八年级下学期期末数学综合测试(六)及答案
湖北省武汉市武昌区2023-2024学年八年级下学期期末考试数学试卷(含答案)

八年级数学第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案自代号涂黑.1.能使有意义的的取值范围是()A. B. C. D.2.下列二次根式中,与是同类二次根式的是()A. B. C. D.3.学校准备从甲、乙、丙、丁四位同学中选出一名同学,参加区中小学科技创新竞赛,表格记录了四位同学10次平时成绩的平均数及方差:甲乙丙丁平均分92989298方差1 1.8 1.81若要选出一个成绩好且状态稳定的同学去参赛,那么应选的同学是()A.甲B.乙C.丙D.丁4.下列各式计算正确的是()A. B. C. D.5.在中,,,,则的长度是()A. B. C. D.6.一次函数,随的增大而减小,,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,四边形的对角线,相交于点,下列条件不能判定这个四边形是平行四边形的是()A.,B.,C.,D.,8.在某次综合与实践活动中,小明同学了解到鞋号(码)与脚长(毫米)的对应关系如下表:鞋号(码)…3334353637…脚长(毫米)……若小华的脚长为251毫米,则他的鞋号(码)是()A.39B.40C.41D.429.如图,正方形的边长为1,在轴上,点,分别在直线和直线上,若,则点的坐标为()A. B. C. D.10.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,直线与坐标轴围成的三角形区域(不含边界)中只有四个整点,则的取值范围是()A. B.且C. D.且第Ⅱ卷(非选择题,共90分)二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卷指定位置.11.计算的结果是________.12.写出一个图象过第一、三、四象限的一次函数解析式是________..在学校演讲比赛中,小明的得分为:演讲内容87分,演讲能力98分,演讲效果90分,若演讲内容、演讲能力、演讲效果按照的比确定,则小明的最终成绩是________分.14.矩形的两条对角线的夹角为,对角线的长为,则矩形的面积为________.15.已知一次函数的图象与轴交于点,且,则下列结论:①函数图象一定经过定点;②若函数图象不经过第四象限,则;③不等式的解集为,则;④直线与直线交于点,与轴交于点,则的面积为1.其中正确的结论是________(请填写序号).16.如图,在中,,,在左侧构造等边,在右侧构造等边,连接,点为中点,连接,则的最大值是________.三、解答题(共8个小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题满分8分)计算:(1);(2).18.(本小题满分8分)如图,点,分别在平行四边形的边,上,与相交于点,.(1)求证:;(2)连接,.请添加一个条件,使四边形为矩形.(不需要说明理由)19.(本小题满分8分)某校开展了“安全伴我行”宣传教育活动.为了解活动效果,该校随机抽取名学生进行了一次测试,满分为100分,按成绩划分为A,B,C,D四个等级.将收集的数据整理绘制成如下不完整的统计图表.成绩频数分布表等级成绩x频数A46B nC32D8成绩扇形统计图根据以上信息,解答下列问题:(1)直接写出,的值;(2)抽取的这名学生中,其成绩的中位数落在________等级;(3)该校有1500名学生参加这次测试,请估计有多少名学生的成绩达到A等级.20.(本小题满分8分)如图,在平面直角坐标系中,一次函数的图象经过,两点,与轴和轴分别交于点和点.(1)求一次函数的解析式;(2)若点在线段上,过点作于点,作于点,若四边形为正方形,求点的坐标;(3)点在轴上,点在第一象限,若以,,,为顶点的四边形是菱形,直接写出点的坐标.21.(本小题满分8分)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点,图中,,,都是格点.仅用无刻度的直尺在给定网格中完成画图.图1图2(1)如图1,是上一点,在线段上找一点,使;连接,作一点,使四边形为平行四边形;(2)在图2中作的垂直平分线,分别交,于,;将四边形沿翻折,点的对应点为点,画出翻折后的四边形.22.(本小题满分10分).某中学计划租用客车送312名学生和8名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种型号的客车,它们的载客量和租金如下表所示.设租车总费用为元,租用甲型客车辆.甲型客车乙型客车载客量(人/辆)4530租金(元/辆)400280(1)共需租________辆客车;(2)求关于的函数解析式,并求出自变量的取值范围;(3)租车公司为了回馈学校,将甲型客车每辆租金下调元,乙型客车每辆租金下调元,若租车的最低费用是2160元,求的值.23.(本小题满分10分)问题提出如图1,正方形的对角线与交于点,点在上,连接,作交于点,平分交于,探究与的数量关系.问题探究(1)先将问题特殊化,如图2,当点与重合,点与重合时,直接写出与的数量关系;(2)再探究一般情形,如图1,探究与的数量关系:问题拓展(3)如图3,连接,若正方形的边长为,请直接写出的最小值为________(用含的式子表示).图1图2图324.(本小题满分12分)如图,一次函数的图象与轴交于点,与轴交于点,点在轴正半轴上,.(1)直接写出直线的解析式;(2)如图1,点在轴正半轴上,,求点的坐标;(3)如图2,点在上,过作交于点,将点向下平移长度到点,连接,当点从点运动至点过程中,求的最小值.图1图2参考答案一、选择题(每小题3分,共30分)题号12345678910答案A C D C B A C B B D二、填空题(每小题3分,共18分)11.12.(答案不唯一)13.9214.16 15.①③④(对一个得一分,选②不得分)16.16.提示:以为边向上构造等边,连接,易得可证为平行四边形,且过点作,取中点易得,,勾股可得则.三、解答题(共72分)17.解:(1)原式;(2)原式18.证明:(1)∵四边形为平行四边形,∴,∴.又∵,.∴.(2)或等(答案不唯一)19.解:(1)200,57;(2)B;(3).答:估计有345名学生的成绩达到A等级.20.解:(1)将,两点代入函数解析式中得解得∴一次函数解析式为;(2)∵四边形为正方形,∴可设,将代入一次函数得,解得∴;(3)或.21.第(1)小问4分;第(2)小问4分.图1图2另解:22.解:(1)8;(2)∵解得又∵,且为整数∴自变量的取值范围为,且为整数综上:解析式为,,且为整数;(3).①若,则,随的增大而增大∴当时,取最小值,则,∴②若,则此时不成立舍去③若,则,随的增大而减小∴当时,取最小值,则,∴∵不符合不成立舍去.综上:的值为40.23.解:(1);(2)过点作交延长线于.∴,易证,可得,连接,则为等腰直角三角形,则,∵为角平分线易得则;(3).简解:即作关于对称点则.24.解:(1);(2)如图,在轴上取点,使,连接,作交的延长线于,作轴于.由得,,则,可得,则,,∴,∴待定系数法可求:∴;(3)设,①当时,∵则则点轨迹为为线段则当时,在处当时,在处当且仅当时,最小易得,在中,由面积法可求;②当时,∵则则点轨迹为∵过,且与轴交于当且仅当时,最小易得,在中,由面积法可求;∵则的最小值为.。
2023-2024学年山东省济南市历城区八年级(下)期末数学试卷及答案解析

2023-2024学年山东省济南市历城区八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题4分,共40分.)1.(4分)《国家宝藏》节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多的观众走进博物馆,让一个个馆藏文物鲜活起来.下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是()A.B.C.D.2.(4分)如果x<y,那么下列不等式正确的是()A.﹣x﹣1<﹣y﹣1B.x+1>y+1C.﹣2x<﹣2y D.2x<2y3.(4分)若分式的值为0,则a的值为()A.﹣3B.0C.2D.54.(4分)如图,在直角坐标系中,菱形OABC的顶点A的坐标为(﹣2,0),∠AOC=60°.将菱形OABC 沿x轴向右平移1个单位长度,再沿y轴向下平移1个单位长度,得到菱形O′A′B′C′,其中点B′的坐标为()A.(﹣2,﹣1)B.(﹣2,1)C.(﹣,1)D.(﹣,﹣1)5.(4分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB于点E.若CD =1,则AB的长为()A.B.C.D.6.(4分)关于x的一元二次方程ax2﹣4x+1=0有实数根,则a的取值范围是()A.a≤4且a≠0B.a≤4C.a<4且a≠0D.a<47.(4分)如图,AC是平行四边形ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC 的大小是()A.24°B.26°C.28°D.30°8.(4分)如图,在平面直角坐标系中,函数y=ax+b和y=kx的图象交于点P,甲乙两位同学给出的下列结论:甲说:关于x的不等式ax+b>﹣4的解集为x>0;乙说:当x>4时,ax+b<kx;其中正确的结论有()A.甲乙都正确B.甲正确,乙错误C.乙正确,甲错误D.甲乙都错误9.(4分)如图,在△ABC中,∠C=90°,AC=8,BC=6.将△ABC绕点B旋转得△A′BC′,分别取AA′,BC′的中点E,F,则EF的取值范围是()A.1≤EF≤9B.C.D.1<EF<910.(4分)如图,正方形ABCD边长为,E从B出发沿对角线BD向D运动,连接CE,将线段CE 绕C点顺时针旋转90°得到CF,连接DF,EF,设BE=m,下列说法:①△DEF是直角三角形;②=12.5;④取EF中点G,连接BG,CG,当m=4时,;③有且只有一个实数m,使得S△DEF△BCG的面积随着m的增大而增大.正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题.每小题4分,共24分,把答案填在答题卡的横线上.)11.(4分)因式分解:a2﹣9=.12.(4分)已知关于x的方程x2+mx+3=0的一个根为x=1,则实数m=.13.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线交AB和AC于点D,E.若CE=3,则线段AE的长度等于.14.(4分)近来房地产市场进入寒冬期,某楼盘原价为每平方米10000元,连续两次降价后售价为8100元,则平均每次降价的百分率是.15.(4分)如图,在平行四边形ABCD中,以点A为圆心AB长为半径作弧交AD于点F,分别以点B、F 为圆心,大于的长度为半径作弧,交于点G,连接AG并延长交BC于点E,若AE=12,BF=8,则AB的长为.16.(4分)如图,矩形ABCD中,点E是AB上一点,AE=1,BE=3,AD=6,点H是AD边上的动点,以EH为边作菱形EFGH,使顶点F落在BC上,连接CG,则△FCG面积的最小值为.三、解答题(本大题共10个小题,共86分,解答应写出文字说明,证明过程或演算步骤.)17.(6分)解不等式组,并写出它的所有整数解.18.(6分)先化简:,再从﹣1,0,1,2中选取一个适当的数代入求值.19.(10分)解分式方程:(1);(2).20.(8分)解下列方程.(1)x2﹣6x+5=0;(2)x2+4x﹣1=0.21.(6分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:DE=BF.22.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,旋转中心的坐标为;(4)以A,B,C,D为顶点的四边形是平行四边形且点D是y轴上一点,则点D的坐标是.23.(8分)已知四边形ABCD是边长为8cm的正方形,P,Q是正方形边上的两个动点,点P从点A出发,以2cm/s的速度沿A→B→C方向运动,点Q同时从点D出发以1cm/s速度沿D→C方向运动.设点P 运动的时间为t(0<t<8).(1)如图1,点P在AB边上,PQ,AC相交于点O,当PQ,AC互相平分时,求t的值;(2)如图2,点P在BC边上,AP,BQ相交于点H,当AP⊥BQ时,求t的值.24.(10分)根据如表所示素材,探索完成任务.如何确定图书销售单价及怎样进货以获取最大利润素材1某书店为了迎接“读书节”决定购进A,B两种新书,两种图书的进价分别是每本18元、每本12元.素材2已知A种图书的标价是B种图书标价的1.5倍,若顾客用540元按标价购买图书,能单独购买A种图书的数量恰好比单独购买B种图书的数量少10本.素材3书店准备用不超过28200元购进A,B两种图书共2000本,且A种图书不少于600本,经市场调查后调整销售方案为:A种图书按照标价的8折销售,B种图书按标价销售.问题解决任务1探求图书的标价请运用适当方法,求出A,B两种图书的标价.任务2确定如何获得最大利润书店应怎样进货才能获得最大利润?25.(12分)求代数式x2﹣4x+3的最小值时,我们通常运用“a2≥0”这个结论对代数式进行配方来解决.比如x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,∵(x﹣2)2≥0,∴(x﹣2)2﹣1≥﹣1,∴x2﹣4x+3的最小值是﹣1,试利用“配方法”解决下列问题:(1)填空:x2+6x+13=(x+)2+;(2)如图1所示的是一组邻边长分别为5,2a+9的长方形,其面积为S1;如图2所示的是边长为a+7的正方形,其面积为S2,a>0,请比较S1与S2的大小,并说明理由.(3)如图3,一个地块一边靠墙(墙足够长),另外三边用59m长的篱笆围成一个矩形场地,并且与墙平行的边AB加建1m宽的门(用其他材料).设BC=x m,矩形ABCD的面积为y m2.当x为何值时,矩形场地的面积最大?最大值为多少平方米?26.