-离子交换树脂及原理

合集下载

离子交换树脂的原理及应用

离子交换树脂的原理及应用

离子交换树脂的原理及应用1. 离子交换树脂的概述离子交换树脂是一种具有特殊功能的高分子材料,它能够吸附和释放离子,从而进行离子交换反应。

离子交换是指树脂中的固定离子与溶液中的离子发生置换反应,树脂的固定离子会被溶液中的离子取代,实现离子的分离和纯化。

2. 离子交换树脂的原理离子交换树脂的原理基于其内部的功能基团。

树脂中的功能基团可以是阴离子交换基团或阳离子交换基团,分别具有与阳离子和阴离子发生反应的能力。

当树脂与含有离子的溶液接触时,树脂中的交换基团会与溶液中的离子进行交换,实现离子的吸附和离解。

离子交换树脂的选择性是通过功能基团的不同来实现的。

不同的功能基团对离子的亲和性不同,使得离子交换树脂能够选择性地吸附特定的离子。

例如,强酸型阳离子交换树脂具有硫酸基团,可以选择性地吸附和释放阳离子;强碱型阴离子交换树脂具有季铵基团,可以选择性地吸附和释放阴离子。

3. 离子交换树脂的应用离子交换树脂在化学、环境、生物等领域有着广泛的应用。

以下列举了一些常见的应用场景:3.1 水处理•离子交换树脂可以用于水处理中对溶解物的去除,如去除水中的硬度离子(钙离子和镁离子)。

•离子交换树脂还可以用于去除水中的有机物,如有机污染物、重金属离子等。

3.2 药物制剂•离子交换树脂可以用于药物制剂中的纯化和分离,如药物的提纯过程中可以使用离子交换树脂去除杂质离子。

•离子交换树脂还可以用于控制药物的释放速率,通过控制树脂中固定离子的释放来实现。

3.3 工业过程•离子交换树脂可以用于工业过程中的分离和纯化操作,如离子交换法制备纯净的酸碱物质。

•离子交换树脂还可以用于催化反应中的离子交换步骤,使反应更加高效。

3.4 生物技术•离子交换树脂可以用于生物技术中的纯化和分离,如蛋白质纯化中可以使用离子交换树脂去除杂质离子。

•离子交换树脂还可以用于蛋白质结构和功能的研究,通过与离子交换树脂接触可以观察到蛋白质与离子的相互作用。

4. 离子交换树脂的优势和限制4.1 优势•离子交换树脂具有较高的选择性,能够实现对特定离子的高效吸附和纯化。

离子交换树脂分离原理

离子交换树脂分离原理

离子交换树脂分离原理离子交换树脂是一种常用的分离纯化技术,它基于离子交换的原理,可以有效地分离溶液中的离子。

离子交换树脂是一种高分子材料,具有固定的离子交换基团,通过与待分离溶液中的离子发生反应,实现对离子的选择性吸附和释放,从而实现离子的分离纯化。

离子交换树脂的分离原理可以简单地理解为离子的交换。

离子交换树脂中的固定离子交换基团以及溶液中的离子之间会发生离子交换反应。

当溶液中的离子与树脂上的固定离子交换基团具有相同的电荷时,它们会发生吸附作用,被树脂固定下来。

而对于与树脂上的固定离子交换基团具有不同电荷的离子,则不会被树脂吸附,保持在溶液中。

离子交换树脂的选择性吸附和释放离子的能力是由其固定离子交换基团的化学性质决定的。

树脂上的固定离子交换基团可以是阴离子交换基团或阳离子交换基团,分别用于吸附阳离子和阴离子。

固定离子交换基团具有特定的电荷性质,可以与溶液中的离子发生静电作用引起离子的吸附。

离子交换树脂的分离效果可以通过调节溶液的pH值来实现。

当溶液的pH值发生变化时,溶液中的离子的电荷状态也会发生变化。

这样一来,原本被树脂吸附的离子可能会被释放出来,而原本没有被吸附的离子可能会被吸附。

