-.所以函数y =()(],33,2-∞-⋃--.【例3-2】(2023秋·江西)求下列函数的值域;(1)12x y +=;(2)y =(3)y =【答案】(1)(0,)+∞(2)[0,1)(3)[1,)+∞【解析】(1)12x y +=的定义域为R ,值域为(0,)+∞;(2)由120x -≥知0x ≤,故y =(]0-∞,;由0121x ≤-<知01≤<,故y [0,1);(3)y =[0,)+∞0≥知1≥,故y =[1,)+∞.【例3-3】(2023·全国·高三专题练习)已知函数,1()12,1x xx f x x a x ⎧<⎪=-⎨⎪-≥⎩的值域为R ,则实数a 的取值范围是()A .(,0)-∞B .(0,)+∞C .(,1]-∞D .[1,)+∞【答案】D【解析】当1x <时,1()111f x x =+<-,当1x ≥时,1()222x f x a a a =-≥-=-,因为函数,1()12,1x xx f x x a x ⎧<⎪=-⎨⎪-≥⎩的值域为R ,所以21a -≤,得1a ≥,所以实数a 的取值范围是[)1,+∞,故选:D.【一隅三反】1.(2023秋·高一课时练习)函数y =)A .[2,)-+∞B .[1,)-+∞C .(,1]-∞-D .(,2]-∞-【答案】C【解析】由题意得2112703x -⎛⎫-≥ ⎪⎝⎭所以211273x -⎛⎫≥ ⎪⎝⎭,即2131133x --⎛⎫⎛⎫≥ ⎪⎪⎝⎭⎝⎭,又指数函数13xy ⎛⎫= ⎪⎝⎭为R 上的单调减函数,所以213x -≤-,解得1x ≤-.故选:C.2.(2022秋·高一课时练习)函数()f x =+的定义域为.【答案】[]1,2-【解析】由题意可得1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤,所以函数的定义域为[]1,2-.故答案为:[]1,2-.3.(2023秋·高一课时练习)函数42x y =+的值域是.【答案】(2,)+∞【解析】由函数4x y =值域为(0,)+∞,则函数42x y =+的值域为(2,)+∞.故答案为:(2,)+∞4.(2023秋·高一单元测试)函数()[]2,1,1xf x x x =+∈-的值域为.【答案】1,32⎡⎤-⎢⎥⎣⎦【解析】因为函数()f x 在[]1,1-上是增函数,所以()()1min 11212f x f -=-=-=-,()()1max 1213f x f ==+=,故函数值域为:1,32⎡⎤-⎢⎥⎣⎦,故答案为:1,32⎡⎤-⎢⎥⎣⎦.5.(2023·上海)已知()2,01,0x x f x x ⎧>=⎨≤⎩,则()f x 的值域是;【答案】[1,)+∞【解析】当0x >时,根据指数函数的图象与性质知()21x f x =>,当0x ≤时,()1f x =.综上:()y f x =的值域为[1,)+∞.故答案为:[1,)+∞.6.(2023黑龙江)已知函数()()22223,121,1x x a x a x f x x +-⎧-+<⎪=⎨-≥⎪⎩的值域为R ,则a 的取值范围是【答案】1,22⎡⎫-⎪⎢⎣⎭【解析】当1x ≥时,222()21xx f x +-=-,而函数222t x x =+-在[1,)+∞上单调递增,又2ty =是增函数,因此函数()f x 在[1,)+∞上单调递增,()(1)1f x f ≥=,即函数()f x 在[1,)+∞上的值域为[1,)+∞,当1x <时,函数()f x 的值域为A ,而函数()f x 的值域为R ,因此(,1)A -∞⊆,而当1x <时,()(2)3f x a x a =-+,必有20231a a a ->⎧⎨-+≥⎩,解得122a -≤<,所以a 的取值范围是1[,2)2-.考点四指数函数的图像【例4-1】(2022春·北京)已知对不同的a 值,函数1()2(0,1)x f x a a a -=+>≠的图象恒过定点P ,则P 点的坐标是.【答案】(1,3)【解析】由指数函数(0,1)x y a a a =>≠的图象恒过(0,1)点而要得到函数12(0,1)x y a a a -=+>≠的图象,可将指数函数(0,1)x y a a a =>≠的图象向右平移1个单位,再向上平移2个单位.则(0,1)点平移后得到(1,3)点.则P 点的坐标是(1,3)故答案为:(1,3)【例4-2】(2023秋·高一单元测试)函数()x b f x a -=的图象如图所示,其中a ,b 为常数,则下列结论正确的是()A .1,0a b ><B .1,0a b >>C .01,0a b <<>D .01,0a b <<<【答案】D【解析】由图象可知,函数()f x 为减函数,从而有01a <<;法一:由()x b f x a -=图象,函数与y 轴的交点纵坐标(0,1)y ∈,令0x =,得b y a -=,由01b a -<<,即00b a a -<<,解得0b <.法二:函数()f x 图象可看作是由(01)x y a a =<<向左平移得到的,则0b ->,即0b <.故选:D.【一隅三反】1.(2023秋·高一课时练习)函数1xy a a=-(0a >,且1a ≠)的图象可能是()A .B .C .D .【答案】D【解析】A ,B 选项中,1a >,于是1011a<-<,所以图象与y 轴的交点的纵坐标应在()0,1之间,显然A ,B 的图象均不正确;C ,D 选项中,01a <<,于是110a-<,图象与y 轴的交点的纵坐标应在小于0,所以D 项符合.故选:D2.(2023·西藏林芝)()2e xf x x=的图像大致是()A .B .C .D .【答案】C【解析】由题知,根据e 0x >y=,20x >,0x ≠,则()2e 0xf x x=>,排除B ,D ,当0x =时,()2e xf x x=没有意义,排除A.故选:C3.(2023·全国·高三专题练习)(多选)对于函数()(0x f x a a =>且1a ≠),()2g x ax x =-,在同一直角坐标系下的图象可能为()A .B .C .D .【答案】AD【解析】当a >1时,f (x )=ax 是指数函数,单调递增,且图象过点(0,1),而g (x )=ax 2﹣x =a (x 12a-)214-a ,对称轴x 12a =1,故A 正确,B 错误;当0<a <1时,f (x )=ax 是指数函数,单调递减,且图象过点(0,1),而g (x )=ax 2﹣x =a (x 12a-)214-a ,对称轴x 1122a =>,故D 正确,C 错误.故选:AD .4.(2023秋·宁夏石嘴山)函数212(01)x y a a a -=->≠且,无论a 取何值,函数图像恒过一个定点,则定点坐标为.【答案】1,12⎛⎫- ⎪⎝⎭【解析】0011,,2121,2a x y a =∴==-=-=- 则定点坐标为1,12⎛⎫- ⎪⎝⎭.故答案为:1,12⎛⎫- ⎪⎝⎭.5.(2023·全国·高一课堂例题)利用函数()2xy f x ==的图象,作出下列各函数的图象:(1)()1f x -;(2)()f x ;(3)()1f x -;(4)()f x -;(5)()1f x -.【答案】作图见解析【解析】(1)将()f x 图象向右平移一个单位即得,如下图,(2)将()f x 右侧图象以y 轴为对称轴作出左侧图象,去掉原图象左侧部分即得,如下图,(3)将()f x 图象向下平移一个单位即得,如下图,(4)以x 轴为对称轴,画出与()f x 对称的图象即得,如下图,(5)将(3)所得图象在x 轴下方部分,翻折到上方即得,如下图,考点五指数函数型的单调性及应用【例5-1】(2023秋·高一课时练习)函数()f x =的单调递增区间为()A .(],2-∞B .[]1,2C .[]2,3D .[)2,+∞【答案】B【解析】令2430x x -+-≥,解得13x ≤≤,所以函数()f x =[]1,3,因为243t x x =-+-开口向下,对称轴为()4221x =-=⨯-,可知243t x x =-+-在[]1,2上单调递增,在(]2,3上单调递减,且u =所以u =[]1,2上单调递增,在(]2,3上单调递减,又因为2u y =在定义域内单调递增,所以()f x =在[]1,2上单调递增,在(]2,3上单调递减,即函数()f x 的单调递增区间为[]1,2.故选:B.【例5-2】(2023春·山东菏泽)设函数()()2x x a f x -=在区间()1,0-单调递增,则a 的取值范围是()A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】A【解析】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()1,0-上单调递增,则有函数22()()24a a y x x a x =-=--在区间()1,0-上单调递增,因此12a ≤-,解得2a ≤-,所以a 的取值范围是(],2-∞-.故选:A【例5-3】(1)(2023·全国·高一专题练习)已知0.143a -⎛⎫= ⎪⎝⎭,0.134b -⎛⎫= ⎪⎝⎭,c ).A .b c a>>B .b a c>>C .a b c>>D .c b a >>(2)(2022秋·浙江宁波·高一校联考期中)下列大小关系正确的是()A .0.20.20.50.50.20.2>>B .0.50.20.20.20.50.2>>C .0.50.20.20.20.20.5>>D .0.20.20.50.20.50.2>>【答案】(1)B (2)A 【解析】(1)0.10440133-⎛⎫⎛⎫<<= ⎪⎪⎝⎭⎝⎭,即01a <<;0.133144-⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,即1b >;0=<,即0c <.所以有01c a b <<<<.故选:B.(2)由幂函数0.2y x =在R 上单调递增,则0.20.20.50.2>,又指数函数0.2x y =在R 上单调递减,则0.20.50.20.2>.则0.20.20.50.50.20.2>>故选:A.【例5-4】(2023·广东)已知函数()21,233,2x x f x x x ⎧-≥=⎨-<⎩,则不等式()()342f x f x -<+的解集为.【答案】(),3-∞【解析】构建函数()21xg x =-,2x ≥,可得函数()g x 单调递增,()33h x x =-,2x ≤,则函数()h x 单调递增,且()()223g h ==,因此函数()f x 在R 上是增函数.()()342f x f x -<+ ,342x x ∴-<+,解得3x <,于是不等式()()342f x f x -<+的解集为(),3-∞.故答案为:(),3-∞.【一隅三反】1.(2023秋·广东湛江)已知函数()2313xx f x -+=,则()f x 的增区间为()A .3,2⎛⎫+∞ ⎪⎝⎭B .3,2⎛⎫-+∞ ⎪⎝⎭C .3,2⎛⎫-∞- ⎪⎝⎭D .3,2⎛⎫-∞ ⎪⎝⎭【答案】A【解析】函数()2313xx f x -+=定义域为R ,令231,3u u x x y =-+=,又3u y =在R 上单调递增,231u x x =-+的增区间为3,2⎛⎫+∞ ⎪⎝⎭,所以()f x 的增区间为3,2⎛⎫+∞ ⎪⎝⎭.故选:A.2.(2023春·宁夏石嘴山)设函数()2212x mxf x -⎛⎫= ⎪⎝⎭在区间()1,2上单调递增,则m 的取值范围为()A .(],2-∞-B .[]2,1--C .[]1,2D .