(12分)【探索发现】(1)如图1,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等,边A1O与边AB相交于点E,边C1O与边CB相交于点F,连接EF.在实验与探究中,小新发现无论正方形A1B1C1O绕点O怎样转动,AE,CF,EF之间一直存在某种数量关系,小新发现通过证明△AOE≌△BOF即可推导出来.①请你猜想AE,CF,EF之间的数量关系是.②小新对图1的进一步研究中发现,延长EO与DC交于一点G,通过证明△AOE≌△COG也可推导出AE,CF,EF之间的数量关系,请你证明△AOE≌△COG.【类比迁移】(2)如图2,矩形ABCD的中心O是矩形A1B1C1O的一个顶点,A1O与边AB相交于点E,C1O与边CB相交于点F,连接EF,矩形A1B1C1O可绕着点O旋转,判断AE,CF,EF之间的数量关系并进行证明;【拓展应用】(3)如图3,在Rt△ACB中,∠C=90°,AC=5cm,BC=12cm,点D是边AB的中点,∠EDF=90°,它的两条边DE和DF分别与直线AC,BC相交于点E,F,∠EDF可绕着点D旋转,当AE=4cm时,请直接写出线段CF的长度.2023-2024学年山东省济南市历城区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分.)1.【分析】根据中心对称图形的定义和图案特点即可解答.【解答】解:A、不是中心对称图形,故选项错误,不符合题意;B、是中心对称图形,故选项正确,符合题意;C、不是中心对称图形,故本选项错误,不符合题意;D、不是中心对称图形,故本选项错误,不符合题意.故选:B.【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.【分析】根据不等式的性质进行分析判断.【解答】解:A、在不等式x<y的两边同时乘﹣1,不等号的方向改变,即﹣x>﹣y,两边再同时减去1,即﹣x﹣1>﹣y﹣1,不符合题意;B、在不等式x<y的两边同时加上1,不等号的方向不变,即x+1<y+1,不符合题意;C、在不等式x<y的两边同时乘﹣2,不等号法方向改变,即﹣2x>﹣2y,不符合题意;D、在不等式x<y的两边同时乘2,不等号的方向不变,即2x<2y,符合题意.故选:D.【点评】本题主要考查了不等式的性质.不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.据此逐一判断即可.3.【分析】根据分母不为零且分子为零的条件进行解题即可.【解答】解:由题可知,a﹣2=0且a+3≠0,解答a=2.故选:C.【点评】本题考查分式的值为零的条件,熟练掌握分母不为零且分子为零的条件是解题的关键.4.【分析】过点B作BE⊥x轴于点E,根据菱形的性质得出AB=2,∠EAB=∠AOC=60°,于是求出AE 的长,在Rt△ABE中根据勾股定理求出BE的长,从而得出点B的坐标,再根据平移规律即可得出点B′的坐标.【解答】解:过点B作BE⊥x轴于点E,∴∠BEA=90°,∵点A的坐标为(﹣2,0),∴OA=2,∵四边形OABC是菱形,∴AB=OA=2,AB∥OC,∴∠EAB=∠AOC=60°,∴∠ABE=30°,∴,由勾股定理得,∴OE=AE+OA=1+2=3,∴点B的坐标是,将菱形OABC沿x轴向右平移1个单位长度,再沿y轴向下平移1个单位长度,得到菱形O′A′B′C′,∴点B′的坐标为,故选:A.【点评】本题考查了菱形的性质,平面直角坐标系中点的平移规律,求出点B的坐标,根据平移规律得出点B′的坐标是解题的关键.5.【分析】由AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB于点E,CD=1,得DE=CD=1,∠B=45°=∠EDB,即可得AB.【解答】解:由AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB于点E,CD=1,得DE=CD=1,∠B=45°=∠EDB,得BE=DE=1,BD==,得CB=1+,得AB=CB=2+.故选:C.【点评】本题主要考查了勾股定理,角平分线的性质,等腰直角三角形,解题关键是找准直角三角形.6.【分析】根据一元二次方程根的判别式,即可求解.【解答】解:∵关于x的一元二次方程ax2﹣4x+1=0有实数根,∴Δ=(﹣4)2﹣4a≥0且a≠0,解得:a≤4且a≠0.故选:A.【点评】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程ax2+bx+c=0(a≠0),当Δ=b2﹣4ac>0时,方程有两个不相等的实数根;当Δ=b2﹣4ac=0时,方程有两个相等的实数根;当Δ=b2﹣4ac<0时,方程没有实数根是解题的关键.7.【分析】根据平行四边形的性质得到∠ABC=∠D=102°,AD=BC,根据等腰三角形的性质得到∠EAB =∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故选:B.【点评】本题考查了平行四边形的性质,三角形的内角和定理,三角形外角的性质,正确的识别图形是解题的关键.8.【分析】根据所给函数图象,利用数形结合的数学思想对甲,乙两人的说法作出判断即可.【解答】解:由函数图象可知,当x>0时,一次函数y=ax+b的图象在直线y=﹣4的上方,即ax+b>﹣4,所以关于x的不等式ax+b>﹣4的解集为x>0.故甲的结论正确.由函数图象可知,当x<4时,一次函数的图象在正比例函数图象的下方,即ax+b<kx,所以x<4时,ax+b<kx.故乙的结论错误.故选:B.【点评】本题主要考查了一次函数与一元一次不等式及两条直线相交或平行问题,巧用数形结合的数学思想是解题的关键.9.【分析】利用勾股定理求出AB的长,在根据旋转的性质可得A'C'=AC=8,A'B=AB=10,BC'=BC=6,利用中位线的性质可求EG=5,FG=4,再根据三角形的三边关系即可求出结果.【解答】解:取A'B的中点G,连接EG、FG,∵∠C=90°,AC=8,BC=6,∴AB===10,由旋转的性质可知:A'C'=AC=8,A'B=AB=10,BC'=BC=6,∵点E、F、G分别是AA'、BC'、A'B的中点,∴EG是△A'AB的中位线,FG是Rt△BCA′的中位线,∴EG=5,FG=4,当点E、F、G不共线时,EG﹣FG<EF<EG+FG,即1<EF<9,当点G在线段EF上时,EF=EG+FG=5+4=9,当点F在线段EG上时,EF=EG﹣FG=5﹣4=1,综上所述,1≤EF≤9,故选:A.【点评】本题考查了旋转的性质、三角形中线的性质、三角形三边关系及勾股定理,熟练掌握旋转的性质和三角形中线的性质求出EG、FG的值是解题的关键.10.【分析】根据正方形的性质得到BC=DC=5,∠BCD=90°,求得∠CBE=∠CDE=45°,根据旋转的性质得到CE=CF,∠ECF=90°,求得∠BCE=∠DCF=90°﹣∠DCE,根据全等三角形的性质得到EDF=∠CDE+∠CDF=45°+45°=90°,求得△DEF是直角三角形,故①正确;根据勾股定理得到BD==BC=×5=10,BE=DF=m=4,求得DE=BD﹣BE=10﹣4=6,得到EF===2,故②正确;根据三角形的面积公式列方程得到m=5,推=12.5,故③正确;连接DG,作GH⊥CD于点H,则∠GHD=∠出有且只有一个实数m,使得S△DEFBCD=90°,得到CH与△BCG的边BC上的高相等,根据三角形的面积公式得到S△BCG=BC•CH=×5×=,推出△BCG的面积不随着m的增大而增大,故④错误.【解答】解:∵四边形ABCD是边长为5的正方形,∴BC =DC =5,∠BCD =90°,∴∠CBE =∠CDE =45°,∵将线段CE 绕C 点顺时针旋转90°得到CF ,∴CE =CF ,∠ECF =90°,∴∠BCE =∠DCF =90°﹣∠DCE ,在△BCE 和△DCF 中,,∴△BCE ≌△DCF (SAS ),∴∠CBE =∠CDF =45°,BE =DF =m ,∴∠EDF =∠CDE +∠CDF =45°+45°=90°,∴△DEF 是直角三角形,故①正确;∵BD ==BC =×5=10,BE =DF =m =4,∴DE =BD ﹣BE =10﹣4=6,∴EF ===2,故②正确;∵DF •DE =S △DEF ,且DF =m ,DE =10﹣m ,S △DEF =12.5,∴m (10﹣m )=12.5,解得m =5,∴有且只有一个实数m ,使得S △DEF =12.5,故③正确;连接DG ,作GH ⊥CD 于点H ,则∠GHD =∠BCD =90°,∴GH ∥BC ,∴CH 与△BCG 的边BC 上的高相等,∵∠EDF =∠ECF =90°,点G 为EF 的中点,∴DG =CG =EF ,∴CH=DH=DC=×5=,=BC•CH=×5×=,∴S△BCG∴△BCG的面积不随着m的增大而增大,故④错误,故选:C.【点评】此题重点考查旋转的性质,正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,证明△BCE≌△DCF是解题的关键.二、填空题(本大题共6个小题.每小题4分,共24分,把答案填在答题卡的横线上.)11.【分析】a2﹣9可以写成a2﹣32,符合平方差公式的特点,利用平方差公式分解即可.【解答】解:a2﹣9=(a+3)(a﹣3).【点评】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键.12.【分析】把x=1代入一元二次方程得到1+m=3=0,然后解一次方程即可.【解答】解:把x=1代入x2+mx+3=0得1+m+3=0,解得m=﹣4.故答案为:﹣4.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.【分析】连接BE,先求出∠ABC=60°,根据线段垂直平分线性质得AE=BE,则∠A=∠ABE=30°,进而得∠CBE=30°,由此得BE=2CE=6,据此可求出AE的长.【解答】解:连接BE,如图所示:在△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∴DE是线段AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△CBE中,CE=3,∠CBE=30°,∴BE=2CE=6,∴AE=BE=6.【点评】此题主要考查了线段垂直平分线的性质,含有30°角的直角三角形的性质,熟练掌握线段垂直平分线的性质,含有30°角的直角三角形的性质是解决问题的关键.14.【分析】设平均每次降价的百分率为x,根据该楼盘的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【解答】解:设平均每次降价的百分率为x,依题意得:10000(1﹣x)2=8100,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故答案为:10%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.【分析】设AE与BF相交于点O,由作图过程可知,AB=AF,AO⊥BF,可得OB=OF==4,AO平分∠BAF,结合平行四边形的性质可得AB=BE,由等腰三角形的性质可得OA=OE==6.在Rt△BOE中,由勾股定理得,BE==,进而可得答案.【解答】解:设AE与BF相交于点O,由作图过程可知,AB=AF,AE⊥BF,∴OB=OF==4,AO平分∠BAF,∴∠FAE=∠BAE.∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,∴△ABE为等腰三角形,∵BO⊥AE,∴OA=OE==6.在Rt△BOE中,由勾股定理得,BE==,∴AB=.故答案为:.【点评】本题考查作图—基本作图、平行四边形的性质、等腰三角形的性质、勾股定理,熟练掌握平行四边形的性质、等腰三角形的性质、勾股定理是解答本题的关键.16.【分析】通过辅助线构造Rt△IFG,由△AHE≌△IFG推出△FCG的底边FC上的高IG=AE=1,然后根据动点H的位置,以及直角三角形三边的关系,计算出线段FC的最小值,即可求出答案.【解答】解:如图,过点G作BC的垂线,交BC延长线于点I.∵四边形EFGH为菱形,∴FG=EH=EF,FG∥EH.四边形ABCD为矩形,则AD∥BC,连接FH,∴∠AHF=∠HFI,∠EHF=∠HFG,∴∠AHF﹣∠EHF=∠HFI﹣∠HFG,即∠AHE=∠IFG,在△AHE和△IFG中,∠A=∠FIG,∠AHE=∠IFG,EH=FG,∴△AHE≌△IFG.∴GI=AE=1.=FC•GI=FC.∵S△FCG的最小值即FC的最小值.∴S△FCG在Rt△AHE和Rt△EBF中,AE和BE为定值,AH的最大值为AD,则EH的最大值为ED.∵ED===.∴EH和EF的最大值为.∵BF2+BE2=EF2,∴BF的最大值:==.又∵FC=BC﹣BF=AD﹣BF,∴FC的最小值为:6﹣.的最小值为:FC=×(6﹣)=3﹣.∴S△FCG故△FCG面积的最小值为3﹣.【点评】本题考查了矩形、菱形的性质,以及全等三角形的判定和性质.构造△∠IFG与△AHE全等,得出IG为定值,将△FCG面积的最小值转化为线段FC的最小值是解题的关键.三、解答题(本大题共10个小题,共86分,解答应写出文字说明,证明过程或演算步骤.)17.【分析】分别求出各不等式的解集,再求出其公共解集,写出它的所有整数解即可.【解答】解:,由①得,x<1;由②得,x≥﹣,故不等式组的解集为:﹣≤x<1,它的所有整数解为:﹣1,0.【点评】本题考查的是解一元一次不等式组,熟知解一元一次不等式组的一般步骤是解题的关键.18.【分析】先因式分解,通分,去括号化简,再选值计算即可.【解答】解:===,∵x﹣1≠0,x﹣2≠0∴x≠1,x≠2∴当x=﹣1时,原式=;当x=0时,原式=.【点评】本题考查了分式的化简求值,熟练掌握因式分解,约分,通分是解题的关键.19.