通过调节溶液的pH值,可以实现对特定离子的选择性吸附和释放,从而实现离子的分离纯化。

离子交换树脂在实际应用中有着广泛的用途。

它可以用于水处理领域,用于去除水中的杂质离子,提高水的纯度。

此外,离子交换树脂还可以用于药物纯化、食品加工等领域,用于提取和纯化特定的离子物质。

离子交换树脂还可以用于离子交换色谱分析,用于分离和检测溶液中的离子成分。

离子交换树脂分离原理是基于离子交换反应的,通过树脂上的固定离子交换基团与溶液中的离子发生交换作用,实现对离子的选择性吸附和释放,从而实现离子的分离纯化。

离子交换树脂具有广泛的应用领域,可以用于水处理、药物纯化、食品加工等方面,为我们的生活和工业生产提供了便利和支持。

离子交换树脂工作原理

离子交换树脂工作原理

离子交换树脂工作原理离子交换树脂是一种吸附介质,它能够通过交换其固定的离子与溶液中的离子达到去除或吸附某些成分的目的。

其工作原理可以分为吸附、解吸和再生三个过程。

1. 吸附:当溶液通过离子交换树脂时,树脂中固定的离子会与溶液中的离子发生交换反应,树脂上的固定离子释放到溶液中,而溶液中的离子则附着在树脂上。

这个过程可以选择性地去除特定的离子或分子,使溶液中的成分得到富集或去除。

2. 解吸:当树脂吸附达到一定饱和度后,需要对树脂进行解吸,即从树脂上去除吸附的离子或分子。

可以通过改变溶液的性质,如改变酸碱度、浓度等,使溶液中的离子与树脂上的固定离子交换,使树脂上的离子释放到溶液中,达到解吸的目的。

3. 再生:树脂在多次使用后会逐渐失去吸附能力,此时需要对树脂进行再生。

再生的方法有多种,常见的包括用盐水洗涤、用酸或碱洗涤等。

通过这些方法,可以将吸附在树脂上的离子彻底去除,使树脂恢复到初始状态,再次用于吸附过程。

综上所述,离子交换树脂通过固定离子与溶液中的离子交换,达到去除或吸附特定成分的目的。

通过解吸和再生,树脂可以多次使用,提高了其经济性和可持续性。

继续:离子交换树脂的工作原理可以进一步细分为两个方面:固定相和移动相。

1. 固定相:离子交换树脂的固定相是树脂内部的交联聚合物。

交联聚合物中含有特定的离子基团,如偶氮树脂中的-NH2基团或阴离子树脂中的-RSO3H基团,这些基团会与溶液中的离子交换。

2. 移动相:溶液中的离子是离子交换树脂工作的移动相。

当溶液从树脂上流经时,其中的离子会与树脂上的固定离子发生交换,并附着在树脂上。

这个过程中,离子在树脂与溶液之间交换位置,从而实现了溶液中特定成分的去除或富集。

离子交换树脂的选择性是由其固定相的種類或結構所决定的。

例如,阴离子树脂主要用于吸附溶液中的阳离子,而阳离子树脂则用于吸附溶液中的阴离子。

此外,还有具有特定的选择性的离子交换树脂,如特异性吸附镁离子、铝离子等的树脂。

离子交换树脂结构及交换原理

离子交换树脂结构及交换原理

一.氢型与钠型阳离子交换树脂是什么?氢型阳离子交换树脂(有时简称氢型树脂)是一种人造有机聚合物产品。

最常用的原料是:苯乙烯或丙烯酸(酯),先经过聚合反应生成具有三度空间立体网状结构的聚合物骨架(树脂母体),再于骨架上导入不同的「化学活性基」而成。

由于它的活性基,如磺酸基(-SO3H)、羧基(-COOH)等,都含有活性氢离子,可在水中解离出来,用于与其它阳离子进行交换,所以特别在阳离子树脂名称之前再冠上“氢型”两字,以与同一系统的“钠型”种类有所区别。