[)2,+∞【答案】D【解析】令22u x mx =-,则二次函数22u x mx =-的图象开口向上,对称轴为直线x m =,因为外层函数12u y ⎛⎫= ⎪⎝⎭在R 上为减函数,函数()2212x mxf x -⎛⎫= ⎪⎝⎭在区间()1,2上为增函数,所以,内层函数22u x mx =-在()1,2上为减函数,故2m ≥.故选:D.3.(2022秋·青海海东·高一校考阶段练习)已知0.533,0.5,a b c ===)A .b a c <<B .a b c<<C .b c a<<D .c b a<<【答案】A【解析】1,01,1,a b c b ><<>∴ 最小,又0.50.53,5a c ===,0.5y x = 在(0,)+∞上单调递增,所以0.50.535<,即a c <,综上,b a c <<,故选:A .4.(2022秋·江西南昌·高一统考期中)已知2π,2a b c ===,则,,a b c的大小关系为()A .a b c <<B .b a c <<C .b c a <<D .c b a<<【答案】B【解析】2382,2a b =====3π<<,所以3π222<<,因此b a c <<.故选:B.5(2023·河北)已知函数()e e x xf x -=-,则不等式()()110f x f -+>的解集是()A .(),2-∞B .()2,+∞C .()2,0-D .()0,2【答案】A【解析】因为()()e e x xx f x f --==--,所以()f x 在R 上是奇函数.因为e x y =在R 上是增函数,又e x y -=在R 上是减函数,所以()f x 在R 上是增函数.所以()()()()()110111f x f f x f f -+>⇒->-=-,所以11,2x x ->-<,所以不等式()()110f x f -+>的解集是(),2-∞.故选:考点六指数函数性质的综合运用【例6-1】(2023春·河北石家庄·高一校考期末)已知函数()131x mf x =++为奇函数.(1)求实数m 的值;(2)求不等式()21102f x x --+<的解集.【答案】(1)2-(2){}01x x <<【解析】(1)(1)因为()f x 为奇函数,定义域为R ,因为()00f =,即102m+=,所以2m =-,经检验,符合题意.(2)因为()12111312f -=+=+,所以()()2110f x x f --+<,所以()()211f x x f --<-,因为()f x 为奇函数,()()11f f -=-,所以()()211f x x f --<-,由(1)知:因为3x y =在R 上递增,所以()2131x f x =-+在R 上是增函数,所以211x x --<-,解得01x <<,所以不等式的解集是{}1|0x x <<.【例6-2】(2023秋·新疆塔城·高一乌苏市第一中学校考期末)已知函数()22x xf x a -=+奇函数.(1)求a 的值;(2)判断()f x 在(),-∞+∞上的单调性并用定义证明;(3)设()()22222x xF x mf x -=+-,求()F x 在[]0,1上的最小值.【答案】(1)1-(2)()f x 在R 上单调递增,证明见解析(3)答案见解析【解析】(1)解:()f x 是定义域为R 的奇函数,()010,f a ∴=+=1a ∴=-;经检验符合题意;(2)()f x 在R 上单调递增.证明如下:1212,R,x x x x ∀∈<,则()()()1212121212111222212222x x x x x x x x f x f x ⎛⎫-=--+=-+ ⎪⎝⎭,因为12x x <,所以12022x x <<,所以12220x x -<,1211022x x +>,可得12())0(f x f x -<.即当12x x <时,有12()()f x f x <所以()f x 在R 上单调递增.(3)()()22222x xF x mf x -=+-,()2222222x x x x m --=+--,()()2222222x xx x m --=---+,令22x x t -=-,又[]01x ∈,,则302t ⎡⎤∈⎢⎣⎦,,所以22222()2y t mt t m m =-+=-+-,302t ⎡⎤∈⎢⎣⎦,,对称轴为t m =,则当0m ≤时,min 2y =;当302m <<,2min 2y m =-;当32m ≥时,min 1734y m =-.【一隅三反】1.(2023秋·安徽)已知函数()32,32x xx xa f x a ⋅-=∈+R .(1)若()f x 为奇函数,求a 的值;(2)在(1)的条件下,求()f x 的值域.【答案】(1)1a =(2)()1,1-【解析】(1)因为()f x 为奇函数,所以()()0f x f x +-=,x ∈R即()()1323232322303232323232x x x x x x x x x x x x x x x x x x x xa a a a a -----⋅+⋅-⋅-⋅-⋅-+=+==+++++,所以1a =.(2)()3232132321xx xxxx f x ⎛⎫⎪⎝⎭⎛⎫+ ⎪⎝+⎭--==,令32xt ⎛⎫= ⎪⎝⎭,则()11221111t t f x t t t -+-=+==-++,因为3(0,)2x t ⎛⎫∈+∞ ⎪⎝⎭=,所以()211,11t -∈-+,所以()f x 的值域()1,1-.2.(2023秋·河北衡水)已知函数()x x f x a k a -=-⋅(0a >,且1a ≠)是奇函数,且3(1)2f =.(1)求a ,k 的值;(2)若对于[1,2]x ∀∈,不等式(2)()0f x mf x +≥成立,求m 的取值范围.【答案】(1)2a =,1k =;(2)52m ≥-【解析】(1)因为函数是奇函数,所以()()f x f x -=-,即x x x x a k a a k a ---⋅=-+⋅,得1k =,所以()x x f x a a -=-,()1312f a a -=-=,得2a =或12a =-(舍),综上,2a =,1k =;(2)由(1)知,()22x xf x -=-,则()[]2222220,1,2x x x xm x ---+-≥∈恒成立,()()()2222220xx x x x x m ---+-+-≥,[]220,1,2x x x -->∈,所以220x x m -++≥,对[]1,2x ∀∈恒成立,即()min 220x xm -++≥恒成立,设12222x x xx y -=+=+,函数由外层函数1y t t=+和内层函数2x t =复合而成,当[]1,2x ∈,[]2,4t ∈,2x t =单调递增,当[]2,4t ∈,1y t t=+单调递增,所以根据复合函数的单调性可知,函数[]22,1,2x x y x -=+∈单调递增,最小值为115222-+=,即502m +≥,则52m ≥-.3.(2023秋·江苏南通)已知二次函数()2f x x bx c =++,且不等式()2f x x <的解集为(1,3).(1)求()f x 解析式;(2)若不等式()2210x xkf -+≤在[1,2]x ∈上有解,求实数k 的取值范围.【答案】(1)()223x x x f =-+(2)-4⎛∞ ⎝⎦,【解析】(1)由题意知22x bx c x ++<的解集为()1,3,故方程()220x b x c --+=的两个根是1和3,故243b c -=⎧⎨=⎩,即23b c =-⎧⎨=⎩,故()223x x x f =-+.(2)由题意()2210x x kf -+≤在[1,2]x ∈上有解,即()2222321x x xk -⋅+≤-在[1,2]x ∈上有解,∵()2222232120xxx-⋅+=-+>,∴2212223x x x k -≤-⋅+在[1,2]x ∈上的最大值,设[211,2,]x x t ∈=-,则[]1,3t ∈,则max 2()2tk t ≤+又2122t t t t=≤++2t t =即[]1,3t =时,等号成立,∴4k ≤,即实数k 的取值范围为,4⎛-∞ ⎝⎦.。
高中数学第四章指数函数与对数函数解题方法技巧(带答案)

高中数学第四章指数函数与对数函数解题方法技巧单选题1、已知函数f (x )是奇函数,当x >0时,f (x )=2x +x 2,则f (2)+f (−1)=( ) A .11B .5C .−8D .−5 答案:B分析:利用奇函数的定义直接计算作答. 奇函数f (x ),当x >0时,f (x )=2x +x 2,所以f (2)+f (−1)=f(2)−f(1)=22+22−(21+12)=5. 故选:B2、Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K 1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .69 答案:C分析:将t =t ∗代入函数I (t )=K1+e −0.23(t−53)结合I (t ∗)=0.95K 求得t ∗即可得解. ∵I (t )=K1+e −0.23(t−53),所以I (t ∗)=K1+e −0.23(t ∗−53)=0.95K ,则e 0.23(t ∗−53)=19,所以,0.23(t ∗−53)=ln19≈3,解得t ∗≈30.23+53≈66.故选:C.小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.3、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[,1)C .a ∈(0,13]D .a ∈[,2)答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.3434∵f(x)满足对任意x1≠x2,都有f(x1)−f(x2)x1−x2<0成立,∴f(x)在R上是减函数,∴{0<a<1 a−2<0(a−2)×0+3a≤a0,解得0<a≤13,∴a的取值范围是(0,13].故选:C.4、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e−kt,其中k是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1)A.3B.3.6C.4D.4.8答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅lne−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.5、已知9m=10,a=10m−11,b=8m−9,则()A.a>0>b B.a>b>0C.b>a>0D.b>0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m=10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0. 又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则fʹ(x)=mx m−1−1, 令fʹ(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b , 又因为f(9)=9log 910−10=0 ,所以a >0>b . 