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2(x+2)=3(x﹣2),去括号得:2x+4=3x﹣6,移项合并得:﹣x=﹣10,解得:x=10,检验:把x=10代入得:(x+2)(x﹣2)≠0,∴分式方程的解为x=10;(2)去分母得:2(x﹣4)+1=x﹣3,去括号得:2x﹣8+1=x﹣3,移项得:2x﹣x=﹣3+8﹣1,合并同类项得:x=4,检验:把x=4代入得:x﹣4=0,∴x=4是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【分析】利用因式分解法及配方法对所给方程进行求解即可.【解答】解:(1)x2﹣6x+5=0,(x﹣1)(x﹣5)=0,则x﹣1=0或x﹣5=0,所以x1=1,x2=5.(2)x2+4x﹣1=0,x2+4x=1,x2+4x+4=1+4,(x+2)2=5,则x+2=,所以.【点评】本题主要考查了解一元二次方程﹣因式分解法及解一元二次方程﹣配方法,熟知因式分解法及配方法解一元二次方程的步骤是解题的关键.21.【分析】首先利用平行四边形的性质,证出AD=CB,AD∥CB,进而证出∠DAE=∠BCF,再结合已知证得△ADE≌△CBF,最后利用全等三角形的性质证出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAE=∠BCF,∵AE=CF,∴△ADE≌△CBF(SAS),∴DE=BF.【点评】本题考查的是平行四边形的性质,全等三角形的性质与判定,找到图中的全等三角形是解本题的关键.22.【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用中心对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;(3)作出旋转中心M,可得结论;(4)根据题目要求以及平行四边形的判定作出点D即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)旋转中心M的坐标为(﹣3,0);故答案为:(﹣3,0);(4)点D的坐标是(0,6).故答案为:(0,6).【点评】本题考查作图﹣旋转变换,平移变换,平行四边形的判定等知识,解题的关键是掌握旋转变换,平移变换的性质.23.【分析】(1)根据题意用t表示CQ与AP,证明四边形APCQ为平行四边形,得AP=CQ,由此列出t 的方程即可;(2)根据题意用t表示CQ与BP,证明△ABP≌△BCQ得BP=CQ,由此列出t的方程即可.【解答】解:(1)由题意得DQ=t cm,AP=2t cm,∵四边形ABCD是边长为8cm的正方形,∴CQ=(8﹣t)cm,当PQ,AC互相平分时,四边形APCQ为平行四边形,∴AP=CQ,∴2t=8﹣t,解得t=,即t的值为s;(2)∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠BCQ=90°,∵AP⊥BQ,∴∠BAP+∠ABH=∠ABH+∠CBQ=90°,∴∠BAP=∠CBQ,∴△ABP≌△BCQ(ASA),∴BP=CQ,∵BP=2t﹣AB=2t﹣8,CQ=8﹣t,∴2t﹣8=8﹣t,解得t=,即t的值为s.【点评】本题主要考查了正方形的性质,全等三角形的性质与判定,行程问题,平行四边形的性质与判定,关键是正确列出t的方程.24.【分析】任务1:设B种图书的标价是x元,则A种图书的标价是1.5x元,根据“购买数量=金额÷标价”列方程并求解即可;任务2:设购进A种图书m本,则购进B种图书(2000﹣m)本,根据“A种图书进价×购进A种图书数量+B种图书进价×购进B种图书数量≤28200”和“A种图书不少于600本”列关于m的一元一次不等式组并求解;设获得的利润是w元,根据“获得的利润=(A种图书售价﹣A种图书进价)×购进A种图书数量+(B种图书售价﹣B种图书进价)×购进B种图书数量”写出w关于m的函数关系式,根据该函数的增减性和m的取值范围,确定当m取何值时w的值最大,并求出此时2000﹣m的值即可.【解答】解:任务1:设B种图书的标价是x元,则A种图书的标价是1.5x元.根据题意,得﹣=10,解得x=18,经检验,x=18是所列分式方程的解,1.5×18=27(元),∴A种图书的标价是27元,B种图书的标价是18元.任务2:设购进A种图书m本,则购进B种图书(2000﹣m)本.根据题意,得,解得600≤m≤700.由题意可得,A种图书的售价是0.8×27=21.6(元),B种图书的售价是18元,设获得的利润是w元,则w=(21.6﹣18)m+(18﹣12)(2000﹣m)=﹣2.4m+12000,∵﹣2.4<0,∴w随m的减小而增大,∵600≤m≤700,∴当m=600时,w值最大,2000﹣600=1400(本),∴购进A种图书600本、B种图书1400本可获得最大利润.【点评】本题考查一次函数和分式方程的应用,掌握分式方程和一元一次不等式组的解法及一次函数的增减性是解题的关键.25.【分析】(1)根据完全平方公式求解;(2)先根据矩形的面积公式表示S1,S2,再根据作差法求解;(3)根据矩形的面积公式列出函数关系式,再配方求解.【解答】解:(1)x2+6x+13=x2+6x+9+4=(x+3)2+4,故答案为:3,4;(2)S2>S1;理由:∵S1=5(2a+9)=10a+45,S2=(a+7)2=a2+14a+49,∴S2﹣S1=a2+14a+49﹣10a﹣45=a2+4a+4=(a+2)2>0,∴S2>S1;(3)由题意得:y=x(59﹣2x+1)=﹣2x2+60x=﹣2(x﹣15)2+450,∴当x=15时,y有最大值,为450平方米.【点评】本题考查了配方法的应用,掌握完全平方公式和非负数的性质是解题的关键.26.【分析】(1)①先证明△AOE≌△BOF(ASA),可得AE=BF,推出BE=CF,再运用勾股定理即可证得结论;②延长EO交DC于点G,由正方形性质可得OA=OC,∠OAE=∠OCG=45°,再利用ASA可证得△AOE≌△COG;(2)延长EO交CD于点G,连接FG,可证得△AEO≌△CGO(AAS),得出AE=CG,OE=OG,再由线段垂直平分线的性质可得EF=FG,再运用勾股定理即可求得答案;(3)设CF=x cm,分两种情况讨论:①当点E在线段AC上时,②当点E在CA延长线上时,结合勾股定理,即可求解.【解答】(1)①解:猜想:AE2+CF2=EF2,理由如下:如图1,∵四边形ABCD和四边形A1B1C1O均为正方形,∴OA=OB,AB=BC,∠OAE=∠OBF=45°,∠AOB=∠A1OC1=90°,∴∠AOB﹣∠BOE=∠A1OC1﹣∠BOE,即∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在Rt△BEF中,BF2+BE2=EF2,∴AE2+CF2=EF2,故答案为:AE2+CF2=EF2.②证明:如图1′,延长EO交DC于点G,∵四边形ABCD为正方形,∴OA=OC,∠OAE=∠OCG=45°,在△AOE和△COG中,,∴△AOE≌△COG(ASA).(2)解:结论:AE2+CF2=EF2,证明:如图2,延长EO交CD于点G,连接FG,∵O是矩形ABCD的中心,∴点O是AC的中点.∴AO=CO,∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,∴∠BAO=∠DCO,∠AEO=∠CGO,∴△AEO≌△CGO(AAS),∴AE=CG,OE=OG,∵四边形A1B1C1O是矩形,∴∠A1OC1=90°,即OF⊥EG,∴OF垂直平分EG,∴EF=FG,在Rt△FCG中,CG2+CF2=GF2,∴AE2+CF2=EF2;(3)解:设CF=x cm,①当E在线段AC上时,如图3,连接EF,∵AE=4cm,AC=5cm,BC=12cm,∴CE=1cm,在Rt△FCE中,∠C=90°,∴CE2+CF2=EF2,∴12+x2=EF2,又由(2)易知EF2=AE2十BF2,∴EF2=42+BF2,∴12+x2=42+(12﹣x)2,解得:x=,∴此时线段CF的长度为cm;②当点E在CA延长线上时,如图4,过点B作BG⊥BC,交ED的延长线于G,连接EF,GF,同理可证EF2=AE2十BF2,∴EF2=42+(12﹣x)2,在Rt△FCE中,EF2=x2+(5+4)2,∴x2+(5+4)2=42+(12﹣x)2,解得:x=,∴此时线段CF的长度为cm;综上所述,线段CF的长度为cm或cm.【点评】本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形根据勾股定理列方程解决问题。
人教版八年级第二学期期末数学试卷及答案六

人教版八年级第二学期期末数学试卷及答案一.选择题(共10小题)1.二次根式中,x的取值范围是()A.x≥1B.x>1C.x≤1D.x<12.以下列长度的三条线段为边,能组成直角三角形的是()A.6,7,8B.2,3,4C.3,4,6D.6,8,103.如图,平行四边形ABCD的对角线AC和BD相交于点O,AB⊥BD,若AB=4,BD=6,则AC的长是()A.8B.9C.10D.114.某商场对某品牌女装一周以来的销售情况进行了统计,销售情况如表所示,为了提升该品牌女装的销售量,该商场决定多进红色女装,做出这一决策的依据是()颜色黄色紫色白色蓝色红色数量(件)10018020080350A.平均数B.众数C.中位数D.方差5.下列各图能表示y是x的函数是()A.B.C.D.6.某校把学生数学的期中、期末两次成绩分别是按40%,60%的比例计入学期总成绩,小明数学期中成绩是85分,期末成绩是90分,那么他的数学学期总成绩为()A.88分B.87.5分C.87分D.86分7.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°8.若0<x<1,则x,x2,的大小关系是()9.如图,数轴的原点为O,点A在数轴上表示的数是2,AB=1,且AB⊥OA,以点O为圆心,OB长为半径画弧,交数轴于点C,则点C表示的数是()A.B.+1C.D.+110.用固定的速度往如图形状的杯子里注水,用x表示注水时间,y表示水杯底部到水面的高度,下列图象大致能表示y与x之间的对应关系的是()A.B.C.D.二.填空题(共6小题)11.计算:﹣=.12.为从甲乙两名射击运动员中选出一人参加竞标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩为8.9环,方差分别是S甲2=0.8,S乙2=13,从稳定性的角度看,的成绩更稳定(填“甲”或“乙”)13.如图,以Rt△ABC的三边为边向外作正方形,已知正方形ABDE和正方形ACMN的面积分别是21和8,那么正方形BCFG的面积为.14.若函数y=kx﹣3的图象与两坐标轴围成的三角形面积为6,那么k=.15.“敲7”是一种日常小游戏,规则是:从1开始依次数自然数,若数到7的整数倍或数位有7的数,则应敲一下桌子,比如:当数到37(个位数为7),91(7的13倍)均应敲一下桌子,若从1开始数到100,则应敲桌子下.16.如图,在正方形ABCD中,已知AB=2,点E,G分别是边AD,CD的中点,点F是边BC上的动点,连接EF,将正方形ABCD沿EF折叠,A,B的对应点分别为A',B',则线段GB'的最小值与最大值的和是.17.计算:(1)()×;(2)(π+1)0﹣+|﹣|.18.已知x=2﹣,y=2+,求:x2+xy+y2的值.19.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.20.如图是一个三级台阶,每级台阶都是长、宽和高分别等于90cm,25cm和15cm的长方体,A和B是这个台阶的两个相对的端点.在A点处有一只蚂蚁,想到B点去吃可口的食物,请你算一算,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路程是多少?21.已知一次函数y=kx+b的图象如图所示.(1)求k,b的值;(2)请在图中作出函数y=2x+6的图象;(3)利用图象解答下列问题:当y=kx+b的函数值大于y=2x+6的函数值时,求x的取值范围.学生的成绩,把数据整理成频数分布统计表如表(各组数据包括左端点不包括右端点):等级D C B A分数范围60~7070~8080~9090~100八年级2675七年级11081(1)如果七年级共有学生600人,则估计此次测试中七年级成绩在C级以上(包括C 级)的人数为人;(2)请从两个不同的角度分析七年级和八年级中哪个年级的成绩更好.23.某手工艺人用A,B两种规格的绒布片拼制成甲、乙两款玩具进行销售,拼制每款玩具所需不同规格绒布片用量如表所示.该艺人制作甲款玩具x个,乙款玩具y个,共用去A种绒布3000片.玩具款式A种绒布(片)B种绒布(片)甲款玩具3020乙款玩具1530(1)求y关于x的函数表达式;(2)已知每个甲款玩具的利润为a元(8≤a≤14),每个乙款玩具的利润为6元,假设两款玩具均能全部卖出;①当a=8时,若要获得总利润不少于850元,则至少要用去B绒布多少片?②该艺人现有B种绒布数量在4800~5200片,求他加工这批玩具所获利润的取值范围.24.如图,四边形ABCD是菱形,点M在CD边上,点N在菱形ABCD外部,且满足MN∥AD,CM=MN,连接AN,CN,取AN的中点E,连接BE,AC.(1)探究BE与AC的关系;(2)若∠ABC=120°,探究线段BE、AD、CM所满足的等量关系;(3)若∠ABC=60°,M在DC的延长线上时,其余条件不变,CM=1,AD=3,请求出BE的长度.参考答案与试题解析一.选择题(共10小题)1.二次根式中,x的取值范围是()A.x≥1B.x>1C.x≤1D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选:A.2.以下列长度的三条线段为边,能组成直角三角形的是()A.6,7,8B.2,3,4C.3,4,6D.6,8,10【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、∵62+72≠82,∴不能构成直角三角形,故本选项错误;B、∵22+32≠42,∴不能构成直角三角形,故本选项错误;C、∵32+42≠62,∴不能构成直角三角形,故本选项错误;D、∵62+82=102,∴能构成直角三角形,故本选项正确.