不过“钠型”可以利用强酸处理成为“氢型”,“氢型”也可以用氢氧化钠或食盐水溶液处理成为“钠型”,即二者可以互相转换。

氢型阳离子交换树脂不溶于水和一般溶剂。

和其它离子交换树脂一般,常被制成颗粒状,外观看起来有些像鱼卵,粒径大约在0.3-1.2 mm之间,但大部分在0.4-0.6 mm范围内。

化学性质相当稳定,摸起来硬而有弹性,机械强度也足够承受相当压力,颜色由白色至近乎黑色都有,颜色浅时呈透明状,深时呈半透明状,都有光鲜亮丽的树脂光泽。

氢型阳离子交换树脂最常应用的地方,就是硬水的软化,即让硬水流过树脂层,把硬水中的硬度离子,如钙、镁等离子吸收在树脂中,就变成不带硬度离子的软水了,这也是阳离子交换树脂最初被制造的主要目的,但它在工业上应用没有「钠型」来的多,因为在软化过程中,它会直接释出氢离子,使水质呈酸性,可能会因此腐蚀相关金属设备。

依需要的不同,它也可以应用到水质预处理工艺中,用作软化水质及降低pH值之用。

二离子交换树脂的结构离子交换树脂的内部结构,如2.1所示。

由三部分组成,分别是:(1)高分子骨架由交联的高分子聚合物组成:(2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的离子型官能团或带有极性的非离子型官能团;(3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶孔)和高分子结构之间的孔(毛细孔)。

在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团,这些交换基团也是由两部分组成:固定部分和活动部分。