故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知2a =5b =10,则1a+1b =( )A .1B .2C .12D .15答案:A分析:运用对数的定义和换底公式、以及运算性质,计算即可得到所求值. 解:若2a =5b =10, 可得a =log 210,b =log 510, 则1a +1b =1log510+1log 210=lg5+lg2=lg10=1,故选:A.7、设4a=3b=36,则1a +2b=()A.3B.1C.−1D.−3答案:B分析:先求出a=log436,b=log336,再利用换底公式和对数的运算法则计算求解. 因为4a=3b=36,所以a=log436,b=log336,则1a =log364,2b=log369,所以则1a +2b=log364+log369=log3636=1.故选:B.8、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a答案:B分析:先换底,然后由对数运算性质可得.log818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a3a.故选:B多选题9、函数f(x)=2x−2x−a的一个零点在区间(1,2)内,则实数a的可能取值是()A.0B.1C.2D.3答案:BC分析:根据初等函数的单调性判断函数f(x)=2x−2x−a的单调性,根据零点存在定理可得f(1)f(2)<0,从而可得结果.因为函数y=2x、y=−2x在定义域{x|x≠0}上单调递增,所以函数f (x )=2x −2x−a 在{x |x ≠0}上单调递增,由函数f (x )=2x −2x−a 的一个零点在区间(1,2)内,得f (1)×f (2)=(2−2−a)(4−1−a)=(−a )×(3−a )<0, 解得0<a <3, 故选:BC10、已知a =log 3e,b =log 23,c =ln3,则( ) A .a <b <c B .a <c <b C .D .a +c <b 答案:BC分析:由对数函数的单调性结合换底公式比较a,b,c 的大小,计算出a +c ,利用基本不等式得a +c >2,而b <2,从而可比较大小.由题意可知,对于选项AB ,因为b =log 23=ln3ln2>ln3lne=ln3=c ,所以b >c ,又因为a =log 3e <log 33=1,且c =ln3>lne =1,所以,则b >c >a ,所以选项A 错误,选项B 正确;对于选项CD ,a +c =log 3e +ln3=lne ln3+ln3=1ln3+ln3>2√1ln3⋅ln3=2,且b =log 23<b =log 24=2,所以,故选项C 正确,选项D 错误; 故选:BC.小提示:关键点点睛:本题考查对数函数的单调性,利用单调性比较对数的大小,对于不同底的对数,可利用换底公式化为同底,再由用函数的单调性及不等式的性质比较大小,也可结合中间值如0或1或2等比较后得出结论.11、设函数f (x )={|x 2+3x |,x ≤1log 2x,x >1,若函数f (x )+m =0有五个零点,则实数m 可取( )A .−3B .1C .−12D .−2 答案:CD分析:函数f (x )+m =0有五个零点等价于y =f (x )与y =−m 有五个不同的交点,作出f (x )图像,利用图像求解即可a cb +>c a >a c b +>函数f (x )+m =0有五个零点等价于y =f (x )与y =−m 有五个不同的交点,作出f (x )图像可知,当x =−32时,f (−32)=|(−32)2+3×(−32)|=94 若y =f (x )与y =−m 有五个不同的交点, 则−m ∈(0,94), ∴m ∈(−94,0),故选:CD .12、已知函数f(x)=2x −12x +1,则下列结论正确的是( )A .函数f(x)的定义域为RB .函数f(x)的值域为(−1,1)C .函数f(x)的图象关于y 轴对称D .函数f(x)在R 上为增函数 答案:ABD分析:根据指数函数的性质,结合偶函数定义、单调性的性质逐一判断即可. A :因为2x >0,所以函数f(x)的定义域为R ,因此本选项结论正确; B :f(x)=2x −12x +1=1−22x +1,由2x >0⇒2x +1>1⇒0<12x +1<1⇒−2<−22x +1<0⇒−1<−22x +1<1,所以函数f(x)的值域为(−1,1),因此本选项结论正确;C:因为f(−x)=2−x−12−x+1=1−2x1+2x=−f(x),所以函数f(x)是奇函数,其图象关于原点对称,不关于y轴对称,因此本选项说法不正确;D:因为函数y=2x+1是增函数,因为y=2x+1>1,所以函数y=22x+1是减函数,因此函数f(x)=1−22x+1是增函数,所以本选项结论正确,故选:ABD13、已知函数f(x)=a x(a>1),g(x)=f(x)−f(−x),若x1≠x2,则()A.f(x1)f(x2)=f(x1+x2)B.f(x1)+f(x2)=f(x1x2)C.x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1)D.g(x1+x22)⩽g(x1)+g(x2)2答案:AC分析:对选项A、B,利用指数幂的运算性质即可判断选项A正确,选项B错误;对选项C、利用g(x)=f(x)−f(−x)=a x−a−x(a>1)在R上单调递增即可判断,选项C正确;对选项D、根据f(x)=a x(a>1),且x1≠x2,由凹凸性有f(x1+x22)<12[f(x1)+f(x2)],又f(−x)=(1 a )x(a>1),由凹凸性有f(−x1−x22)>12[f(−x1)+f(−x2)]即可判断选项D错误;解:对选项A:因为a x1⋅a x2=a x1+x2,所以f(x1)f(x2)=f(x1+x2),故选项A正确;对选项B:因为a x1+a x2≠a x1x2,所以f(x1)+f(x2)≠f(x1x2),故选项B错误;对选项C:由题意,因为a>1,所以g(x)=f(x)−f(−x)=a x−a−x在R上单调递增,不妨设x1>x2,则g(x1)>g(x2),所以(x1−x2)g(x1)>(x1−x2)g(x2),即x1g(x1)+x2g(x2)>x1g(x2)+ x2g(x1),故选项C正确;对选项D:因为f(x)=a x(a>1),且x1≠x2,所以由凹凸性有f(x1+x22)<12[f(x1)+f(x2)],又f(−x)=(1a )x(a>1),所以由凹凸性有f(−x1−x22)>12[f(−x1)+f(−x2)],所以有f(x1+x22)+12[f(−x1)+f(−x2)]<f(−x1−x22)+12[f(x1)+f(x2)],即f(x1+x22)−f(−x1−x22)<12[f(x1)+f(x2)]−12[f(−x1)+f(−x2)],即g (x 1+x 22)<g (x 1)+g (x 2)2,故选项D 错误;故选:AC. 填空题14、已知实数a >0且a ≠1,不论a 取何值,函数y =a x−4+2的图像恒过一个定点,这个定点的坐标为______. 答案:(4,3)分析:根据指数函数过定点问题求解. 令x −4=0,得 x =4,此时 y =3,所以函数y =a x−4+2的图像恒过的定点坐标为(4,3), 所以答案是:(4,3)15、若√4a 2−4a +1=√(1−2a )33,则实数a 的取值范围_________ . 答案:(−∞,12]分析:由二次根式的化简求解由题设得√4a 2−4a +1=√(2a −1)2=|2a −1|,√(1−2a )33=1−2a ,所以|2a −1|=1−2a 所以1−2a ≥0,a ≤12.所以答案是:(−∞,12]16、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2), 可得{2k −5=1b =2,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题17、已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+mx ,函数f (x )在y 轴左侧的图象如图所示.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )−a =0有4个不相等的实数根,求实数a 的取值范围. 答案:(1)f (x )={x 2+2x,x ≤0x 2−2x,x >0(2)(−1,0)分析:(1)利用f (−2)=0可求x ≤0时f (x )的解析式,当x >0时,利用奇偶性f (x )=f (−x )可求得x >0时的f (x )的解析式,由此可得结果;(2)作出f (x )图象,将问题转化为f (x )与y =a 有4个交点,数形结合可得结果.(1)由图象知:f (−2)=0,即4−2m =0,解得:m =2,∴当x ≤0时,f (x )=x 2+2x ; 当x >0时,−x <0,∴f (−x )=(−x )2−2x =x 2−2x , ∵f (x )为R 上的偶函数,∴当x >0时,f (x )=f (−x )=x 2−2x ; 综上所述:f (x )={x 2+2x,x ≤0x 2−2x,x >0;(2)∵f (x )为偶函数,∴f (x )图象关于y 轴对称,可得f (x )图象如下图所示,f(x)−a=0有4个不相等的实数根,等价于f(x)与y=a有4个不同的交点,由图象可知:−1<a<0,即实数a的取值范围为(−1,0).18、吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x万盒,需投入成本ℎ(x)万元,当产量小于或等于50万盒时ℎ(x)=180x+100;当产量大于50万盒时ℎ(x)=x2+60x+3500,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y(万元)关于产量x(万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?答案:(1)y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N(2)70万盒分析:(1)根据题意分0≤x≤50和x>50两种情况求解即可;(2)根据分段函数中一次与二次函数的最值求解即可.(1)当产量小于或等于50万盒时,y=200x−200−180x−100=20x−300,当产量大于50万盒时,y=200x−200−x2−60x−3500=−x2+140x−3700,故销售利润y(万元)关于产量x(万盒)的函数关系式为y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N (2)当0≤x≤50时,y≤20×50−300=700;当x>50时,y=−x2+140x−3700,当x=140=70时,y=−x2+140x−3700取到最大值,为1200.2因为700<1200,所以当产量为70万盒时,该企业所获利润最大.。
高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。
新高考高中数学核心知识点全透视:指数函数、对数函数与幂函数(精讲精析篇)(附答案及解析)