故选:D.3.如图,平行四边形ABCD的对角线AC和BD相交于点O,AB⊥BD,若AB=4,BD=6,则AC的长是()A.8B.9C.10D.11【分析】利用平行四边形的性质和勾股定理易求AO的长,进而可求出AC的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵BD=6,∴BO=3,∵AB⊥BD,AB=4,∴AO=∴AC=2OA=10,故选:C.商场决定多进红色女装,做出这一决策的依据是()颜色黄色紫色白色蓝色红色数量(件)10018020080350A.平均数B.众数C.中位数D.方差【分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:B.5.下列各图能表示y是x的函数是()A.B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.6.某校把学生数学的期中、期末两次成绩分别是按40%,60%的比例计入学期总成绩,小明数学期中成绩是85分,期末成绩是90分,那么他的数学学期总成绩为()A.88分B.87.5分C.87分D.86分【分析】根据学期数学总成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.【解答】解:他的数学学期总成绩为85×40%+90×60%=88(分),7.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【解答】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.8.若0<x<1,则x,x2,的大小关系是()A.x<x2<B.x2<x<C.<x2<x D.x<<x2【分析】已知x的取值范围,可运用取特殊值的方法,选取一个符合条件的实数代入选项求得答案.【解答】解:∵0<x<1,∴可假设x=0.1,则x2=(0.1)2=,==,∵<0.1<,∴x2<x<.9.如图,数轴的原点为O,点A在数轴上表示的数是2,AB=1,且AB⊥OA,以点O为圆心,OB长为半径画弧,交数轴于点C,则点C表示的数是()A.B.+1C.D.+1【分析】根据勾股定理,结合数轴即可得出结论.【解答】解:∵在Rt△AOB中,OA=2,AB=1,∴OB==.∵以O为圆心,以OB为半径画弧,交数轴的正半轴于点C,∴OC=OB=,∴点C表示的实数是.故选:C.10.用固定的速度往如图形状的杯子里注水,用x表示注水时间,y表示水杯底部到水面的高度,下列图象大致能表示y与x之间的对应关系的是()A.B.C.D.【分析】根据题目中的图形可知,刚开始水面上升的比较快,后来越来越慢,从而可以判断哪个选项中的函数图象,符合题意,从而可以解答本题.【解答】解:由题目中的图形可知,y随着x的增大,增加的速度越来越慢,故选:C.二.填空题(共6小题)【分析】先化简=2,再合并同类二次根式即可.【解答】解:=2﹣=.故答案为:.12.为从甲乙两名射击运动员中选出一人参加竞标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩为8.9环,方差分别是S甲2=0.8,S乙2=13,从稳定性的角度看,甲的成绩更稳定(填“甲”或“乙”)【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵S甲2=0.8,S乙2=13,∴S甲2<S乙2,∴成绩更稳定的运动员是甲,故答案是:甲.13.如图,以Rt△ABC的三边为边向外作正方形,已知正方形ABDE和正方形ACMN的面积分别是21和8,那么正方形BCFG的面积为13.【分析】由勾股定理即可得出正方形BCFG的面积的值.【解答】解:正方形ABDE的面积=AB2=21,正方形ACMN的面积=AC2=8,正方形BCFG的面积=BC2,∵△ABC是直角三角形,∴AB2=AC2﹣BC2,∴正方形BCFG的面积=21﹣8=13.故答案为:13.14.若函数y=kx﹣3的图象与两坐标轴围成的三角形面积为6,那么k=±.【分析】不妨设函数与x轴和y轴分别交于点A、B,用k可表示出A、B的坐标,则可分别表示出OA和OB,由△AOB的面积为6可得到关于k的方程,可求得k的值.【解答】解:不妨设函数与x轴和y轴分别交于点A、B,在y=kx﹣3中,令y=0可解得x=,令x=0,可得y=﹣3,∴OA=||,OB=3,∵S△AOB=6,∴×3×||=6,解得k=±,故答案为:±.15.“敲7”是一种日常小游戏,规则是:从1开始依次数自然数,若数到7的整数倍或数位有7的数,则应敲一下桌子,比如:当数到37(个位数为7),91(7的13倍)均应敲一下桌子,若从1开始数到100,则应敲桌子30下.【分析】从1开始数到100,找到7的整数倍或数位有7的数即可.【解答】解:因为从1开始数到100,7的整数倍或数位有7的数是:7,14,17,21,27,28,35,37,42,47,49,59,57,63,67,70,71…,78,79,84,87,91,97,98.共30个.所以应敲桌子30下.故答案为:30.16.如图,在正方形ABCD中,已知AB=2,点E,G分别是边AD,CD的中点,点F是边BC上的动点,连接EF,将正方形ABCD沿EF折叠,A,B的对应点分别为A',B',则线段GB'的最小值与最大值的和是2﹣.【分析】如图,连接EG,EB′.求出EG,EB′的长,可以判定点B′在EG的延长线上时,GB′的值最小,最小值=﹣,遗忘EB′是定值,E是定点,推出当B′在以E为圆心,为半径的圆上运动,因为点F 在线段BC上,推出当点F与B重合时,GB′的长最大,最大值=,由此即可解决问题.【解答】解:如图,连接EG,EB′.∵四边形ABCD是正方形,∴∠A=∠D=90°,AD=DC=AB=2,∵AE=DE=1,DG=GC=1,由翻折的性质可知,∠A′=∠A=90°,A′E=AE=1,A′B′=AB=2,∴EB′===,∴当点B′在EG的延长线上时,GB′的值最小,最小值=﹣,∵EB′是定值,E是定点,∴当B′在以E为圆心,为半径的圆上运动,∵点F在线段BC上,∴当点F与B重合时,GB′的长最大,最大值=,∴线段GB'的最小值与最大值的和是2﹣,故答案为2﹣.三.解答题17.计算:(1)()×;(2)(π+1)0﹣+|﹣|.【考点】6E:零指数幂;79:二次根式的混合运算.【专题】514:二次根式;66:运算能力.【分析】(1)根据二次根式的乘法法则运算;(2)根据零指数幂的意义、绝对值的意义和二次根式的性质计算.【解答】解:(1)原式=﹣=2﹣1=1;(2)原式=1﹣3+=1﹣2.18.已知x=2﹣,y=2+,求:x2+xy+y2的值.【考点】76:分母有理化.【专题】11:计算题.【分析】将x2+xy+y2变形为x2+2xy+y2﹣xy,得到原式=(x+y)2﹣xy,再把x=2﹣,y=2+代入计算即可求解.【解答】解:∵x=2﹣,y=2+,∴x2+xy+y2=x2+2xy+y2﹣xy=(x+y)2﹣xy=(2﹣+2+)2﹣(2﹣)(2+)=16﹣4+3=15.19.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.【考点】KD:全等三角形的判定与性质;L7:平行四边形的判定与性质;LC:矩形的判定.【专题】14:证明题.【分析】(1)先由已知平行四边形ABCD得出AB∥DC,AB=DC,进而判断出∠ABF=∠ECF,从而证得△ABF ≌△ECF;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出F A=FE=FB=FC,AE=BC,得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠ABF=∠ECF,∵EC=DC,∴AB=EC,在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF(AAS).(2)∵AB=EC,AB∥EC,∴四边形ABEC是平行四边形,∴F A=FE,FB=FC,∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴F A=FB,∴F A=FE=FB=FC,∴AE=BC,∴平行四边形ABEC是矩形.20.如图是一个三级台阶,每级台阶都是长、宽和高分别等于90cm,25cm和15cm的长方体,A和B是这个台阶的两个相对的端点.在A点处有一只蚂蚁,想到B点去吃可口的食物,请你算一算,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路程是多少?【考点】KV:平面展开﹣最短路径问题.【专题】554:等腰三角形与直角三角形;66:运算能力.【分析】展开后得到直角三角形ACB,根据题意求出AC、BC,根据勾股定理求出AB即可.【解答】解:展开后由题意得:∠C=90°,AC=3×25+3×15=120,BC=90,由勾股定理得:AB===150cm,答:最短路程是150cm.21.已知一次函数y=kx+b的图象如图所示.(1)求k,b的值;(2)请在图中作出函数y=2x+6的图象;(3)利用图象解答下列问题:当y=kx+b的函数值大于y=2x+6的函数值时,求x的取值范围.【考点】F3:一次函数的图象;F5:一次函数的性质;FA:待定系数法求一次函数解析式;FD:一次函数与一元一次不等式.【专题】533:一次函数及其应用;64:几何直观;66:运算能力.【分析】(1)先写出交点点的坐标,然后利用待定系数法求一次函数解析式;(2)利用描点法画直线y=2x+6;(3)利用所画图象,写出直线y=kx+b在直线y=2x+6上方所对应的自变量的值即可.【解答】解:(1)由图得:一次函数y=kx+b的图象经过点(3,0),点B(0,3),∴,解得;(2)如图,(3)当y=kx+b的函数值大于y=2x+6的函数值时,x的取值范围是x<﹣1.22.学校组织了一次交通安全知识测试,为了分析七、八年级学生本次测试成绩情况,随机从七、八年级各抽取部分学生的成绩,把数据整理成频数分布统计表如表(各组数据包括左端点不包括右端点):等级D C B A分数范围60~7070~8080~9090~100八年级2675七年级11081(1)如果七年级共有学生600人,则估计此次测试中七年级成绩在C级以上(包括C 级)的人数为570人;(2)请从两个不同的角度分析七年级和八年级中哪个年级的成绩更好.【考点】V5:用样本估计总体;V7:频数(率)分布表;W2:加权平均数;W7:方差.【专题】542:统计的应用;66:运算能力.【分析】(1)用总人数乘以七年级成绩在C级以上(包括C级)的人数所占的百分比即可;(2)先求出七、八年级的平均数,再从平均数和中位数两方面进行分析,即可得出八年级的成绩较好.【解答】解:(1)根据题意得:600×=570(人),答:估计此次测试中七年级成绩在C级以上(包括C级)的人数为570人;故答案为:570;(2)八年级的平均数是:(65×2+75×6+85×7+95×5)=82.5(分),七年级的平均数是:(65×1+75×10+85×8+95×1)=79.5(分),①从平均数来看,八年级的成绩比七年级的成绩高,成绩更好一些;②从中位数和B级以上(包括B级)的人数的角度比较八年级的成绩较好.23.某手工艺人用A,B两种规格的绒布片拼制成甲、乙两款玩具进行销售,拼制每款玩具所需不同规格绒布片用量如表所示.该艺人制作甲款玩具x个,乙款玩具y个,共用去A种绒布3000片.玩具款式A种绒布(片)B种绒布(片)甲款玩具3020乙款玩具1530(1)求y关于x的函数表达式;(2)已知每个甲款玩具的利润为a元(8≤a≤14),每个乙款玩具的利润为6元,假设两款玩具均能全部卖出;①当a=8时,若要获得总利润不少于850元,则至少要用去B绒布多少片?②该艺人现有B种绒布数量在4800~5200片,求他加工这批玩具所获利润的取值范围.【考点】C9:一元一次不等式的应用;FH:一次函数的应用.【专题】524:一元一次不等式(组)及应用;533:一次函数及其应用;68:模型思想;69:应用意识.【分析】(1)由题意通过的数量关系,可得出关系式;(2)①求出B原料的用量与乙玩具的个数y的函数关系式,根据函数的增减性可得答案;②建立不等式组,确定x的取值范围,再根据a的取值范围,再根据函数的增减性求出相应的值即可.【解答】解:(1)由题意得,30x+15y=3000,即:y=﹣2x+200;(2)①由题意得:8x+6y≥850,由(1)得,2x=200﹣y,代入得,y≥25,设B原料的用量为w,则w=20x+30y,即w=20y+2000,∵k=20>0,∴w随着y的增大而增大,∴当y取最小值25时,w的最小值为25×20+2000=2500,因此若获得总利润不少于850元时,则至少要用去B原料2500片;②由题意得,,解得,20≤x≤30,设总利润为W元,则M=ax+6y=ax+6×(200﹣2x)=(a﹣12)x+1200,当12≤x≤14时,则a=14,x=30时,M最大=1260元,当8≤x≤12时,则a=8,x=20时,M最大=1080元,所以利润的取值范围为1080≤M≤1260.24.如图,四边形ABCD是菱形,点M在CD边上,点N在菱形ABCD外部,且满足MN∥AD,CM=MN,连接AN,CN,取AN的中点E,连接BE,AC.(1)探究BE与AC的关系;(2)若∠ABC=120°,探究线段BE、AD、CM所满足的等量关系;(3)若∠ABC=60°,M在DC的延长线上时,其余条件不变,CM=1,AD=3,请求出BE的长度.【考点】LO:四边形综合题.【专题】554:等腰三角形与直角三角形;556:矩形菱形正方形;67:推理能力.【分析】(1)连接CE,由菱形的性质可得AB=BC,∠ACD=∠BCD,∠ADC+∠BCD=180°,由平行线的性质和外角的性质可证∠MCN+∠ACD=90°=∠ACN,由直角三角形的性质可得AE=CE,由线段垂直平分线的判定可得BE垂直平分AC;(2)设BE与AC交于点O,由直角三角形的性质可得BO=BC=AD,由三角形中位线定理可得EO=CN=CM,可得结论;(3)先证BE垂直平分AC,由等边三角形的性质可求BO的长,由三角形中位线定理可求OE的长,即可求解.