离子交换树脂的原理

离子交换树脂的原理

离子交换树脂的原理
首先,离子交换树脂的原理基于离子交换作用。

树脂内部的功能基团能够与水中的离子发生化学反应,吸附或释放离子物质。

通常情况下,树脂上带有阳离子交换基团的被称为阴离子交换树脂,而带有阴离子交换基团的被称为阳离子交换树脂。

这些功能基团能够与水中的阳离子或阴离子发生交换,从而实现对水质的净化和离子的分离。

其次,离子交换树脂的结构对其工作原理也有着重要影响。

树脂通常呈现出多孔的结构,具有较大的比表面积,这样能够增加与水中离子物质的接触面积,提高离子交换效率。

此外,树脂的孔隙结构和孔径大小也会影响其对不同离子的吸附选择性,从而实现对水质的精确调控。

离子交换树脂在工作过程中,通常需要进行再生操作。

当树脂吸附饱和或者需要更换吸附物种时,可以通过用盐溶液或酸碱溶液进行再生,将吸附在树脂上的离子物质释放出来,使树脂重新恢复吸附能力。

这样实现了对树脂的循环利用,延长了其使用寿命。

总的来说,离子交换树脂的原理是基于树脂内部的离子交换作
用,通过树脂结构和再生操作来实现对水质的净化和离子的分离。

它具有操作简便、效果显著、经济实用等优点,在水处理、化工、制药等领域有着广泛的应用前景。

希望通过本文的介绍,能够对离子交换树脂的原理有一个更加深入的了解。

离子交换树脂及原理课件ppt

离子交换树脂及原理课件ppt
RCOOHNa + H2O → RCOONa+NaOH RNH2Cl + H2O → RNH2OH+HCl
化学性能
对各种离子的交换能力是不同的。 易被交换的离子,解析就困难。 交换顺序:优先高化合价的,其次原子序数大的。
强酸性阳离子交换树脂: Fe2+>Al3+>Ca2+>Mg2+>K+>Na+>H+
树脂的命名 (GB1631-1979)
代号 0 1 2
3 4 5 6
分类名称 强酸性 弱酸性 强碱性
弱碱性 螯合性 两性 氧化还原性
代号 0 1 2
骨架名称 苯乙烯系 丙烯酸系 酚醛系
3
环氧系
4 乙烯吡啶系
5
脲醛系
6 氯乙烯系
二、离子交换树脂的性能
物理性能 外观(颜色、形状)、粒度、密度、 含水率、转型膨胀率、耐磨性
第二节 离子交换基本原理
1. 离子交换反应 可逆性 强型树脂的交换反应 弱型树脂的交换反应 2. 离子交换平衡和选择性系数 3. 离子交换速度 控制步骤 表达式 影响因素
物理性能
密度:单位体积树脂的质量。 1. 湿真密度:单位真体积(不包括树脂颗粒间空隙的体积)内湿态
离子交换树脂的质量,g/mL。 湿真密度=湿态树脂质量/湿态树脂的真体积 一般在1.04-1.30。阳离子大于阴离子的。 离子交换树脂的反洗强度、分层特性与其有关。 2. 湿视密度:单位体积内紧密无规律排列的湿态离子交换树脂的质
用寿命。 耐磨性 由于相互摩擦和胀缩作用,产生破裂现象。 一般年损耗应小于3-7%。
化学性能
酸碱性 不溶性的高分子电解质,可电离,使得水溶液具有酸碱性。 强型树脂不受溶液pH影响。 弱型树脂电离能力小。弱酸性树脂在碱性溶液中电离能力大,弱