专题4.1 指数函数、对数函数与幂函数(精讲精析篇)提纲挈领点点突破热门考点01 指数幂的化简与求值指数幂运算的一般原则:(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.【典例1】计算:.【典例2】已知则的值为__________.【特别提醒】根式、指数幂的条件求值,是代数式求值问题的常见题型,一般步骤是:(1)审题:从整体上把握已知条件和所求代数式的形式和特点;(2)化简:①化简已知条件;②化简所求代数式;(3)求值:往往通过整体代入,简化解题过程.如本题求值问题实质上考查整体思想,考查完全平方公式、立方和(差)公式的应用,如,,,解题时要善于应用公式变形.热门考点02 指数函数的图象及应用常考题型及技法(1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除. (2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求解. (4)判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较. 【典例3】(2019·华东师大二附中前滩学校高三月考)函数1(0,1)xy a a a a=->≠的图象可能是( ). A . B .C .D .【典例4】(2019·天津河西区一模)已知f (x )=|2x-1|,当a <b <c 时,有f (a )>f (c )>f (b ),则必有( ) A .a <0,b <0,c <0 B .a <0,b >0,c >0 C .2-a<2cD .1<2a+2c<2【典例5】(2019·安徽马鞍山二中高三月考(文))若函数3x my a n -=+-(0a >且1a ≠)的图象恒过定点(3,2),则m n +=______. 【总结提升】1.对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.2.判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较.3.识图的三种常用方法(1)抓住函数的性质,定性分析:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;②从函数的单调性,判断图象的变化趋势;③从周期性,判断图象的循环往复;④从函数的奇偶性,判断图象的对称性.⑤从函数的特征点,排除不合要求的图象. (2)抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题. (3)根据实际背景、图形判断函数图象的方法:①根据题目所给条件确定函数解析式,从而判断函数图象(定量分析); ②根据自变量取不同值时函数值的变化、增减速度等判断函数图象(定性分析). 4.过定点的图象(1)画指数函数y =ax(a >0,a ≠1)的图象,应抓住三个关键点(0,1),(1,a), .特别注意,指数函数的图象过定点(0,1); (2) xy a =与xy a-=的图象关于y 轴对称;(3)当a >1时,指数函数的图象呈上升趋势,当0<a <1时,指数函数的图象呈下降趋势;简记:撇增捺减.热门考点03 指数函数的性质及应用有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题.常利用指数函数的单调性及中间值(0或1).(2)简单的指数不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及单调性问题时,要借助“同增异减”这一性质分析判断. 【典例6】(2016新课标全国III )已知,,,则( )A. B. C.D.【典例7】(2017·北京高考真题(理))已知函数1()3()3x x f x =-,则()f x ( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数【典例8】(2015·江苏高考真题)不等式224xx-<的解集为________.【典例9】(2019·浙江学军中学高一期中)已知函数1()421x x f x a +=-⋅+. (1)若函数()f x 在[]0,2x ∈上有最大值8-,求实数a 的值; (2)若方程()0f x =在[]1,2x ∈-上有解,求实数a 的取值范围. 【总结提升】1.比较幂值大小时,要注意区分底数相同还是指数相同.是用指数函数的单调性,还是用幂函数的单调性或指数函数的图象解决.要注意图象的应用,还应注意中间量0、1等的运用.2.指数函数的图象在第一象限内底大图高(逆时针方向底数依次变大).当幂的底数不确定时,要注意讨论底数的不同取值情况.3.根据指数函数图象判断底数大小的问题,可以通过直线x =1与图象的交点进行判断.如图是指数函数(1)y =a x,(2)y =b x,(3)y =c x,(4)y =d x的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b. 规律:在y 轴右(左)侧图象越高(低),其底数越大.热门考点04 对数的化简、求值1.对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.【典例10】()52016? 1.2b aa b a b log b log a a b 浙江卷已知>>若+=,=,则a = ,b = . 【典例11】(2019·全国高考真题(理))已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________. 【易错提醒】(1)对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)的错误.(2)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.热门考点05 对数函数的图象及应用应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【典例12】(2019·四川省眉山第一中学高三月考(文))函数与在同一直角坐标系中的图象可能是( )A .B .C .D .【典例13】(2019·浙江高考真题)在同一直角坐标系中,函数且的图象可能是( )A. B.C. D.【典例14】(2019·江西高三高考模拟(文))已知函数lg ,0()1lg ,0x x f x x x >⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,若()()f m f m >-,则实数m 的取值范围是( ) A .(1,0)(1,)-⋃+∞ B .(,1)(1,)-∞-+∞U C .(1,0)(0,1)-UD .(,1)(0,1)-∞-U【总结提升】log a y x =的底数变化,其图象具有如下变化规律:(1)上下比较:在直线1x =的右侧,1a >时,底大图低(靠近x 轴);01a <<时,底大图高(靠近x 轴).(2)左右比较(比较图象与1y =的交点):交点横坐标越大,对应的对数函数的底数越大.热门考点06 对数函数的性质及应用1.比较对数式大小的类型及相应的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. (3)若底数与真数都不同,则常借助1,0,-1等中间量进行比较. 2. 解对数不等式的类型及方法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式.【典例15】(2018·全国高考真题(理))设0.2log 0.3a =,2log 0.3b =,则( ) A .0a b ab +<< B .0ab a b <+< C .0a b ab +<<D .0ab a b <<+【典例16】(2019·山东高考模拟(文))已知1()44x f x x -=+-e ,若正实数a 满足3(log )14a f <,则a的取值范围为( ) A .34a >B .304a <<或43a >C .304a <<或1a > D .1a >【典例17】(2018·上海市大同中学高一期末)函数()()log 2a f x ax =-在[]0,1上是x 的减函数,则实数a 的取值范围是______.【易错提醒】利用对数函数的性质,求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.热门考点07 幂函数的图象和性质1.比较幂值大小的常见类型及解决方法2.幂函数的指数与图象特征的关系当α≠0,1时,幂函数y =x α在第一象限的图象特征:【典例18】(2018·上海高考真题)已知112112322α⎧⎫∈---⎨⎬⎩⎭,,,,,,,若幂函数()a f x x =为奇函数,且在()0+∞,上递减,则a =____. 【典例19】(2019·湖北高三高考模拟(理))幂函数的图象过点,且,,,则、、的大小关系是( )A .B .C .D .【总结提升】1在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,既不同底又不同次数的幂函数值比较大小:常找到一个中间值,通过比较幂函数值与中间值的大小进行判断.准确掌握各个幂函数的图象和性质是解题的关键.2.指数函数的图象在第一象限内底大图高(逆时针方向底数依次变大).当幂的底数不确定时,要注意讨论底数的不同取值情况.3.根据指数函数图象判断底数大小的问题,可以通过直线x =1与图象的交点进行判断.如图是指数函数(1)y =a x,(2)y =b x,(3)y =c x,(4)y =d x的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b. 规律:在y 轴右(左)侧图象越高(低),其底数越大.4.幂函数y =x α的形式特点是“幂指数坐在x 的肩膀上”,图象都过点(1,1).它们的单调性要牢记第一象限的图象特征:当α>0时,第一象限图象是上坡递增;当α<0时,第一象限图象是下坡递减.然后根据函数的奇偶性确定y 轴左侧的增减性即可.热门考点08 函数与方程1.判断函数零点所在区间有三种方法:①解方程,直接求出零点;②利用零点存在定理,判断零点所在区间;③图象法,观察交点所在区间.特别提醒:在判断一个函数在某个区间上不存在零点时,不能完全依赖函数的零点存在性定理,要综合函数性质进行分析判断. 2.判断函数零点个数的方法:(1)直接法:即直接求零点,令f (x )=0,如果能求出解,则有几个不同的解就有几个零点;(2)定理法:利用零点存在性定理,不仅要求函数的图象在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)图象法:即利用图象交点的个数,画出函数f (x )的图象,函数f (x )的图象与x 轴交点的个数就是函数f (x )的零点个数;将函数f (x )拆成两个函数h (x )和g (x )的差,根据f (x )=0⇔h (x )=g (x ),则函数f (x )的零点个数就是函数y =h (x )和y =g (x )的图象的交点个数.(4)性质法:即利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数. 【典例20】(2019·山东高二期末)函数3()2xf x e x =--(e=2.71828…是自然对数的底数)一定存在零点的区间是( ) A.(-1,0)B.(0,1)C.(1,2)D.(2,e)【典例21】(2015·天津高考真题(文))已知函数,函数,则函数的零点的个数为( )A .2B .3C .4D .5【典例22】(2019·新疆高考模拟(文))关于x 的方程()00,1xa x a a a --=>≠且有两个解,则a 的取值范围是( )A .