【解答】解:(1)BE垂直平分AC,理由如下:如图1,连接CE,∵四边形ABCD是菱形,∴AB=BC,∠ACD=∠BCD,∠ADC+∠BCD=180°,∵AD∥MN,∴∠ADC=∠DMN,∵CM=MN,∴∠MCN=∠MNC,∴∠DMN=∠MCN+∠MNC=2∠MCN=∠ADC,∵∠ADC+∠BCD=180°,∴∠ADC+∠BCD=90°,∴∠MCN+∠ACD=90°=∠ACN,∵点E是AN的中点,∠ACN=90°,∴AE=CE,∵AE=CE,AB=BC,∴BE垂直平分AC;(2)BE=AD+CM;理由如下:如图2,设BE与AC交于点O,∵四边形ABCD是菱形,∠ABC=120°,∴AD=BC=AB,∵AB=BC,BE垂直平分AC,∴∠ABO=∠CBO=60°,∠BOC=90°,AO=CO,∴∠BCA=30°,∴BO=BC=AD,∵AO=OC,点E是AN的中点,∴EO=CN,∵CM=CN,∠MCN=∠ADC=60°,∴CM=CN,∴BE=BO+OE=AD+CM;(3)如图3,延长BE交AC于点O,连接CE,过点M作MH⊥CN于H,∵四边形ABCD是菱形,∴AB=BC=AD=3,AB∥CD,∠ABC=∠D=60°,∴△ABC是等边三角形,∠ABC=∠BCM=60°,∴∠ACB=60°,AC=BC=3,∵MN∥AD,∴∠D+∠NMC=180°,∴∠NMC=120°,∵MN=MC,∴∠MCN=∠MNC=30°,∴∠BCN=30°,∴∠ACN=∠ACB+∠BCN=90°,∵点E是AN中点,∴AE=EC,∵AB=BC,AE=EC,∴BE垂直平分AC,∴AO=CO,BO⊥AC,∵△ABC是等边三角形,BO⊥AC,∴∠OBC=30°,OC=AC=,∴BO=CO=,∵CM=MN=1,MH⊥CN,∴NH=CH,∵∠MCN=30°,∴HM=CM=,CH=HM=,∴CN=2CH=,∵AO=CO,点E是AN中点,∴EO=CN=,∴BE=BO﹣EO=.。
2023-2024学年上海市嘉定区八年级(下)期末数学试卷及答案解析

2023-2024学年上海市嘉定区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)1.(3分)一次函数y=﹣2x+3在y轴上的截距是()A.2B.﹣2C.3D.﹣32.(3分)一次函数y=﹣x﹣1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列方程中,是二项方程的是()A.x2+2x=1B.x3+3x=0C.x=0D.x4﹣8=04.(3分)事件“关于x的方程a2x+x=1有实数解”是()A.必然事件B.随机事件C.不可能事件D.以上都不对5.(3分)若是非零向量,则下列等式正确的是()A.||=||B.||+||=0C.+=0D.=6.(3分)如图,点P为平行四边形ABCD内任意一点,联结PA、PB、PC、PD,如果将△PAB、△PBC、△PDC、△PDA的面积分别记为S1、S2、S3、S4,那么以下结论正确的是()A.S1=S4B.S1+S2=S3+S4C.S1+S4=S2+S3D.S1+S3=S2+S4二、填空题(本大题共12题,每题2分,满分24分)7.(2分)方程2x3﹣16=0的根是.8.(2分)一次函数y=﹣2x﹣1可由一次函数y=﹣2(x﹣1)向下平移个单位得到.9.(2分)如果A(x1,y1)、B(x2,y2)是一次函数y=﹣3x+1图象上不同的两点,那么(x1﹣x2)(y1﹣y2)0(填“>”、“<”或“=”).10.(2分)用换元法解方程时,如果设,那么可以得到一个关于y的方程是.11.(2分)一辆汽车的新车购买价为20万元,每年的年折旧率为x(0<x<1),如果在购买后的第二年年末,这辆车折旧后的价值为12.8万元,那么这个x的值是.12.(2分)从3.14、、、这四个数中随机选取一个数,取出的数是无理数的概率是.13.(2分)如果一个多边形的各个外角都是40°,那么这个多边形的内角和是度.14.(2分)已知一次函数y=kx+b(k、b为常数,且k≠0)的图象经过第一、二、四象限,与x轴交于点A(2,0),那么不等式kx+b>0的解集是.15.(2分)如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于度.16.(2分)如图,E为正方形ABCD边BC延长线上一点,且CE=BD,AE交DC于F,则∠AFC=.17.(2分)新定义:在平面直角坐标系中,到坐标轴的距离相等的点称为“等距离点”.例如:(4,4)、(3,﹣3)都是等距离点.请写出直线y=3x﹣1上的等距离点(写出一个即可).18.(2分)如图,在▱ABCD中,AC与BD相交于点O,∠AOB=60°,AC=6,BD=8,将△ABC沿直线AC翻折后,点B落在点E处,联结EA、ED,那么四边形AEDC的周长=.三、解答题(本大题共7题,满分58分)19.(6分)解方程:.20.(6分)解方程组:.21.(6分)如图,在△ABC中,BD平分∠ABC,AF⊥BD,垂足为点E,交BC于点F,点G是AC的中点.如果BC=12,AB=7,求EG的长.22.(8分)某区百果园计划在花展期间种植郁金香60万株,在实际种植时,由于每天比原计划多种了2万株,因此提前1天完成了种植任务.问:实际种植了多少天?23.(8分)如图,菱形ABCD中,E是对角线AC上一点,EF⊥BE,交边AD于点F,且EF=BE.(1)求证:∠DFE=∠ABE;(2)求证:四边形ABCD是正方形.24.(12分)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B,与反比例函数的图象交于点C(m,2).(1)求b和k的值;(2)如果直线AB绕点B逆时针旋转45°交x轴于点D,求直线BD的表达式;(3)在(2)的条件下,设点E是y轴上的一点,当四边形ADEC是梯形时,求点E的坐标.25.(12分)如图,矩形ABCD中,BC=2,点E是BC延长线上的一点,且BE=BD,联结DE,取DE 的中点F,联结AF、CF.(1)求证:AF⊥CF;(2)设BD=x,AF=y,求y关于x的函数关系式,并写出定义域;(3)当时,求CE的长.2023-2024学年上海市嘉定区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)1.【分析】令x=0,则y=3,即一次函数与y轴交点为(0,3),即可得出答案.【解答】解:由y=﹣2x+3,令x=0,则y=3,即一次函数与y轴交点为(0,3),故一次函数在y轴上的截距为:3.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,解题的关键是令x=0求出一次函数与y轴的交点坐标.2.【分析】由于k=1>0,b=﹣1,由此可以确定函数的图象经过的象限.【解答】解:∵y=﹣x﹣1,∴k=﹣1<0,b=﹣1<0,∴它的图象选B经过的象限是第二、三、四象限,不经过第一象限.故选:A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.3.【分析】根据二项方程的定义判断即可.【解答】解:∵方程x2+2x=1的右边不是零,∴该方程不是二项方程.∴A不合题意.∵x3+3x=0的左边没有非零常数项,∴该方程不是二项方程.∴B不合题意.∵方程x=0的左边没有非零的常数项,∴该方程不是二项方程,∴C不合题意.∵方程x4﹣8=0的右边为零,左边含有非零常数项,∴是二项方程.∴D符合题意.故选:D.【点评】本题考查二项方程的定义,掌握二项方程的特征是求解本题的关键.4.【分析】求出方程的实数解,即可判断.【解答】解:∵a2x+x=1,∴(a2+1)x=1,∵a2+1≠0,∴x=,∴事件“关于x的方程a2x+x=1有实数解”是必然事件.故选:A.【点评】本题主要考查了随机事件及一元一次方程的解,解题的关键是理解题意,灵活运用所学知识解决问题.5.【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果.【解答】解:∵是非零向量,∴||=||.+=故选:A.【点评】本题考查的是非零向量的长度及方向的性质,注意熟练掌握平面向量这一概念.6.【分析】分别设△PAB、△PBC、△PCD、△PDA的AB、BC、CD、AD边上的高为h、l、m、n,可分别表示出其面积,再结合平行四边形的性质判断即可.【解答】解:分别设△PAB、△PBC、△PCD、△PDA的AB、BC、CD、AD边上的高为h、l、m、n,设四边形ABCD的AB边上的高为o,BC边上的高为p,则h+m=o,l+n=p,∴S1=AB•h,S2=BC•l,S3=CD•m,S4=DA•n,∵四边形ABCD为平行四边形,=AB•o=BC•p,∴AB=CD,BC=DA,且S四边形ABCD∴S1+S3=S1=AB•h+CD•m=AB•o,S2+S4=S1=BC•l+DA•n=BC•p,∴S1+S3=S2+S4,故选:D.【点评】本题主要考查平行四边形的性质,掌握平行四边形的性质是解题的关键,即①两组对边分别平行的四边形⇔平行四边形,②两组对边分别相等的四边形⇔平行四边形,③一组对边分别平行且相等的四边形⇔平行四边形,④两组对角分别相等的四边形⇔平行四边形,⑤对角线互相平分的四边形⇔平行四边形.二、填空题(本大题共12题,每题2分,满分24分)7.【分析】求出x3=8,两边开立方根,即可求出x.【解答】解:2x3﹣16=0,2x3=16,x3=8,x=2,故答案为:2.【点评】本题考查了高次方程的解法和立方根,关键是能由x3=8求出x.8.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:∵y=﹣2(x﹣1)=﹣2x+2,∴y=﹣2x+2﹣3=﹣2x﹣1,∴一次函数y=﹣2x﹣1可由一次函数y=﹣2(x﹣1)向下平移3个单位得到.故答案为:3.【点评】本题考查的是一次函数图象与几何变换,熟知函数图象平移的法则是解答此题的关键.9.【分析】根据一次函数的性质知,当k<0时,判断出y随x的增大而减小,故可得出x1﹣x2与y1﹣y2始终异号,据此得出结论.【解答】解:∵k=﹣3<0,∴一次函数y=﹣3x+1中y随x的增大而减小,∴若x1>x2,则y1<y2,若x1<x2,则y1>y2,故x1﹣x2与y1﹣y2始终异号,故(x1﹣x2)(y1﹣y2)<0.故答案为:<.【点评】此题考查了一次函数图象上点的坐标特征,熟知一次函数的图象与系数的关系是解题的关键.10.【分析】可根据方程特点设设=y,则原方程可化为y+=3,再去分母化为整式方程即可.【解答】解:设=y,则原方程可化为:y+=3,去分母,可得y2+1=3y,即y2﹣3y+1=0,故答案为:y2﹣3y+1=0.【点评】本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,再将分式方程可化为整式方程.11.【分析】根据一辆汽车的新车购买价为20万元,在购买后的第二年年末,这辆车折旧后的价值为12.8万元,列出一元二次方程,解之取符合题意的值即可.【解答】解:由题意得:20(1﹣x)2=12.8,解得:x1=0.2=20%,x2=1.8(不符合题意,舍去),即这个x的值是20%,故答案为:20%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12.【分析】先求出无理数的个数,再根据概率公式即可得出结论.【解答】解:=2,则3.14、、、这四个数中有3个有理数,无理数1个,故从3.14、、、这四个数中随机选取一个数,取出的数是无理数的概率是.故答案为:.【点评】本题考查的是概率公式,熟记随机事件的概率公式是解答此题的关键.13.【分析】由一个多边形的每个外角都等于40°,根据n边形的外角和为360°计算出多边形的边数n,然后根据n边形的内角和定理计算即可.【解答】解:设多边形的边数为n,∵多边形的每个外角都等于40°,∴n=360÷40=9,∴这个多边形的内角和=(9﹣2)×180°=1260°.故答案为:1260.【点评】本题考查了n边形的内角和定理:n边形的内角和=(n﹣2)•180°;也考查了n边形的外角和为360°.14.【分析】kx+b>0的解集即为一次函数y=kx+b(k≠0)的图象x轴上方部分的自变量取值范围,据此直接解答.【解答】解:∵一次函数y=kx+b(k、b为常数,且k≠0)的图象经过第一、二、四象限,∴k>0,b<0,∵一次函数y=kx+b(k≠0)的图象与x轴交于点(﹣2,0),∴kx+b>0的解集即为一次函数y=kx+b(k≠0)的图象x轴上方部分的自变量取值范围,∴不等式kx+b>0的解集为x<2,故答案为:x<2.【点评】此题考查了一次函数的图象与不等式的关系,正确理解函数图象与不等式的关系是解题的关键.15.【分析】要使其面积为矩形面积的一半,平行四边形ABCD的高必须是矩形宽的一半,根据直角三角形中30°的角对的直角边等于斜边的一半可知,这个平行四边形的最小内角等于30度.【解答】解:∵平行四边形的面积为矩形的一半且同底BC,∴平行四边形ABCD的高AE是矩形宽AB的一半.在直角三角形ABE中,AE=AB,∴∠ABE=30°.故答案为:30.【点评】主要考查了平行四边形的面积公式和基本性质.平行四边形的面积等于底乘高.16.【分析】根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:连接AC,∵四边形ABCD是正方形,∴AC=BD,∵CE=BD,∴CE=AC,∴∠E=∠CAE,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴∠E+∠CAE=45°,∴∠E=×45°=22.5°,在△CEF中,∠AFC=∠E+∠ECF=22.5°+90°=112.5°.故答案为:112.5°.