离子交换树脂原理及使用方法

离子交换树脂原理及使用方法

离子交换树脂原理及使用方法离子交换树脂是一种重要的固相吸附材料,广泛应用于水处理、制药、食品工业等领域。

它的工作原理是通过静电作用,将溶液中的离子与树脂上的离子交换,从而实现对溶液中特定离子的去除或富集。

离子交换树脂的基本结构是一种聚合物,它的分子链上带有一些功能性基团,这些基团能够与离子发生化学反应。

树脂的功能性基团可以是阴离子基团,如氨基、羟基等,也可以是阳离子基团,如胺基、硫酸基等。

树脂的选择要根据需要去除或富集的离子种类来确定。

离子交换树脂的使用方法一般分为两步,即吸附和洗脱。

首先,将树脂装填在柱子或者固定在其他介质上,形成一个固定床。

然后,将需要处理的溶液通过固定床,溶液中的离子会与树脂上的离子发生交换作用,被吸附在树脂上。

这样,溶液中的目标离子就被去除或者富集到树脂上了。

吸附完毕后,需要对树脂进行洗脱,将吸附在树脂上的离子从树脂上解吸下来。

常用的洗脱方法有酸洗和盐洗。

酸洗是指用酸性溶液对树脂进行洗脱,通过与树脂上的离子发生反应,将其解离下来。

盐洗是指用盐溶液对树脂进行洗脱,通过与树脂上的离子发生交换,将其替换下来。

洗脱后的溶液中就含有高浓度的目标离子,可以进一步利用。

离子交换树脂的选择和运用需要根据具体的应用需求来确定。

不同的树脂具有不同的特性,对不同的离子有不同的选择性。

在选择树脂时,需要考虑离子的浓度、溶液的pH值、温度等因素。

同时,还需要根据溶液的体积和流速等参数来确定树脂的装填方式和床层高度,以确保充分的吸附和洗脱效果。

离子交换树脂的使用在水处理中有着广泛的应用。

例如,可利用阴离子交换树脂去除水中的硝酸盐、磷酸盐等无机离子,或者利用阳离子交换树脂去除水中的重金属离子。

在制药和食品工业中,离子交换树脂也常用于纯化和富集目标物质。

此外,离子交换树脂还可以应用于环境保护、化学分析等领域。

离子交换树脂是一种重要的固相吸附材料,其工作原理是通过静电作用实现溶液中离子的去除或富集。

在使用离子交换树脂时,需要根据具体的应用需求选择合适的树脂和操作条件。

离子交换树脂的原理

离子交换树脂的原理

离子交换树脂的原理首先,离子交换树脂的结构特点。

离子交换树脂通常是由高分子聚合物构成的,其中含有一定数量的功能基团,如硫酸基、羧基、氨基等。

这些功能基团能够与水溶液中的离子发生置换反应,从而实现对离子的吸附和分离。

离子交换树脂的结构特点决定了它具有很强的选择性吸附能力,可以根据需要选择特定的功能基团来实现对目标离子的高效吸附和分离。

其次,离子交换树脂的工作原理。

离子交换树脂的工作原理主要是离子置换反应。

当离子交换树脂与含有离子的水溶液接触时,树脂中的功能基团会与水溶液中的离子发生置换反应,树脂吸附了水溶液中的离子,同时释放出树脂中原有的离子。

这样,离子交换树脂就实现了对水溶液中离子的选择性吸附和分离。

通过控制反应条件和树脂的功能基团类型,可以实现对不同离子的高效吸附和分离。

最后,离子交换树脂的应用领域。

离子交换树脂在水处理、药物分离、金属提取等领域具有广泛的应用。

在水处理领域,离子交换树脂可以用于去除水中的重金属离子、软化水质、去除有机物等。

在药物分离领域,离子交换树脂可以用于药物的纯化和分离。

在金属提取领域,离子交换树脂可以用于金属离子的富集和分离。

离子交换树脂凭借其高效的离子交换能力和广泛的应用领域,成为了化工、环保、医药等领域中不可或缺的重要材料。

总之,离子交换树脂作为一种具有广泛应用前景的化学材料,其原理主要是利用树脂中的功能基团与水溶液中的离子发生置换反应,实现对离子的选择性吸附和分离。

离子交换树脂的结构特点、工作原理和应用领域决定了它在水处理、药物分离、金属提取等多个领域中具有重要的应用价值。

希望本文的介绍能够帮助大家更好地理解离子交换树脂的原理和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全交换容量 /(mmol/g)(干树脂) ≥9.0 ≥4.5 ≥5.0 ≥3.5
工作交换容量 /(mmol/g)(湿树脂) 2.3~2.5 0.8~1.1 0.6~1.0 0.35~0.45
一、离子交换树脂的选用 ---原水水质
仅去除吸附性较强的阳离子 (Ca、Mg、Al、Fe) 选用交换容量大的弱酸型树脂
化学性能
交换容量

单位质量或单位体积的树脂所能交换离子的摩尔数。表示离子交换树脂的交 换能力。
1. 全交换容量:单位质量的离子交换树脂全部离子交换基团的数量,mmol/L。 2. 工作交换容量

指一个周期中单位体积树脂实现的离子交换量,即单位体积树脂从再生型离 子交换基团变为失效型基团的量。 影响因素:树脂种类、粒度、原水水质、出水水质的终点控制、交换运行流 速、树脂层高度、再生方式等。 质量表示单位EM:mol/kg(干树脂) 体积表示单位EV:mol/m3(湿树脂) EV=EM×(1-含水率)×湿视密度
化学性能
对各种离子的交换能力是不同的。

易被交换的离子,解析就困难。 交换顺序:优先高化合价的,其次原子序数大的。 强酸性阳离子交换树脂: Fe2+>Al3+>Ca2+>Mg2+>K+>Na+>H+
弱酸性阳离子交换树脂:
H+ > Fe2+>Al3+>Ca2+>Mg2+>K+>Na+ 强碱性阴离子交换树脂: SO42->NO3->Cl->OH->F->HCO3->HSiO3弱酸性阴离子交换树脂: OH-> SO42->NO3->Cl->HCO3->HSiO3-
复分解反应
RSO3H +CaCl = R(SO3)2Ca + 2NaCl
R(=NCl)2 + Na2SO4l = R(=N)2SO4 + 2NaCl
1. 离子交换反应
--- 弱型树脂的交换反应
R(COOH)2 + Ca(HCO3)2 = R(COO)2Ca + 2H2CO3
非中性盐的分解反应
R=NH2OH + NH4Cl = R=NH2Cl + NH4OH
树脂的交联度: 交联度大的树脂的交换速度受孔道扩散控制;
树脂的粒径:
树脂的粒径越小,扩散速度越快;
树脂的空隙度: 树脂的空隙度越小,扩散速度越快; 水中离子浓度: C>0.1mol/L时孔道扩散控制; C<0.003mol/L时液膜扩散控制;