()1+∞, B .()01, C .()0+∞,D .ϕ【总结提升】1.在判断一个函数在某个区间上不存在零点时,不能完全依赖函数的零点存在性定理,要综合函数性质进行分析判断.2. 已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.巩固提升1.(2019·北京高考真题(文))下列函数中,在区间(0,+)上单调递增的是( ) A.B.y =C.D.2.已知a ,b 均为不等于1的正数,且满足lg lg 0a b +=,则函数()xf x a =与函数()log b g x x =-的图象可能是( )A. B.C. D.3.(2010·全国高考真题(文))已知函数()lg f x x =.若a b ≠且,()()f a f b =,则+a b 的取值范围是 ( ) A .(1,)+∞B .[1,)+∞C .(2,)+∞D .[2,)+∞4.(2018·全国高考真题(文))下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是( ) A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+5.(2019·河北高三月考(理))已知奇函数()f x 满足()(4)f x f x =+,当(0,1)x ∈时,()2x f x =,则()2log 12f =( )A.43- B.2332 C.34D.38-6.(2019·天津高三高考模拟)若,则函数的值域是( )A .B .C .D .7.(2019·北京高考真题(文))在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg10.1D .10–10.1 8.(2019·天津高考真题(文))已知,,,则的大小关系为( )A. B. C.D.9.(2018·天津高考真题(文))已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>10. (2018届山东、湖北部分重点中学冲刺(二))定义在上的奇函数,当时,,则关于的函数的所有零点之和为( )A. B. C. D.11.(2019·上海市高桥中学高一期末)式子()2log 3y x =-的定义域为_________. 12.函数log ()a y x k =+(0a >,且1a ≠)的图象恒过点()0,0,则函数1log ()ay x k =-的图象恒过点______.13.(2019·上海市大同中学高三月考)幂函数ky x =的图象经过点(14,2),则它的单调减区间为________14.(2019·上海市行知中学高三月考)已知函数()f x 是定义在R 上的奇函数,且当0x <时,()2xf x =,则()4log 9f 的值为______.15.(2015·湖南高考真题(理))已知函数32,(),x x m f x x x m ⎧≤=⎨>⎩,,若存在实数a ,使函数g(x)=f(x)-a 有两个零点,则实数m 的取值范围是________.16.(2019·上海市高桥中学高一期末)在下列命题中:①两个函数的对应法则和值域相同,则这两个是同一个函数;②()222xxf x -=在R 上单调递增,③若函数()1f x -的定义域为[]0,2,则函数()1f x +的定义域为[]2,0-;④若函数()f x 在其定义域内不是单调函数,则()f x 不存在反函数;⑤()42222xx f x =+++函数的最小值为4;⑥若关于x 的不等式1202xx m --<在[]0,1区间内恒成立,则实数m 的范围是()0,2其中真命题的序号有_________.专题4.1 指数函数、对数函数与幂函数(精讲精析篇)提纲挈领点点突破热门考点01 指数幂的化简与求值指数幂运算的一般原则:(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.【典例1】计算:.【答案】12.【解析】.【典例2】已知则的值为__________.【答案】【解析】题意,∴,∴,故答案为.【特别提醒】根式、指数幂的条件求值,是代数式求值问题的常见题型,一般步骤是:(1)审题:从整体上把握已知条件和所求代数式的形式和特点;(2)化简:①化简已知条件;②化简所求代数式;(3)求值:往往通过整体代入,简化解题过程.如本题求值问题实质上考查整体思想,考查完全平方公式、立方和(差)公式的应用,如,,,解题时要善于应用公式变形.热门考点02 指数函数的图象及应用常考题型及技法(1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求解.(4)判断指数函数图象上底数大小的问题,可以先通过令x=1得到底数的值再进行比较.【典例3】(2019·华东师大二附中前滩学校高三月考)函数1(0,1)xy a a aa=->≠的图象可能是().A .B .C .D .【答案】D【解析】∵0a >,∴10a>,∴函数x y a =需向下平移1a 个单位,不过(0,1)点,所以排除A ,当1a >时,∴101a <<,所以排除B , 当01a <<时,∴11a>,所以排除C ,故选D.【典例4】(2019·天津河西区一模)已知f (x )=|2x-1|,当a <b <c 时,有f (a )>f (c )>f (b ),则必有( ) A .a <0,b <0,c <0 B .a <0,b >0,c >0 C .2-a<2cD .1<2a+2c<2【答案】D【解析】作出函数f (x )=|2x-1|的图象,如图所示,因为a <b <c ,且有f (a )>f (c )>f (b ),所以必有a <0,0<c <1,且|2a-1|>|2c-1|,所以1-2a >2c -1,则2a +2c <2,且2a +2c>1,故选D.【典例5】(2019·安徽马鞍山二中高三月考(文))若函数3x m y a n -=+-(0a >且1a ≠)的图象恒过定点(3,2),则m n +=______. 【答案】7【解析】∵函数3x my an -=+-(0a >且1a ≠)的图象恒过定点,令0x m -=,可得x m =,2y n =-,可得函数的图象经过定点(),2m n -.再根据函数的图象经过定点()3,2, ∴3m =,22n -=,解得3m =,4n =,则7m n +=, 故答案为:7. 【总结提升】1.对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.2.判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较.3.识图的三种常用方法(1)抓住函数的性质,定性分析:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;②从函数的单调性,判断图象的变化趋势;③从周期性,判断图象的循环往复;④从函数的奇偶性,判断图象的对称性.⑤从函数的特征点,排除不合要求的图象. (2)抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题. (3)根据实际背景、图形判断函数图象的方法:①根据题目所给条件确定函数解析式,从而判断函数图象(定量分析); ②根据自变量取不同值时函数值的变化、增减速度等判断函数图象(定性分析). 4.过定点的图象(1)画指数函数y =ax(a >0,a ≠1)的图象,应抓住三个关键点(0,1),(1,a), .特别注意,指数函数的图象过定点(0,1); (2) xy a =与xy a-=的图象关于y 轴对称;(3)当a >1时,指数函数的图象呈上升趋势,当0<a <1时,指数函数的图象呈下降趋势;简记:撇增捺减.热门考点03 指数函数的性质及应用有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题.常利用指数函数的单调性及中间值(0或1).(2)简单的指数不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及单调性问题时,要借助“同增异减”这一性质分析判断. 【典例6】(2016新课标全国III )已知,,,则( )A. B. C. D.【答案】A 【解析】因为,,所以,故选A .【典例7】(2017·北京高考真题(理))已知函数1()3()3x x f x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数【答案】A【解析】分析:讨论函数()133xx f x ⎛⎫=- ⎪⎝⎭的性质,可得答案. 详解:函数()133xx f x ⎛⎫=- ⎪⎝⎭的定义域为R ,且()()111333,333xx xx x xf x f x --⎡⎤⎛⎫⎛⎫⎛⎫-=-=-+=--=-⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦即函数()f x 是奇函数,又1y 3,3xxy ⎛⎫==- ⎪⎝⎭在R 都是单调递增函数,故函数()f x 在R 上是增函数.故选A.【典例8】(2015·江苏高考真题)不等式224xx-<的解集为________.【答案】(1,2).- 【解析】,2222,xx-∴<是一个递增函数;故答案为:.【典例9】(2019·浙江学军中学高一期中)已知函数1()421x x f x a +=-⋅+. (1)若函数()f x 在[]0,2x ∈上有最大值8-,求实数a 的值; (2)若方程()0f x =在[]1,2x ∈-上有解,求实数a 的取值范围. 【答案】(1)5;(2)1718a ≤≤【解析】(1)因为[]0,2x ∈,所以令[]21,4xt =∈,所以得到函数()221f t t at =-+,开口向上,对称轴为t a =,当52a ≤时,则在4t =时,()f t 取最大值,即()()max 48f t f ==-, 所以16818a -+=-,解得258a =,不满足52a ≤,所以舍去,当52a >时,则1t =时,()f t 取最大值,即()()max 18f t f ==-,所以1218a -+=-,解得5a =,满足52a >,综上,a 的值为5.(2)因为[]1,2x ∈-,所以令12,42xm ⎡⎤=∈⎢⎥⎣⎦,所以得到函数()221f m m am =-+令()0f m =,得2210m am -+=,即12a m m=+, 所以要使()0f m =有解, 则函数2y a =与函数1y m m=+有交点,而函数1y m m =+,在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,4上单调递增, 故在1x =时,有min 2y =,在4x =时,有max 174y =, 所以可得21724a ≤≤, 所以a 的范围为1718a ≤≤.【总结提升】1.比较幂值大小时,要注意区分底数相同还是指数相同.是用指数函数的单调性,还是用幂函数的单调性或指数函数的图象解决.要注意图象的应用,还应注意中间量0、1等的运用.2.指数函数的图象在第一象限内底大图高(逆时针方向底数依次变大).当幂的底数不确定时,要注意讨论底数的不同取值情况.3.根据指数函数图象判断底数大小的问题,可以通过直线x =1与图象的交点进行判断.如图是指数函数(1)y =a x,(2)y =b x,(3)y =c x,(4)y =d x的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b. 