【点评】本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,等边对等角,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.17.【分析】根据一、三象限角或二、四象限角的平分线上的点到x轴、y轴的距离相等,可得直线y=3x ﹣1与直线y=x和y=﹣x的交点就是直线y=3x﹣1上的“等距离点”,即可解答本题;【解答】解:根据题意得,到x轴、y轴的距离相等的点一定在直线y=x或直线y=﹣x上,故联立组成方程组或,解得或.∴直线y=3x﹣1上的等距离点为(,)、(,﹣).故答案为:(,)(答案不唯一).【点评】本题考查了一次函数图象上点的坐标特征,解题的关键是理解题意,灵活运用所学知识解决问题.18.【分析】过点A作AF⊥BD于点F,连接OE,由平行四边形的可得AB=CD,OA=OC=3,OB=OD =4,再由折叠的性质可得AB=AE,OB=OE,∠AOB=∠AOE=60°,则OE=OD,∠DOE=60°,以此得到△OED为等边三角形,即DE=OD=4,根据含30度角的直角三角形性质可得OF==,算出AF=,再算出BF的长,再根据勾股定理求出AB,以此即可求解.【解答】解:如图,过点A作AF⊥BD于点F,连接OE,∵四边形ABCD为平行四边形,AC=6,BD=8,∴AB=CD,OA=OC=3,OB=OD=4,∵∠AOB=60°,∴∠AOD=180°﹣∠AOB=120°,根据折叠的性质可得,AB=AE,OB=OE,∠AOB=∠AOE=60°,∴OE=OD,∠DOE=∠AOD﹣∠AOE=60°,∴△OED为等边三角形,∴DE=OD=4,在Rt△AOF中,∠AOF=60°,∴∠OAF=30°,∴OF==,AF===,∴BF=OB﹣OF=,在Rt△ABF中,AB===,∴CD=AB=AE=,=AE+DE+CD+AC=+4++6=.∴C四边形AEDC故答案为:.【点评】本题主要考查平行四边形的性质、折叠的性质、等边三角形的判定与性质、勾股定理、含30度角的直角三角形性质,根据题意画出图形,利用数形结合思想解决问题是解题关键.三、解答题(本大题共7题,满分58分)19.【分析】方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到方程的解.【解答】解:,两边平方得:x+6=x2,即x2﹣x﹣6=0,(x﹣3)(x+2)=0,解得:x=3或﹣2,经检验x=3是原方程的解,x=﹣2不是原方程的解,所以原方程的解是x=3.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.20.【分析】由②得出(x﹣2y)(x﹣3y)=0,求出x﹣2y=0或x﹣3y=0,求出x=2y或x=3y,这样方程组转化成两个二元一次方程组,再求出方程组的解即可.【解答】解:,由②得:(x﹣2y)(x﹣3y)=0,x﹣2y=0或x﹣3y=0,x=2y或x=3y,即方程组变为:,,解得:或,所以原方程组的解是,.【点评】本题考查了高次方程和解二元一次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.21.【分析】先证△ABE和△FBE全等,即可得出AB=FB,AE=FE,再证EG为△AFC的中位线,即可求出EG的长.【解答】解:∵BD平分∠ABC,∴∠ABE=∠FBE,∵AF⊥BD,∴∠AEB=∠FEB=90°,在△ABE和△FBE中,,∴△ABE≌△FBE(ASA),∴AB=FB,AE=FE,∵AB=7,∴FB=7,∵BC=12,∴FC=BC﹣FB=12﹣7=5,∴点E是AF的中点,∵点G是AC的中点,∴EG是△AFC的中位线,∴EG=.【点评】本题考查了全等三角形的判定与性质,三角形中位线定理,熟练掌握这些知识点是解题的关键.22.【分析】设实际种植了x天,则原计划种植(x+1)天,根据在实际种植时,每天比原计划多种了2万株,列出分式方程,解方程即可.【解答】解:设实际种植了x天,则原计划种植(x+1)天,由题意得:﹣=2,解得:x1=5,x2=﹣6(不符合题意,舍去),经检验,x=5是原方程的解,且符合题意,答:实际种植了5天.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.【分析】(1)由“SAS”可证△ABE≌△ADE,可得∠ABE=∠ADE,BE=DE,由等腰三角形的性质可得∠EFD=∠EDF,即可求解;(2)由四边形的内角和定理可求∠BAF+∠BEF=180°,由正方形的判定可求解.【解答】证明:(1)∵四边形ABCD是菱形,∴∠BAC=∠DAC,∠ABC=∠ADC,AB=AD,又∵AE=AE,∴△ABE≌△ADE(SAS),∴∠ABE=∠ADE,BE=DE,∵EF=BE,∴DE=EF,∴∠EFD=∠EDF,∴∠DFE=∠ABE;(2)∵∠AFE+∠DFE=180°,∴∠ABE+∠AFE=180°,∴∠BAF+∠BEF=180°,∴∠BEF=90°,∴∠BAD=90°,∴菱形ABCD是正方形.【点评】本题考查了正方形的性质,菱形的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.24.【分析】(1)把点A(2,0)代入一次函数y=2x+b求出b,再求出点C坐标计算出k值即可;(2)作AQ⊥DB,过点Q作y轴的平行线交x轴于G,过点B作BH⊥GH,证明△AGQ≌△QHB得到QH=AG,HB=GQ,利用勾股定理求出相关线段长点的点Q坐标,待定系数法求出直线BD的解析式即可;(3)分两种情况讨论即可得到点E的坐标.【解答】解:(1)把点A(2,0)代入一次函数y=2x+b得:0=2×2+b,解得b=﹣4,∴一次函数解析式为y=2x﹣4,把C(m,2)坐标代入为y=2x﹣4得,2=2m﹣4,解得m=3,∴C(3,2),∵点C在反比例函数图象上,∴k=6.(2)如图,作AQ⊥DB,过点Q作y轴的平行线交x轴于G,过点B作BH⊥GH,垂足为H,∵∠AQB=90°,∠ABD=45°,∴AQ=BQ====,在△AGQ与△QHB中,,∴△AGQ≌△QHB(AAS),∴QH=AG,HB=GQ,∵OB=GH=4,∴AG+GQ=4,设GQ=x,AG=4﹣x,∴x2+(4﹣x)2=10,解得x=3(舍去)或x=1∴GQ=1,AG=3,∵OA=2,∴OG=1,∴Q(﹣1,﹣1).设直线BD解析式为y=mx+n,将点B(0,﹣4)Q(﹣1,﹣1)坐标代入得,,解得,∴BD的解析式为y=﹣3x﹣4.(3)在直线y=﹣3x﹣4中,当y=0时,x=﹣,∴D(﹣,0),根据待定系数法可得直线CD解析式为y=+,点E是y轴上的一点,当四边形ADEC是梯形时,有2种情况,①当AD∥CE时,E(0,2),②当AC∥DE时,直线DE的解析式为y=2x+,∴E(0,).综上分析,当四边形ADEC是梯形时点E(0,2)或(0,).【点评】本题考查了一次函数与反比例函数的交点问题,构造一线三直角全等求出点Q坐标是关键.25.【分析】(1)连接BF,证明△AFD≌△BFC,进而推出∠AFD=∠BFC,即可得证;(2)连接AC,利用矩形的性质则AC=BD,再用含x的式子表示出DE和CF,在Rt△AFC中利用勾股定理进行求解即可;(3)根据,推出AF=DE,利用(2)中的结论,列出方程,进行求解即可.【解答】(1)证明:连接BF,∵BE=BD,F为DE的中点,∴BF⊥DE,∴∠BFD=90°,∵矩形ABCD,∴BC=AD,∠ADC=∠BCD=90°,∴∠DCE=90°,∵F为DE的中点,∴,∴∠CDF=∠DCF,∴∠ADC+∠CDF=∠BCD+∠DCF,即:∠BCF=∠ADF,∴△AFD≌△BFC(SAS),∴∠AFD=∠BFC,∴∠AFC=∠AFB+∠CFB=∠AFB+∠AFD=∠DFB=90°,∴AF⊥CF;(2)解:连接AC,则AC=BD=BE=x,∵BC=2,∴CE=BE﹣BC=x﹣2,在Rt△ABC中,,即,在Rt△EDC中,,由(1)知:,∠AFC=90°,∴,∴,∴,∵CE=BE﹣BC=x﹣2>0,∴x>2,∴;(3)解:当时,∵CF=DE,∴AF=DE,由(2)知:,,∴,解得:或x=0(不合题意,舍去);经检验是原方程的解,∴.【点评】本题考查矩形的性质,直角三角形斜边上的中线的性质,全等三角形的判定和性质,勾股定理,利用函数关系式表示变量之间的关系等知识点,综合性强,熟练掌握相关知识点并正确的计算是解题的关键。
2023-2024学年江苏省苏州市吴中区、吴江区、相城区八年级(下)期末数学试卷及答案解析

2023-2024学年江苏省苏州市吴中区、吴江区、相城区八年级(下)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.(3分)中国古代的铜锁制作都十分精美,下面的四把锁中,从形状上看是中心对称图形的是()A.B.C.D.2.(3分)使二次根式有意义的x的取值范围是()A.x=1B.x≠1C.x>1D.x≥13.(3分)下列计算正确的是()A.B.C.D.4.(3分)如图,在△ABC中,点D,E分别在AB,AC上,且DE∥BC,若AD=2,BD=3,DE=2,则BC的长是()A.3B.C.5D.5.(3分)下列条件中,能使平行四边形ABCD成为菱形的是()A.AC⊥BD B.AB⊥BC C.AB=CD D.∠BAD=∠ADC6.(3分)若关于x的一元二次方程x2﹣5x+m=0有两个不相等的实数根,则m的值可以是()A.6B.7C.8D.97.(3分)《四元玉鉴》是一部成就辉煌的数学名著,是宋元数学集大成者,也是我国古代水平最高的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”.大意是:现请人代买一批椽,这批椽的总售价为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设6210元购买椽的数量为x株,则符合题意的方程是()A.=3x B.3(x﹣1)=6210C.3(x﹣1)=D.3(x﹣1)=8.(3分)如图,等边三角形ABC,点A,B在反比例函数的图象上,BC∥y轴,已知点B的纵坐标为2,则△ABC的面积是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)若分式有意义,则x的取值范围为.10.(3分)方程x2+6x=0的根为.11.(3分)如图,在▱ABCD中,∠D=45°,∠CAD=30°,则∠BAC=°.12.(3分)一个二次根式与的乘积是有理数,这个二次根式可以是.(只需写出一个即可)13.(3分)如图,在△ABC中,P是AB上一点.下列四个条件中:“①∠ACP=∠B;②∠ACP=∠A;③AC2=AP•AB;④AB•CP=AP•CB”,一定能满足△APC与△ACB相似的条件是.(只填序号)14.(3分)如图,在矩形ABCD中,BD=13,点E,F分别是AB,BC的中点,连接EF,则EF的长为.15.(3分)设x1,x2是方程x2﹣3x+1=0的两个根,则=.16.(3分)如图,将▱ABCD绕点A逆时针旋转到▱AEDF的位置,此时点E落在BC上,若,CE=3,则△ECD的面积为.三、解答题(本大题共11小题,共82分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1);(2).18.(8分)解方程:(1)x2+4x﹣5=0;(2).19.(5分)先化简,再求值:,其中a=﹣3.20.(8分)2024年6月2日嫦娥六号成功软着陆于月球背面南极一艾特肯盆地,开启人类探测器首次在月球背面实施的样品采集任务.2004年中国探月工程正式批准立项,20年来中国探月工程不断刷新人类月球探测的记录.为了掌握同学们对探月工程的了解程度,某初中学校随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图:(1)本次抽取的学生人数为人;扇形统计图中,A所对应的扇形圆心角度数为_______°;(2)补全条形统计图;(3)若该校共有1200名学生,试估计“A:完全了解”的学生人数是多少?21.(6分)不透明的袋中有若干个白球和黄球,每个球除颜色外无其他差别.现从袋中随机摸出一个球,记下颜色后放回并搅匀,经过大量重复实验发现摸到黄球的频率逐渐稳定在0.2附近.(1)估计摸到白球的概率是;(2)如果袋中有5个黄球,现又放入a个黄球,再经过大量重复实验发现摸到黄球的频率逐渐稳定在0.6附近,求a的值.22.(6分)公元前3世纪,古希腊学者阿基米德发现了著名的“杠杆原理”.杠杆平衡时,阻力×阻力臂动力×动力臂.几位同学玩撬石头的游戏,已知阻力(石头重量)和阻力臂分别为1600N和0.5m.(1)设动力臂为l,动力为F,求出F与l的函数表达式;(2)若小明使用500N的力量,他该选择动力臂为多少米的撬棍正好能撬动这块大石头?23.(6分)如图,四边形ABCD中,AD∥BC,BD平分∠ABC.(1)尺规作图:过点D作DE∥AB,DE交BC于E;(不写作法,只保留作图痕迹)(2)求证:四边形ABED是菱形.24.(7分)观察下列等式:;;;……(1)请你根据上述规律填空:=;(2)①把你发现的规律用含有n的等式表示出来:=;②证明①中的等式是正确的,并注明n的取值范围.25.(8分)如图,在四边形ABCD中,AD∥BC,AB=4,BC=8,AD=6,∠B=90°,点M从点B出发,以每秒个单位长度的速度沿BC向右运动,移动到点C时立即沿原路按原速返回,点N从点D出发,以每秒1个单位长度的速度沿线段DA向左运动.M,N两点同时出发,当点N运动到点A时,M,N 两点同时停止运动,设运动时间为t(秒).(1)当t=秒时,四边形ABMN为矩形;(2)在整个运动过程中,t为何值时,以C,D,M,N为顶点的四边形为平行四边形?26.(10分)如图,在平面直角坐标系xOy中,已知点A(4,3),点B是线段OA上的一个动点,过点B作BC∥y轴,交反比例函数的图象于点C,过点A作OA的垂线交x轴于点D,E是线段AD上一点,且AE=OB,连接OC,设点B的横坐标为t(0<t<2).(1)点B的坐标为;(用含t的代数式表示)(2)若t=1,求点E的坐标;(3)若△OBC的面积为3时,点E也在反比例函数的图象上,求k的值.27.