水溶液的流速: 流速增加,液膜扩散速度加快,但孔道扩散不受影响;
离子交换树脂的分类
阳离子交换树脂: 强酸性和弱酸性 阴离子交换树脂: 强碱性和弱碱性 按活性基团的性质 螯合型 两性 氧化还原型 凝胶型 大孔型 等孔型* 苯乙烯 丙烯酸 酚醛
按离子交换树脂的孔型
按单体的种类
离子交换树脂的内部结构
凝胶型和大孔型树脂的物理性能比较
特性 平均孔径(润湿态) 对有机物的吸附能力 普通凝胶型 离子交换树脂 范围1.5-9.0nm (平均2-4nm) 吸附能力低, 易被污染和老化 大孔型离子交换数值 范围10-500nm (平均20-100nm) 吸附能力高
交换
2 RNa + Ca2+
再生
R2Ca +2 Na+
1. 离子交换反应
--- 强型树脂的交换反应
中性盐分解反应
RSO3H +NaCl = RSO3Na + HCl R=NOH + NaCl = R=NCl + NaOH
中和反应
RSO3H +NaOH = RSO3Na + H2O R=NOH + HCl = R=NCl + H2O


物理性能
转型膨胀率

离子交换树脂从一种单一离子型转为另一种单一离子型时体积的 变化的百分率. 树脂在交换和再生时,体积均会发生变化。 经长时间不断地胀缩,树脂会发生老化现象,从而影响树脂的使 用寿命。

耐磨性

由于相互摩擦和胀缩作用,产生破裂现象。
一般年损耗应小于3-7%。
化学性能
D0 B --- 总扩散系数; --- 与粒度均匀程度有关的系数;
C1、C2
ρ φ
--- 分别表示同一种离子在溶液相和树脂相中的浓度;
--- 树脂的空隙度; --- 树脂颗粒的粒径;
δ
--- 扩散距离。
3. 离子交换速度

--影响因素
离子性质:
离子水合半径或所带电荷越多,扩散速度就越慢;
强酸或强碱的中和反应
RCOOH +NaOH = RCOONa + H2O R=NH2OH + HCl = R=NH2Cl + H2O
复分解反应
R(COOH)2 + CaCl = R(COO)2Ca + 2NaCl
R=NH2Cl + NaNO3 = R=NH2NO3 + NaCl
2. 离子交换平衡和选择性系数 --离子交换平衡
比表面积(mL/g)(干燥态) <0.1
细孔容积(mL/g)(干燥态) 0 外观 加工工艺 透明球状颗粒 苯乙烯+二乙烯苯
0.1-0.4
<0.2 半透明至不透明球状颗粒 苯乙烯+二乙烯苯+致孔剂
树脂的命名 (GB1631-1979)
代号 0 1 2 3 4 5 6 分类名称 强酸性 弱酸性 强碱性 弱碱性 螯合性 两 性 氧化还原性 代号 0 1 2 3 4 5 6 骨架名称 苯乙烯系 丙烯酸系 酚醛系 环氧系 乙烯吡啶系 脲醛系 氯乙烯系
2. 湿视密度:单位体积内紧密无规律排列的湿态离子交换树脂的质 量,g/mL。