规律:在y 轴右(左)侧图象越高(低),其底数越大.热门考点04 对数的化简、求值1.对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.【典例10】()52016? 1.2b aa b a b log b log a a b 浙江卷已知>>若+=,=,则a = ,b = .【答案】4,2.【解析】设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=,因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==【典例11】(2019·全国高考真题(理))已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________. 【答案】-3【解析】因为()f x 是奇函数,且当0x >时0x ->,()()axf x f x e -=--=.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e -=,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3a =-. 【易错提醒】(1)对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)的错误.(2)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.热门考点05 对数函数的图象及应用应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【典例12】(2019·四川省眉山第一中学高三月考(文))函数与在同一直角坐标系中的图象可能是( )A .B .C .D .【答案】D【解析】对于A 、B 两图, ,而ax 2+bx=0的两根为0和,且两根之和为,由图知0<<1得-1<<0,矛盾, 对于C 、D 两图,0<<1,在C 图中两根之和<-1,即>1矛盾,C 错,D 正确.故选:D .【典例13】(2019·浙江高考真题)在同一直角坐标系中,函数且的图象可能是( )A. B.C. D.【答案】D 【解析】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D 选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【典例14】(2019·江西高三高考模拟(文))已知函数lg ,0()1lg ,0x x f x x x >⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,若()()f m f m >-,则实数m 的取值范围是( ) A .(1,0)(1,)-⋃+∞ B .(,1)(1,)-∞-+∞U C .(1,0)(0,1)-U D .(,1)(0,1)-∞-U【答案】A【解析】由函数的解析式可得函数为奇函数,绘制函数图像如图所示,则不等式()()f m f m >-即()()f m f m >-,即()0f m >, 观察函数图像可得实数m 的取值范围是()()1,01,-⋃+∞. 故选:A . 【总结提升】log a y x =的底数变化,其图象具有如下变化规律:(1)上下比较:在直线1x =的右侧,1a >时,底大图低(靠近x 轴);01a <<时,底大图高(靠近x 轴).(2)左右比较(比较图象与1y =的交点):交点横坐标越大,对应的对数函数的底数越大.热门考点06 对数函数的性质及应用1.比较对数式大小的类型及相应的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. (3)若底数与真数都不同,则常借助1,0,-1等中间量进行比较.2. 解对数不等式的类型及方法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式.【典例15】(2018·全国高考真题(理))设0.2log 0.3a =,2log 0.3b =,则( ) A .0a b ab +<< B .0ab a b <+< C .0a b ab +<< D .0ab a b <<+【答案】B 【解析】求出0.2211log0.3,0.3log a b ==,得到11a b+的范围,进而可得结果. 详解:.0.30.3log0.2,2a b log ==Q0.2211log0.3,0.3log a b ∴== 0.3110.4log a b ∴+= 1101a b ∴<+<,即01a b ab +<<又a 0,b 0><Qab 0∴<即ab a b 0<+<故选B.【典例16】(2019·山东高考模拟(文))已知1()44x f x x -=+-e ,若正实数a 满足3(log )14a f <,则a的取值范围为( ) A .34a >B .304a <<或43a > C .304a <<或1a > D .1a >【答案】C【解析】因为1x y e-=与44y x =-都是R 上的增函数,所以1()44x f x x -=+-e 是R 上的增函数, 又因为11(1)441f e -=+-=所以()3(log )114af f <=等价于3log 14a <, 由1log a a =,知3log log 4a a a <,当01a <<时,log a y x =在()0,∞+上单调递减,故34a <,从而304a <<; 当1a >时,log a y x =在()0,∞+上单调递增,故34a >,从而1a >, 综上所述, a 的取值范围是304a <<或1a >,故选C. 【典例17】(2018·上海市大同中学高一期末)函数()()log 2a f x ax =-在[]0,1上是x 的减函数,则实数a 的取值范围是______.【答案】()1,2【解析】函数()()log 2a f x ax =-,所以真数位置上的20ax ->在[]0,1x ∈上恒成立, 由一次函数保号性可知,2a <,当01a <<时,外层函数log a y t =为减函数,要使()()log 2a f x ax =-为减函数,则2t ax =-为增函数, 所以0a ->,即0a <,所以a ∈∅, 当1a >时,外层函数log a y t =为增函数,要使()()log 2a f x ax =-为减函数,则2t ax =-为减函数, 所以0a -<,即0a >,所以1a >, 综上可得a 的范围为()1,2. 故答案为:()1,2. 【易错提醒】利用对数函数的性质,求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.热门考点07 幂函数的图象和性质。
(完整版),指数函数讲义经典整理(含答案),推荐文档

1指数函数讲义经典整理(含答案)一、同步知识梳理知识点1:指数函数函数叫做指数函数,其中是自变量,函数的定义域是(01)xy a a a =>≠且x R 知识点2:指数函数的图像和性质知识点3:指数函数的底数与图像的关系指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系 如图所示,则,01c d a b <<<<<在轴右侧,图像从下到上相应的底数也由小变大,y 在轴左侧,图像从上到下相应的底数也由小变大y 即无论在轴左侧还是右侧,底数按逆时针方向变大y 在第一象限内,“底大图高”知识点4:指数式、指数函数的理解2① 分数指数幂与根式或以互化,通常利用分数指数幂进行根式的运算② 根式的运算、变形、求值、化简及等式证明在数学中占有重要的地位,是研究方程、不等式和函数的基础,应引起重视③ 在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程或方程组来求值④ 在理解指数函数的概念时,应抓住定义的“形式”,像等1223,,21xx y y x y y =⋅===-函数均不符合形式,因此,它们都不是指数函数()01x y a a a =>≠且⑤ 画指数函数的图像,应抓住三个关键点:x y a =()()11,,0,1,1,a a ⎛⎫- ⎪⎝⎭二、同步题型分析题型1:指数函数的定义、解析式、定义域和值域例1:已知函数,且.(1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明.专题:计算题.(1)欲求m的值,只须根据f(4)=的值,当x=4时代入f(x)解一个指数方程即可;(2)求出函数的定义域x|x≠0},利用奇偶性的定义判断f(x)与f(﹣x)的关系,即可得到答案;(3)利用单调性的定义证明即可.任取0<x1<x2,只要证明f(x1)>f(x2),即可.解答:解:(1)因为,所以,所以m=1.(2)因为f(x)的定义域为{x|x≠0},又,所以f(x)是奇函数.(3)任取x1>x2>0,则,因为x1>x2>0,所以,所以f(x1)>f(x2),所以f(x)在(0,+∞)上为单调增函数.点评:本题主要考查了函数单调性的判断、函数奇偶性的判断,与证明及指数方程的解法.在判定函数奇偶性时,一定注意函数的定义域关于原点对称,属于基础题.例2:已知函数,(1)讨论函数的奇偶性;(2)证明:f(x)>0.3指数函数的定义、解析式、定义域和值域;函数奇偶性的判断;函数奇偶性的性质.专题:计算题.分析:(1)由2x﹣1≠0解得义域为{x|x≠0},关于原点对称.f(﹣x)=()(﹣x)=()x=f(x),故该函数为偶函数.(2)任取x∈{x|x≠0},当x>0时,2x>20=1且x>0,故,从而.当x<0时,﹣x>0,故f(﹣x)>0,由函数为偶函数,能证明f(x)>0在定义域上恒成立.解答:解:(1)该函数为偶函数.由2x﹣1≠0解得x≠0即义域为{x|x≠0}关于原点对称…(2分)f(﹣x)=()(﹣x)=﹣(+)x=()x=()x=()x=f(x)(6分)故该函数为偶函数.…(7分)(2)证明:任取x∈{x|x≠0}当x>0时,2x>20=1且x>0,∴2x﹣1>0,4故从而…(11分)当x<0时,﹣x>0,∴f(﹣x)>0,…(12分)又因为函数为偶函数,∴f(x)=f(﹣x)>0,…(13分)∴f(x)>0在定义域上恒成立.…(14分)点评:本题考查函数的奇偶性的判断和证明f(x)>0.解题时要认真审题,注意指数函数性质的灵活运用.例3:已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记.(1)求a的值;(2)求f(x)+f(1﹣x)的值;(3)求的值.考点:指数函数的定义、解析式、定义域和值域.专题:综合题;函数的性质及应用.5分析:(1)由y=ax单调得a+a2=20,由此可求a;(2)写出f(x),代入运算可得;(3)借助(2)问结论分n为奇数、偶数讨论可求;解答:解:(1)∵函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,且y=ax单调,∴a+a2=20,得a=4,或a=﹣5(舍去);(2)由(1)知,∴====1;(3)由(2)知f(x)+f(1﹣x)=1,得n 为奇数时,=×1=;n 为偶数时,=+f ()==;综上,=.点评:本题考查指数函数的单调性、最值等知识,属中档题.6题型2:指数函数的图像变换.