(10分)在矩形ABCD中,AB=5a,BC=6a,点E是BC边上的一个动点,BM⊥AE,垂足为M,BM 的延长线交AC于点N.(1)如图1,延长BN,若B,N,D三点在一直线上,a=1,求BE的长;(2)过点N作NH⊥AD,垂足为H:①如图2,若a=1,,求△AHN的面积;②如图3,若,连接CM,则的值为.2023-2024学年江苏省苏州市吴中区、吴江区、相城区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.【分析】根据中心对称图形的概念求解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:A.不是中心对称图形.故本选项不合题意;B.是中心对称图形.故本选项符合题意;C.不是中心对称图形.故本选项不合题意;D.不是中心对称图形.故本选项不合题意.故选:B.【点评】此题考查了中心对称图形的判断,解答本题的关键是掌握中心对称图形的概念,属于基础题.2.【分析】根据二次根式的被开方数为非负数可得出关于x的一次不等式,解出即可得出x的范围.【解答】解:∵二次根式有意义,∴可得x﹣1≥0,解得x≥1.故选:D.【点评】此题考查了二次根式有意义的条件,属于基础题,解答本题关键是掌握二次根式有意义的条件:二次根式的被开方数为非负数.3.【分析】根据二次根式混合运算的法则进行计算即可.【解答】解:A、==2,原计算错误,不符合题意;B、2与3不是同类二次根式,不能合并,原计算错误,不符合题意;C、2与2不是同类二次根式,不能合并,原计算错误,不符合题意;D、2×2=4,正确,符合题意.故选:D.【点评】本题考查的是二次根式的混合运算,分母有理化,熟知二次根式混合运算的法则是解题的关键.4.【分析】由DE∥BC,可得出△ADE∽△ABC,再利用相似三角形的性质,即可求出BC的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,即=,∴BC=5.故选:C.【点评】本题考查了相似三角形的判定与性质,牢记“平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似”是解题的关键.5.【分析】由菱形的判定和矩形的判定分别对各个选项进行判断即可.【解答】解:A、∵AC⊥BD,∴平行四边形ABCD为菱形,故选项A符合题意;B、∵AB⊥BC,∴∠ABC=90°,∴平行四边形ABCD为矩形,故选项B不符合题意;C、∵AB=CD,∴平行四边形ABCD为平行四边形,故选项C不符合题意;D、由∠BAD=∠ADC,AB∥CD,∴∠BAD=∠ADC=90°,∴平行四边形ABCD为矩形,故选项D不符合题意;故选:A.【点评】此题考查了菱形的判定、平行四边形的性质以及矩形的判定.熟记菱形的判定是解题的关键.6.【分析】根据判别式的意义得到Δ=(﹣5)2﹣4×1×m>0,然后解关于m的不等式即可.【解答】解:根据题意得Δ=(﹣5)2﹣4×1×m>0,解得m<,∴m的值可以是6.故选:A.【点评】本题考查了一元二次方程根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根是解题的关键.7.【分析】设6210元购买椽的数量为x株,根据单价=总价÷数量,求出一株椽的价钱为,再根据少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可列出分式方程,得到答案.【解答】解:设6210元购买椽的数量为x株,则一株椽的价钱为,由题意得:,故选:C.【点评】本题考查了从实际问题中抽象出分式方程,正确理解题意找出等量关系是解题关键.8.【分析】依据题意,作AD⊥x轴于D,再作BH⊥AD于H,设AH=b,结合BC∥y轴,∠ABC=60°,可得∠ABH=90°﹣∠ABC=30°,从而AB=2b,BH=b,又点B的纵坐标为2,点B在y=上,从而可得B(6,2).进而求出A(6﹣b,b+2),又A在y=上,故(6﹣b)(b+2)=12,求出b后可得AB的值,进而计算可以得解.【解答】解:由题意,如图,作AD⊥x轴于D,再作BH⊥AD于H.设AH=b,∵BC∥y轴,∠ABC=60°,∴∠ABH=90°﹣∠ABC=30°.∴AB=2b,BH=b.∵点B的纵坐标为2,点B在y=上,∴B(6,2).∴OD=6﹣b,AD=b+2.∴A(6﹣b,b+2).又A在y=上,∴(6﹣b)(b+2)=12.∴(6﹣b)(b+2)=12.∴b2﹣4b=0.∴b=0(舍去)或b=4.∴AB=8.∴等边△ABC的面积为×8×8=16.故选:D.【点评】本题主要考查了反比例函数系数k的几何意义、反比例函数图象上点的坐标特征、等边三角形的性质,解题时要熟练掌握并能灵活运用是关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.【点评】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.10.【分析】方程左边分解得到x(x+6)=0,则方程转化为两个一元一次方程x=0或x+6=0,解一元一次方程即可.【解答】解:x(x+6)=0,∴x=0或x+6=0,∴x1=0,x2=﹣6.故答案为x1=0,x2=﹣6.【点评】本题考查了利用因式分解法解一元二次方程:先把方程变形,使方程右边为0,然后把方程左边进行因式分解,于是一元二次方程转化为两个一元一次方程,解一元一次方程即可得到一元二次方程的解.11.【分析】根据平行四边形的性质可知:∠D=∠B=45°,AB∥CD,得出∠BAD+∠D=180°,求出∠BAD的度数,即可得出∠BAC的度数.【解答】解:∵四边形ABCD为平行四边形,∴∠B=∠D=45°,AB∥CD,∴∠BAD+∠D=180°,∴∠BAD=180°﹣45°=135°,∴∠BAC=∠BAD﹣∠CAD=135°﹣30°=105°,故答案为:105.【点评】本题考查平行四边形的性质,属于基础题,解题关键是熟练掌握平行四边形的性质并灵活运用.12.【分析】根据有理化因式的定义:两个根式相乘的积不含根号即可判断.【解答】解:×=2.故答案为:(答案不唯一).【点评】考查的是二次根式,熟知二次根式的乘法法则是解题的关键.13.【分析】根据三角形相似的判定分析即可.【解答】解:①和③正确,因为它们分别符合有两组角对应相等的两个三角形相似;两组对应边的比相等且相应的夹角相等的两个三角形相似.故相似的条件是①或③.故答案为:①或③.【点评】本题考查对相似三角形的判定方法的掌握情况,解题的关键是掌握相关知识的灵活运用.14.【分析】连接AC,根据矩形的性质得AC=BC=13,然后利用三角形中位线定理即可解决问题.【解答】解:如图,连接AC,∵四边形ABCD是矩形,∴AC=BC=13,∵点E,F分别是AB,BC的中点,∴EF=AC=,故答案为:.【点评】本题考查了矩形的性质,三角形中位线定理,解决本题的关键是掌握矩形的性质.15.【分析】根据根与系数的关系得x1+x2=3,根据方程解的定义得﹣3x1+1=0,即=3x1﹣1,代入所求的式子计算即可.【解答】解:∵x1,x2是方程x2﹣3x+1=0的两个根,∴x1+x2=3,﹣3x1+1=0,x1x2=1,∴=3x1﹣1,∴+3x2+x1x2=3x1﹣1+3x2+1=3(x1+x2)=3×3=9.故填空答案:9.【点评】此题考查了根与系数的关系和一元二次方程的解,熟练掌握一元二次方程根与系数的关系是解本题的关键.16.【分析】由旋转的性质可得AB=AE,DE=BC,由等腰三角形的性质可得BM=ME,由勾股定理可求BM,AM的长,即可求解.【解答】解:如图,过点A作AM⊥BC于M,过点E作EN⊥AD于N,则四边形AMEN是矩形,∴AM=EN,AN=ME,∵将▱ABCD绕点A逆时针旋转到▱AEDF的位置,∴AB=AE,DE=BC,∵AM⊥BE,∴BM=ME,设BM=ME=x,则AN=x,∴BC=3+2x,∴AD=DE=3+2x,∴DN=3+x,∵AM2=AB2﹣BM2,NE2=DE2﹣DN2,∴10﹣x2=(3+2x)2﹣(3+x)2,∴x=1,x=﹣(舍去),∴BM=1,∴AM===3,∴△ECD的面积=×3×3=,故答案为:.【点评】本题考查了旋转的性质,平行四边形的性质,勾股定理等知识,添加恰当辅助线是解题的关键.三、解答题(本大题共11小题,共82分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.【分析】(1)利用平方差公式进行计算,即可解答;(2)利用同分母分式加减法法则进行计算,即可解答.【解答】解:(1)=3+4﹣3=4;(2)===1.【点评】本题考查了二次根式的混合运算,平方差公式,分式的加减法,准确熟练地进行计算是解题的关键.18.【分析】(1)利用因式分解法解一元二次方程即可;(2)两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)x2+4x﹣5=0,(x+5)(x﹣1)=0,x+5=0或x﹣1=0,解得x1=﹣5,x2=1;(2),去分母得:4+x﹣5x+5=2x,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解一元二次方程及解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.【分析】先根据分式的加减运算以及乘除运算法则进行化简,然后将a的值代入原式即可求出答案.【解答】解:原式=÷(﹣)=÷=×=,当a=﹣3时,原式===.【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.20.【分析】(1)根据B的人数和所占的百分比,求出调查的学生总人数,再用360°乘以A占的比值;从而补全统计图;(2)用选择“陶艺”课程的学生数除以总人数即可;(3)用1200数乘以选择“A:完全了解”的学生所占的百分比即可.【解答】解:(1)本次抽取的学生人数为30÷30%=100(名),360°×=144°,故答案为:100,144;(2)C的人数有:100﹣40﹣30﹣10=20(名),补全统计图如下:(3)1200×=480(名),答:估计“A:完全了解”的学生人数有480名.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【分析】(1)利用频率估计概率即可得出答案;(2)设袋子中原有m个球,根据题意得=0.4,再利用概率公式求解可得出答案.【解答】解:(1)∵经过大量重复实验发现摸到黄球的频率逐渐稳定在0.2附近,∴估计摸到白球的频率在0.8,故答案为:0.8;(2)设袋子中有m个球,根据题意,得,解得m=25,经检验m=25是分式方程的解,解得:a=25,经检验a=25是分式方程的解,所以a=25.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势,估计概率,这个固定的近似值就是这个事件的概率.22.【分析】(1)根据动力×动力臂=阻力×阻力臂,可得出F与1的数关系式;(2)将F=500N代入可求出即可.【解答】解:(1)Fl=1600×0.5=800,则F=;(2)当F=500N时,,则l=1.6m;【点评】本题主要考查反比例函数的应用,熟练掌握反比例函数是解题的关键.23.【分析】(1)作∠BDE=∠ABD,BE交BC于点E;(2)高科技邻边相等的平行四边形是菱形证明即可.【解答】(1)解:图形如图所示:(2)证明:∵AD∥BE,AB∥DE,∴四边形ABED是平行四边形,∵BD平分∠ABC,∴∠ABD=∠DBC,∵AD∥BC,∴∠ADB=∠DBC=∠ABD,∴AB=AD,∴四边形ABED是菱形.【点评】本题考查作图﹣复杂作图,菱形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.【分析】(1)仔细观察从上式中找出规律即可;(2)①归纳总结得到一般性规律,写出即可;②利用二次根式的性质及化简公式证明即可.【解答】解:(1)根据前3个式子,可得=5;故答案为:5;(2)①=n;故答案为:n;②证明:等式左边===n=右边,n为大于1的自然数.【点评】本题主要考查了二次根式的性质与化简,规律型:数字的变化类,熟练掌握二次根式的化简是解决本题的关键.25.【分析】(1)根据AD∥BC,∠B=90°可知,当AN=BM时,四边形ABMN为矩形,可表示出AN=AD﹣DN=6﹣t,BM的表示分两种情况:当点M从点B运动到点C时,BM=t,当点M从点C返回到B时,BM=8﹣()=16﹣,令AN=BM,可得t=或,又因为点N运动到点A时,M,N两点同时停止运动,故t≤6,因此舍去t=,可得t=秒时,四边形ABMN为矩形.(2))根据AD∥BC,可知当DN=CM时,以C,D,M,N为顶点的四边形为平行四边形,由题意知:DN=t,当点M从点B运动到点C时,CM=8﹣t,当点M从点C返回到B时,CM=,令CM=DN,可解出t=或,均符合题意.【解答】解:(1)∵AD∥BC,∠B=90°,∴当AN=BM时,四边形ABMN为矩形,由题意知:AN=AD﹣DN=6﹣t,当点M从点B运动到点C时,BM=t,令6﹣t=,解得t=,当点M从点C返回到B时,BM=8﹣()=16﹣,令6﹣t=16﹣,解得t=,当t=6时,点M、N停止运动,故t=(,不符合题意,舍去),∴t=秒时,四边形ABMN为矩形.故答案为:;(2)∵AD∥BC,∴当DN=CM时,以C,D,M,N为顶点的四边形为平行四边形,由题意知:DN=t,当点M从点B运动到点C时,CM=8﹣t,令t=8﹣,解得t=,当点M从点C返回到B时,CM=,令t=﹣8,解得t=,检验可知t=和均符合题意,∴t=或时,以C,D,M,N为顶点的四边形为平行四边形.【点评】本题考查矩形的性质与判定,平行四边形的性质与判定,正确表示出一组对边的长度,根据判定列出含t的方程是解题的关键.26.【分析】(1)求得直线OA的解析式,即可求得B点的坐标特征;(2)延长AB,交x轴于M,作AN⊥x轴于N,作EF⊥AN于F,通过证得△BOM≌△EAF(AAS),即可得到AF=OM=1,EF=BM=,由点A(4,3),得到E(4+,3﹣1),即E(,2);(3)表示出C、E的坐标,根据反比例函数系数k=xy列方程求得t的值,进一步即可求得k的值.