湿视密度=湿态树脂质量/湿态树脂的视体积。 用来计算离子交换器中装载树脂时所需湿树脂量的主要数据,一 般在0.6-0.85。
物理性能
含水率

在水中充分膨胀的湿树脂中所含水分的百分数。 含水率=(湿树脂质量-干树脂质量)/湿树脂质量 与树脂的类别、结构、酸碱性、交联度、交换容量、离子型态等 有关。 反映离子交换树脂的交联度和网眼中的孔隙率。含水率愈大,孔 隙率愈大,其交联度愈小。 可了解树脂性能的变化。冬季应注意防冻。 一般在40-60%。


化学性能
热稳定性

表示受热作用下树脂保持理化性能不变的能力。 强碱性树脂:强碱基团受热分解,降低交换容量。


弱碱性树脂:弱碱基团受热发生脱落现象,稳定性较强碱性高。
强酸性树脂:最高使用温度为100-120℃,再高则发生脱落现象。 弱酸性树脂:稳定性更高一些,达200℃,且短时间内容量损失小。
酸碱性

不溶性的高分子电解质,可电离,使得水溶液具有酸碱性。 强型树脂不受溶液pH影响。 弱型树脂电离能力小。弱酸性树脂在碱性溶液中电离能力大,弱
碱性树脂在酸性溶液中电离能力大。

树脂的水解反应 RCOOHNa + H2O → RCOONa+NaOH RNH2Cl + H2O → RNH2OH+HCl
五、离子交换树脂的鉴别方法:

阳树脂和阴树脂 酸性树脂 碱性树脂
一、离子交换树脂的选用 ---交换容量

类型骨架组成的离子交换树脂,弱型树脂大于强型树脂。 同类型树脂,交换容量随交联度的变小而增大。 考虑交换容量、机械强度。
苯乙烯系树脂的交换容量比较
树脂类型 阳树脂 弱酸 强酸 阴树脂 弱碱 强碱

粒度



粒度小,交换速度快,交换容量大,但压力损失大。
粒度要均匀,在0.3-1.2mm范围。
物理性能
密度:单位体积树脂的质量。 1. 湿真密度:单位真体积(不包括树脂颗粒间空隙的体积)内湿态 离子交换树脂的质量,g/mL。

湿真密度=湿态树脂质量/湿态树脂的真体积
一般在1.04-1.30。阳离子大于阴离子的。 离子交换树脂的反洗强度、分层特性与其有关。

不同类型的设备要求选用不同性能的树脂。
移动床、流动床
耐磨、强度高的树脂
混 床
选用湿真密度相差大的树脂
热稳定性大小顺序为:
弱酸性>强酸性>弱碱性>Ⅰ型强碱性>Ⅱ型强碱性
第二节 离子交换基本原理
1. 离子交换反应

可逆性 强型树脂的交换反应 弱型树脂的交换反应
2. 离子交换平衡和选择性系数
3. 离子交换速度

控制步骤 表达式

影响因素
1. 离子交换反应

--- 可逆性
离子交换反应是在固态的树脂和溶液接触的界面间发生的。
吸附性较弱的离子 (K+、Na+或HCO3-、HSiO3-)
必须选用强型树脂
高硬度高含盐量的水
先弱型树脂,再强型树脂
有机物含量较多的水
选用抗氧化性好、强度高的大孔型树脂
一、离子交换树脂的选用 ---出水水质
软 化
强酸性阳树脂 或与弱酸性阳树脂组合
除 盐
一定选用强型树脂, 或与弱型树脂组合
一、离子交换树脂的选用 ---水处理设备的类型
RH +
Na+
= RNa +
H+
Na KH
[ RNa][H ] [ RH ][Na ]
2RNa + Ca2+ = R2Na + 2Na+
K
Ca Na
[ R2Ca][Na ]2 [ RNa]2 [Ca 2 ]
2. 离子交换平衡和选择性系数 --离子交换平衡
相关文档
最新文档