例1:已知函数y=|2x﹣2|(1)作出其图象;(2)由图象指出函数的单调区间;(3)由图象指出当x取何值时,函数有最值,并求出最值.考点:指数函数的图像变换.专题:综合题;函数的性质及应用.分析:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到.(2)结合函数的图象,可得函数的减区间和增区间.(3)数形结合可得,当x=1时,ymiin=0.解答:解:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到,如图所示:(2)结合函数的图象,可得函数的减区间为(﹣∞,1],增区间为(1,+∞).(3)数形结合可得,当x=1时,ymiin=0.7点评:本题主要考查指数函数的图象和性质综合,体现了数形结合的数学思想,属于中档题.题型3:指数函数单调性例1:已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a=﹣3b,求f(x+1)>f(x)时的x的取值范围.考点:指数函数的单调性与特殊点;函数单调性的判断与证明;函数单调性的性质.专题:函数的性质及应用.分析:(1)分a>0,b>0和a<0,b<0两种情况讨论,运用单调性的定义可作出判断;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),分b>0,b<0两种情况进行讨论,整理可得指数不等式解出即可;8解答:解:(1)当a>0,b>0时,任意x1,x2∈R,且x1<x2,则f(x1)﹣f(x2)=a (﹣)+b (﹣),∵<,<,a>0,b>0,∴a(﹣)<0,b (﹣)<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),故函数f(x)在R上是增函数;当a<0,b<0时,同理,可判断函数f(x)在R上是减函数;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),则f(x+1)>f(x)即化为b(3x+1﹣3•2x+1)>b(3x﹣3•2x),若b>0,则有3x+1﹣3•2x+1>3x﹣3•2x,整理得,解得x>1;若b<0,则有3x+1﹣3•2x+1<3x﹣3•2x,整理得,解得x<1;故b>0时,x的范围是x>1;当b<0时,x的范围是x<1.点评:本题考查函数单调性的判断、指数函数的单调性的应用,考查分类讨论思想,属基础题.例2:已知定义在(﹣1,1)上的奇函数f(x).在x∈(﹣1,0)时,f(x)=2x+2﹣x.(1)试求f(x)的表达式;9(2)用定义证明f(x)在(﹣1,0)上是减函数;(3)若对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立,求实数t的取值范围.考点:指数函数综合题;奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:(1)由f(x)是定义在(﹣1,1)上的奇函数可得f(0)=0,x∈(0,1)时,f(x)=﹣f(﹣x)=﹣(2x+2﹣x);从而写出f(x)的表达式;(2)取值,作差,化简,判号,下结论五步;(3)对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立转化为对于x∈(0,1)上的每一个值,不等式t>﹣恒成立,从而可得.解答:解:(1)∵f(x)是定义在(﹣1,1)上的奇函数,∴f(0)=0,设∈(0,1),则﹣x∈(﹣1,0),则f(x)=﹣f(﹣x)=﹣(2x+2﹣x),10故f(x)=;(2)任取x1,x2∈(﹣1,0),且x1<x2,则f(x1)﹣f(x2)=+﹣(+)=,∵x1<x2<0,∴﹣<0,0<<1,故f(x1)﹣f(x2)>0,故f(x)在(﹣1,0)上是减函数;(3)由题意,t•2x•f(x)<4x﹣1可化为t•2x•(﹣(2x+2﹣x))<4x﹣1,化简可得,t>﹣,令g(x)=﹣=﹣1+,∵x∈(0,1),∴g(x)<﹣1+=0,故对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立可化为11t≥0.点评:本题考查了函数的性质的综合应用及恒成立问题的处理方法,属于难题.例3:已知函数f(x)=|2x﹣1﹣1|,(x∈R).(1)证明:函数f(x)在区间(1,+∞)上为增函数,并指出函数f(x)在区间(﹣∞,1)上的单调性;(2)若函数f(x)的图象与直线y=t有两个不同的交点A(m,t),B(n,t),其中m<n,求m+n 的取值范围.考点:指数函数综合题.专题:计算题;证明题.分析:(1)函数单调性的证明,通常依据定义,步骤为:取值,作差,变形,定号,下结论,由于与指数函数有关,求解时要利用到指数函数的单调性;(2)由(1)可知,函数的值域为(0,1),要使函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1)又函数f(x)的图象与直线y=t有两个不同的交点,所以A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故可以求出m+n,进而由t∈(0,1),可求m+n的取值范围.解答:解:(1)证明:任取x1∈(1,+∞),x2∈(1,+∞),且x1<x2,=,∵x1<x2,∴,12∴,∴f(x1)<f(x2).所以f(x)在区间(1,+∞)上为增函数.(5分)函数f(x)在区间(﹣∞,1)上为减函数.(6分)(2)因为函数f(x)在区间(1,+∞)上为增函数,相应的函数值为(0,+∞),在区间(﹣∞,1)上为减函数,相应的函数值为(0,1),由题意函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1),(8分)易知A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故2m﹣1﹣1<0,2n﹣1﹣1>0,又A,B两点的坐标满足方程t=|2x﹣1﹣1|,故得t=1﹣2m﹣1,t=2n﹣1﹣1,即m=log2(2﹣2t),n=log2(2+2t),(12分)故m+n=log2(2﹣2t)+log2(2+2t)=log2(4﹣4t2),当0<t<1时,0<4﹣4t2<4,﹣∞<log2(4﹣4t2)<2.因此,m+n的取值范围为(﹣∞,2).(17分)点评:本题的考点是指数函数综合问题,主要考查函数单调性的证明,考查函数图形的性质,有较强的综合性.依据定义,证明函数的单调性的步骤通常为:取值,作差,变形,定号,下结论三、课堂达标检测检测题1:已知函数f(x)=(其中e=2.71828…是一个无理数).13(1)求函数f(x)的定义域;(2)判断奇偶性并证明之;(3)判断单调性并证明之.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明;函数奇偶性的判断.专题:计算题;证明题.分析:(1)把分子整理变化成和分母相同的一部分,进行分子常数化,则变量只在分母上出现,根据分母是一个指数形式,恒大于零,得到函数的定义域是全体实数.(2)根据上一问值函数的定义域关于原点对称,从f(﹣x)入手整理,把负指数变化为正指数,就得到结果,判断函数是一个奇函数.(3)根据判断函数单调性的定义,设出两个任意的自变量,把两个自变量的函数值做差,化成分子和分母都是因式乘积的形式,根据指数函数的性质,判断差和零的关系.解答:解:f(x)==1﹣(1)∵e2x+1恒大于零,∴x∈R(2)函数是奇函数∵f(﹣x)==又由上一问知函数的定义域关于原点对称,∴f(x)为奇函数14(3)是一个单调递增函数设x1,x2∈R 且x1<x2则f(x1)﹣f(x2)=1﹣=∵x1<x2,∴∴f(x1)﹣f(x2)<0即f(x1)<f(x2)∴f(x)在R是单调增函数点评:本题考查函数的定义域,考查函数的奇偶性的判断及证明.考查函数单调性的判断及证明,考查解决问题的能力,是一个综合题目.检测题2:已知函数f(x)=2ax+2(a为常数)(1)求函数f(x)的定义域.(2)若a=1,x∈(1,2],求函数f(x)的值域.(3)若f(x)为减函数,求实数a的取值范围.考点:指数函数的定义、解析式、定义域和值域;指数函数的单调性与特殊点.专题:常规题型;转化思想.分析:(1)利用指数函数的定义域来考虑.(2)利用函数f(x)在(1,2]上的单调性求函数的值域.15(3)根据复合函数的单调性,函数u=ax+2必须为减函数.解答:解:(1)函数y=2ax+2对任意实数都有意义,所以定义域为实数集R.(2)因为a=1,所以f(x)=2x+2.易知此时f(x)为增函数.又因为1<x≤2,所以f(1)<f(x)≤f(2),即8<f(x)≤16.所以函数f(x)的值域为(8,16].(3)因为f(x)为减函数,而y=2u是增函数,所以函数u=ax+2必须为减函数.所以得a<0点评:本题考查指数函数的定义域、值域、单调性,复合函数的单调性,体现转化的数学思想.检测题3:设f(x)的定义域是(﹣∞,0)∪(0,+∞),且f(x)对任意不为零的实数x都满足f(﹣x)=﹣f(x).已知当x>0时(1)求当x<0时,f(x)的解析式(2)解不等式.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的性质.专题:常规题型.分析:(1)求当x<0时,f(x)的解析式,在哪个区间上求解析式,就在哪个区间上取值x,再转化到已知区间上求解析式,由f(﹣x)=﹣f(x)解出f(x)即可.(2)解不等式f(x)<﹣,分x>0和x<0两种情况,根据求得的解析式求解即可.16解答:解:(1)当x<0时,﹣x>0,=又f(﹣x)=﹣f(x)所以,当x<0时,(2)x>0时,,∴化简得∴,解得1<2x<4∴0<x<2当x<0时,∴解得2x>1(舍去)或∴x<﹣2解集为{x|x<﹣2或0<x<2}点评:本题考查分段函数解析式的求法,注意在哪个区间上求解析式,就在哪个区间上取值,再转化到已知的区间上求解析式,再根据奇偶性,解出f(x)来.解不等式也要分段求解,注意x的取值范围.1718。
高中数学必修一第四章指数函数与对数函数知识点总结归纳(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结归纳单选题1、设4a =3b =36,则1a+2b =( )A .3B .1C .−1D .−3 答案:B分析:先求出a =log 436,b =log 336,再利用换底公式和对数的运算法则计算求解. 因为4a =3b =36,所以a =log 436,b =log 336, 则1a=log 364,2b=log 369,所以则1a +2b =log 364+log 369=log 3636=1. 故选:B.2、若x 1,x 2是二次函数y =x 2−5x +6的两个零点,则1x 1+1x 2的值为( )A .−12B .−13C .−16D .56 答案:D分析:解方程可得x 1=2,x 2=3,代入运算即可得解. 由题意,令x 2−5x +6=0,解得x =2或3, 不妨设x 1=2,x 2=3,代入可得1x 1+1x 2=12+13=56.故选:D.3、我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)(x ∈[120,500])之间的函数关系可近似表示为y ={13x 3−80x 2+5040x,x ∈[120,144)12x 2−200x +80000,x ∈[144,500] ,当处理量x 等于多少吨时,每吨的平均处理成本最少( )A.120B.200C.240D.400答案:D分析:先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分x∈[120,144)和x∈[144,500]分析讨论求出其最小值即可由题意得二氧化碳每吨的平均处理成本为S={13x2−80x+5040,x[120,144)1 2x−200+80000x,x∈[144,500],当x∈[120,144)时,S=13x2−80x+5040=13(x−120)2+240,当x=120时,S取得最小值240,当x∈[144,500]时,S=12x+80000x−200≥2√12x⋅80000x−200=200,当且仅当12x=80000x,即x=400时取等号,此时S取得最小值200,综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元,故选:D4、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A5、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,10b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.6、设f(x)={e x−1,x<3log3(x−2),x≥3,则f(f(11))的值是()A.1B.e C.e2D.e−1答案:B分析:根据自变量的取值,代入分段函数解析式,运算即可得解.由题意得f(11)=log3(11−2)=log39=2,则f(f(11))=f(2)=e2−1=e.故选:B.小提示:本题考查了分段函数求值,考查了对数函数及指数函数求值,属于基础题.7、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.8、已知f(x)=a−x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是()A.a>0B.a>1C.a<1D.0<a<1答案:D分析:把f(-2),f(-3)代入解不等式,即可求得.因为f(-2)=a2,f(-3)=a3,f(-2)>f(-3),即a2>a3,解得:0<a<1.故选:D多选题9、某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=12x2-200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是()A.该单位每月处理量为400吨时,才能使每吨的平均处理成本最低B.该单位每月最低可获利20000元C.该单位每月不获利,也不亏损D.每月需要国家至少补贴40000元才能使该单位不亏损答案:AD分析:根据题意,列出平均处理成本表达式,结合基本不等式,可得最低成本;列出利润的表达式,根据二次函数图像与性质,即可得答案.由题意可知,二氧化碳每吨的平均处理成本为yx =12x+80000x−200≥2√12x⋅80000x−200=200,当且仅当12x=80000x,即x=400时等号成立,故该单位每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元,故A正确;设该单位每月获利为S元,则S=100x−y=100x−(12x2+80000−200x)=−12x2+300x−80000=−12(x−300)2−35000,因为x∈[400,600],所以S∈[−80000,−40000].故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损,故D正确,BC错误,故选:AD小提示:本题考查基本不等式、二次函数的实际应用,难点在于根据题意,列出表达式,并结合已有知识进行求解,考查阅读理解,分析求值的能力,属中档题.10、已知函数f(x)=log2(2x+8x)−2x,以下判断正确的是()A.f(x)是增函数B.f(x)有最小值C.f(x)是奇函数D.f(x)是偶函数答案:BD分析:由题设可得f(x)=log2(12x+2x),根据复合函数的单调性判断f(x)的单调情况并确定是否存在最小值,应用奇偶性定义判断奇偶性.由f(x)=log2(2x+23x)−log222x=log2(12x+2x),令μ=2x>0为增函数;而t=1μ+μ在(0,1)上递减,在(1,+∞)上递增;所以t在x∈(−∞,0)上递减,在x∈(0,+∞)上递增;又y=log2t在定义域上递增,则y在x∈(−∞,0)上递减,在x∈(0,+∞)上递增;所以f(x)在(−∞,0)上递减,在(0,+∞)上递增,故最小值为f(0)=1,f(−x)=log2(12−x +2−x)=log2(2x+12x)=f(x),故为偶函数.故选:BD11、为了得到函数y=ln(ex)的图象,可将函数y=ln x的图象()A.纵坐标不变,横坐标伸长为原来的e倍B.纵坐标不变,横坐标缩短为原来的1eC.向上平移一个单位长度D .向下平移一个单位长度 答案:BC分析:根据函数图像变换求得结果.解:由题意函数y =lnx 的图象纵坐标不变,横坐标缩短为原来的1e , 可得到函数y =ln (ex)的图象,则A 错误,B 正确; 因为y =ln (ex)=ln x +1,则将函数y =ln x 的图象向上平移一个单位可得到函数y =ln (ex)的图象, 则C 正确,D 错误. 故选:BC. 填空题12、已知函数f(x)={x +1,x ≤0,log 2x,x >0则函数y =f [f (x )]的所有零点之和为___________.答案:12分析:利用分段函数,分类讨论,即可求出函数y =f [f (x )]的所有零点,从而得解.解:x ⩽0时,x +1=0,x =−1,由f(x)=−1,可得x +1=−1或log 2x =−1,∴x =−2或x =12;x >0时,log 2x =0,x =1,由f(x)=1,可得x +1=1或log 2x =1,∴x =0或x =2; ∴函数y =f [f (x )]的所有零点为−2,12,0,2,所以所有零点的和为−2+12+0+2=12 所以答案是:12.13、对于实数a 和b ,定义运算“∗”:a ∗b ={a 2−ab,b 2−ab, a ≤ba >b ,设f(x)=(2x −1)∗(x −1),且关于x 的方程为f(x)=m(m ∈R )恰有三个互不相等的实数根,则m 的取值范围是___________. 答案:(0,14)分析:根据代数式2x −1和x −1之间的大小关系,结合题中所给的定义,用分段函数的形式表示函数f (x )的解析式,画出函数的图象,利用数形结合求出m 的取值范围. 由2x −1≤x −1可得x ≤0,由 2x −1>x −1可得x >0,所以根据题意得f (x )={(2x −1)2−(2x −1)(x −1),x ≤0(x −1)2−(2x −1)(x −1),x >0,即 f (x )={2x 2−x ,x ≤0x −x 2,x >0,作出函数f (x )的图象如图,当x >0时,f (x )=x −x 2开口向下,对称轴为x =12, 所以当x >0时,函数的最大值为f (12)=12−(12)2=14, 函数的图象和直线y =m (m ∈R )有三个不同的交点. 可得m 的取值范围是(0,14), 所以答案是:(0,14) 14、函数f(x)=x (12x −a +12)定义域为(﹣∞,1)∪(1,+∞),则满足不等式ax ≥f (a )的实数x 的集合为______. 答案:{x |x ≥1}分析:由题意可得a =2,f(x)=x (12x −2+12),f(a)=f(2)=2,由ax ≥f (a ),结合指数函数单调性可求x 解:由函数f(x)=x (12x −a +12)定义域为(﹣∞,1)∪(1,+∞),可知a =2 ∴f(x)=x (12x −2+12),f(a)=f(2)=2由ax≥f(a)可得,2x≥2∴x≥1所以答案是:{x|x≥1}解答题15、已知集合A={log52 ,log425,2},集合B={log25,log319}.记集合A中最小元素为a,集合B中最大元素为b.(1)求A∩B及a,b的值;(2)证明:函数f(x)=x+1x 在[2,+∞)上单调递增;并用上述结论比较a+b与52的大小.答案:(1)A∩B={log25},a=log52,b=log25;(2)证明见解析,a+b>52分析:(1)根据对数的运算性质以及对数函数的单调性即可解出;(2)根据单调性的定义即可证明函数f(x)=x+1x在[2,+∞)上单调递增,再根据单调性以及对数的性质log a b=1log b a即可比较出大小.(1)因为log425=log25,所以A={log52 ,log25,2},B={log25,−2},即A∩B={log25}.因为log52<log525=2=log24<log25,所以a=log52,b=log25.(2)设x1,x2为[2,+∞)上任意两个实数,且2≤x1<x2,则x1−x2<0,x1x2>1,f(x1)−f(x2)=(x1+1x1)−(x2+1x2)=x1−x2+1x1−1x2=(x1−x2)×x1x2−1x1x2<0,即f(x1)<f(x2),所以f(x)在[2,+∞)上单调递增.所以f(x)>f(2)=52,所以log52+log25=1log25+log25=f(log25)>52.。
指数函数典型例题详细解析

指数函数典型例题详细解析指数函数·例题解析第一课时例1:求下列函数的定义域与值域:1) $y=\frac{3}{2-x}$解:定义域为$x\in R$且$x\neq 2$,值域为$y>0$且$y\neq1$。
2) $y=2x+2-1$解:由$2^{\frac{x+2}{2}-1}\geq 0$,得定义域为$x\geq -2$,值域为$|y|\geq 0$。
3) $y=3-3x-1$解:由$3-3^{\frac{x-1}{2}}\geq 0$,得定义域为$x\leq 2$,由$3-3^{\frac{x-1}{2}}<3$,得值域为$y<3$。
1.指数函数$y=a^x$($a>0$且$a\neq 1$)的定义域是$R$,值域是$(0,+\infty)$。
2.求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为$0$③形如$a^0$,($a\neq 0$)3.求函数的值域:①利用函数$y=a^x$单调性②函数的有界性($x^2\geq 0;a^x>0$)③换元法。
例如:$y=4x+\frac{6}{2x-8}$($1\leq x\leq 2$),先换元,再利用二次函数图象与性质(注意新元的范围)。
例2:指数函数$y=a^x$,$y=b^x$,$y=c^x$,$y=d^x$的图像如图2.6-2所示,则$a$、$b$、$c$、$d$、$1$之间的大小关系是?解:选$(c)$,在$x$轴上任取一点$(x,0)$,则得$b<a<1<d<c$。
例3:比较大小:1)$2$、$3^2$、$5^4$、$8^8$、$9^{16}$的大小关系是:$2<3^2<5^4<8^8<9^{16}$。
2)$\frac{0.6}{4}-\frac{5}{13}-2$,$2$的大小关系是:$\frac{0.6}{4}-\frac{5}{13}-2<2$。