【解答】解:(1)∵点A(4,3),∴直线OA为y=x,∵点B是线段OA上的一个动点,点B的横坐标为t(0<t<2),∴B(t,t)(0<t<2),故答案为:(t,t)(0<t<2);(2)延长AB,交x轴于M,∵BC∥y轴,∴CM⊥x轴,作AN⊥x轴于N,作EF⊥AN于F,∴∠BOM+∠OAN=90°,∵DA⊥OA,∴∠EAF+∠OAN=90°,∴∠BOM=∠EAF,∵∠OMB=∠AFE=90°,OB=AE,∴△BOM≌△EAF(AAS),∴AF=OM,EF=BM,∵B(t,t)(0<t<2),t=1,∴B(1,),∴AF=1,EF=,∵点A(4,3),∴ON=4,AN=3,∴E(4+,3﹣1),即E(,2);(3)∵△OBC的面积为3,∴BC•OM=3,即,∴BC=,∴C(t,t+),而E(4+t,3﹣t),∵点E、C在反比例函数的图象上,∴t(t+)=(4+t)(3﹣t),整理得,6t2+7t﹣24=0,解得t=或t=﹣(舍去),∴C(,),∴k==.【点评】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,正确表示出E、C的坐标是解题的关键.27.【分析】(1)证明出△ABE∽△BCD,即可求解;(2)①延长BN交CD于点G,由△ABE∽△BCG,求得GC=3,由△GCN∽△BAN,得==,=;即=,由△ANH∽△ACD得到=,即=,故S△ANH②过点C作CK⊥BN交BN延长线于点K,则∠K=90°,延长HN交BC于点Q,在Rt△ABE中,由勾股定理得AE=,由△ABE∽△BKC,求得BK=,CK=,由△BME∽△BKC,求得MK=BK=,故在Rt△MKC中,由勾股定理得MC=4a,EM==,由△CQN∽△CBA,得到==,故设CB=6x,AB=5x,则HN=5a﹣5x,BQ=6a﹣6x,由△ABE∽△BQN,得到=,解得:x=,故HN=,因此==.【解答】解:(1)∵四边形ABCD是矩形,∴∠ABE=∠BCD=90°,∴∠BAE+∠BEA=90°,∵BM⊥AE,∴∠MBE+∠BEA=90°,∴∠BAE=∠MBE,∵∠ABE=∠BCD=90°,∴△ABE∽△BCD,∴=,∵a=1,∴AB=5a=5,BC=6a=6,∴=,∴BE=;(2)①延长BN交CD于点G,如图2,同(1)可证,△ABE∽△BCG,∴=,∴=,∴GC=3,∵四边形ABCD是矩形,∴AB∥CG,∴△GCN∽△BAN,∴==,∴=,∵NH⊥AD,∴∠AHN=90°,∵四边形ABCD是矩形,∴∠D=90°,CD=AB=5,AD=BC=6,∴∠AHN=∠D,∴NH∥CD,∴△ANH∽△ACD,∴=,∴=,=;∴S△ANH②过点C作CK⊥BN交BN延长线于点K,则∠K=90°,延长HN交BC于点Q,如图3,∵BE=,AB=5a,∠ABE=90°,在Rt△ABE中,由勾股定理得AE=,∵∠BAE=∠MBE,∠K=∠ABE=90°,∴△ABE∽△BKC,∴==,∴==,解得:BK=,CK=,∵∠BME=∠K=90°,∴ME∥KC,∴△BME∽△BKC,∴===,∴MK=BK=,在Rt△MKC中,由勾股定理得MC==4a,∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∵NH⊥AD,∴QH=AB=5a,∠BQN=90°,∵NH∥CD,∴NQ∥AB,∴△CQN∽△CBA,∴=,∴==,∴设CQ=6x,NQ=5x,则HN=5a﹣5x,BQ=6a﹣6x,∵∠BAE=∠MBE,∠BQN=∠ABE=90°,∴△ABE∽△BQN,∴=,∴=,解得:x=,∴HN=5a﹣5x=5a﹣a=,==,故答案为:.【点评】本题考查了矩形的性质,相似三角形的判定与性质,勾股定理,找出多组相似三角形,正确添加辅助线是解决本题的关键。
2023-2024学年浙江省杭州市拱墅区八年级(下)期末数学试卷及答案解析

2023-2024学年浙江省杭州市拱墅区八年级(下)期末数学试卷一.选择题:本题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.(3分)函数y=中自变量x的取值范围是()A.x≥B.x≥﹣C.x≤﹣D.x≤2.(3分)在矩形ABCD中,若AB=3,BC=4,则对角线AC的长是()A.3B.4C.5D.63.(3分)方程x(x﹣2)=0的两个根的和是()A.﹣2B.0C.2D.44.(3分)在平行四边形ABCD中,若∠A=2∠B,则∠B=()A.15°B.30°C.45°D.60°5.(3分)在,,,0四个数中,最大的数是()A.B.C.D.06.(3分)在直角坐标系中,设反比例函数y=,其中k>0.若点A(﹣2,a),B(1,b),C(3,c)均在该函数的图象上,则()A.a>b>c B.b>c>a C.c>a>b D.c>b>a7.(3分)《九章算术》中记载了这样一个问题:“今有立木,系索其末(上端),(绳索从木柱上端垂下后)委地(堆在地面)三尺.引索却(退)行,去本(木柱底端)八尺而索尽.问索长几何?”设绳索长为x尺,则()A.(x﹣3)2+82=x2B.(x﹣3)2+x2=82C.x2+82=(x+3)2D.x2+(x+3)2=828.(3分)设数据0,1,2,3,4的平均数为a,中位数为b,方差为c,则()A.a=b=c B.a=b<c C.a<b=c D.a<b<c9.(3分)如图是正方形纸片ABCD,点E在边BC上(不与点B,C重合),连接DE.把四边形ADEB 翻折,折痕为DE,点A,B分别落在A′,B′处.若AB=3,则点A′到点A的距离可能是()A.3B.4C.5D.610.(3分)已知一元二次方程ax2+bx+1=0(a≠0)的一个正根和方程x2+bx+a=0的一个正根相等,若ax2+bx+1=0的另一个根为4,则x2+bx+a=0的两个根分别为()A.﹣4,4B.﹣4,1C.,4D.,1二、填空题:本题有6个小题,每小题3分,共18分。
八年级数学下学期期末测试卷(含答案)
八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。
2023-2024学年山东省济南市历下区八年级(下)期末数学试卷及答案解析
2023-2024学年山东省济南市历下区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.(4分)下列是关于x的一元二次方程的是()A.B.x(x+6)=0C.a2x﹣5=0D.4x﹣x3=23.(4分)下列分式是最简分式的是()A.B.C.D.﹣4.(4分)无论a取何值,下列分式中,总有意义的是()A.B.C.D.5.(4分)一个多边形外角和是内角和的.则这个多边形的边数是()A.10B.11C.12D.136.(4分)若一元二次方程ax2+bx+c=0(a≠0)的一个根是x=1,则a+b+c的值是()A.0B.﹣1C.1D.不能确定7.(4分)如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AE=3,DF=1,则边BC的长为()A.7B.8C.9D.108.(4分)《鹊华秋色图》是画家赵孟颠的作品,如图是它的局部画面,装裱前是一个长为54cm,宽为27cm 的矩形,装裱后,整幅图画宽与长的比是5:12,且四周边框的宽度相等,则边框的宽度应是多少?设边框的宽度为x cm,下列符合题意的方程是()A.B.C.D.9.(4分)如图,△ABC绕点O顺时针旋转角度α后得到△DEF,若∠COE=15°,∠BOF=85°,则旋转角α的值为()A.40°B.45°C.50°D.55°10.(4分)如图,在正方形ABCD中,AD=4,对角线AC与BD交于点O,OG⊥AB于点G,E为平面内一动点,且∠AEB=90°,F为AE中点,连接GF,OF.有下列说法:①∠AFG=90°;②取AG=2;④在点E运动过中点P,连接PF,则∠FPG=2∠FAB;③当四边形AOBE为正方形时,S△FGO程中,OF的最小值为,其中正确的序号有()A.①②B.①②④C.②③④D.①②③④二、填空题(本大题共5个小题,每小题4分,共20分.)11.(4分)如图1,是某公园里采用的八角形空窗,其轮廓是一个正八边形,图2是该八角形空窗的示意图,则它的任意一个内角∠a为度.12.(4分)化简分式:的结果是.13.(4分)如图,在菱形ABCD中,对角线AC=6,BD=8,过点A作AE⊥CD于点E,则AE为.14.(4分)如图,为美化环境,某地准备将一片面积为7812m2的矩形空地建为一个花圃,花圃中间共设有4条等宽的水渠,将花圃分为了8个形状相同的矩形区域,在每个区域内种植花草,花草的总面积为7200m2,若测得空地的宽长为62m,则水渠的宽度为m.15.(4分)如图,在矩形ABCD中,AB=7,对角线AC,BD相交于点O,点M,N分别在线段OD,OC 上,且CN=6,DM=2,若CM=DN,则DN的长为.三、解答题(本大题共10个小题,共90分.请写出文字说明、证明过程或演算步骤.)16.(7分)先化简,再求值:,其中x=2.17.(7分)已知关于x的一元二次方程x2﹣2mx+m2﹣n+1=0有两个不相等的实数根,求n的取值范围.18.(7分)如图,点O为▱ABCD的对角线AC,BD的交点,经过点O的直线分别与BA的延长线和DC的延长线交于点E,F.求证:BE=DF.19.(8分)解方程:(1);(2)x2+6x﹣1=0.20.(8分)如图,在平面直角坐标系中,已知点A(﹣2,2),B(﹣1,4),C(﹣4,5),请解答下列问题:(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(1,﹣1),请作出△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°得到△A2B2C2,请作出△A2B2C2;(3)当四边形ABCD为平行四边形时,请直接写出点D的坐标.21.(9分)“城是济南城,湖是大明湖,楼是超然楼”是网友为超然楼写的广告词.随旅游旺季的到来,大明湖超然楼景区的游客人数逐月增加,4月份游客人数约为16万人次,6月份游客人数约为25万人次.(1)求这两个月中该景区游客人数的月平均增长率;(2)若增长率保持不变,请求出7月份的游客人数.22.(10分)【问题背景】如图1,某小区的大门是伸缩电动门,它由若干个全等的图形组成.爱思考的小腾发现大门打开的宽度受每个图形内角(如图2中∠A)度数的影响.【提出问题】大门打开的宽度是如何随着内角度数变化的?【分析问题】经过思考,小腾准备按照如下步骤解决问题:①利用图形的性质,先求出特殊内角度数时伸缩门(包括安装驱动器的门柱)的长度,进而计算出大门打开的宽度;②建立平面直角坐标系,通过列表、描点、连线的方法,用函数刻画内角度数x(°)与大门打开的宽度y(m)之间的关系.【解决问题】(1)小腾实地测量了相关数据,并画出了示意图,如图2,伸缩电动门中最上面一排是12个全等的图形,每个图形的边长均为0.3m,在伸缩电动门运行的过程中,这些图形始终是;A.矩形B.菱形C.梯形(2)已知安装驱动器的门柱是宽度为0.5m的矩形,大门的总宽度为7m(门框的宽度忽略不计),小腾记录了不同内角度数对应的伸缩门的长度(m)和大门打开的宽度(m),请你通过计算帮他补全数据(结果精确到0.01m):内角∠A度数x(°)3045607590105120伸缩门的长度(m) 2.36 3.26a 4.88 5.59 6.21大门打开的宽度y(m) 4.64 3.74b 2.12 1.410.79①当每个图形的内角度数为60°时,表格中a=,b=;②当每个图形的内角度数为120°时,大门打开的宽度约为多少米?(参考数据:,,结果精确到0.01m)【问题总结】如图3,小腾为了进一步研究内角度数x(°)与大门打开的宽度y(m)之间所满足的函数关系,他利用列表,描点,连线的方式画出了函数图象,通过观察图象,小腾发现:随着内角度数的增大,大门打开的宽度逐渐减小,减小的速度先较快,然后逐渐变慢.23.(10分)法国数学家韦达在研究一元二次方程时发现:如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根分别为x1、x2,那么两个根的关系为:,.习惯上把这个结论称作“韦达定理”.小明在探究二次项系数为1的一元二次方程x2+bx+c=0根的特征时发现,此时“韦达定理”可表述为:x1+x2=﹣b,x1•x2=c.借此结论,小明进行了对“倍根方程”和“方根方程”的根的特征的探究.定义:倍根方程:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根(都不为0),且其中一个根等于另外一个根的2倍,则称这样的方程为“倍根方程”.方根方程:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根(都不为0),且其中一个根的平方等于另外一个根,则称这样的方程为“方根方程”.(1)请你判断:方程x2+9x+18=0是(填“倍根方程”或“方根方程”);(2)若一元二次方程x2﹣6x+c=0是“倍根方程”,求c的值;(3)根据探究,小明想设计一个一元二次方程x2+bx+c=0,使这个方程既是“倍根方程”又是“方根方程”,请你先帮他算一算,这个方程的根是多少?24.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴上,且OA=6,OC =4.点D为OA的中点,连接CD,DE为∠ADC的平分线,交BC于点E.(1)求点B和点E的坐标;(2)点P为射线DE上一动点,点Q为平面内任意一点,①连接BD,CP,若S△CDP=S△BCD,请求出点P的坐标;②是否存在P,Q两点,使得四边形OBPQ为矩形?若存在,请求出P点的坐标;若不存在,请说明理由.25.(12分)如图1,正方形ABCD的边BE与正方形BEFG的边AB重合,直线AG交直线FE于点H,连接EC.(1)图1中线段AG与CE的数量关系是,∠AGF与∠BEC的关系是;(2)如图2,正方形BEFG绕点B顺时针旋转角度α(0°≤α≤90°),当点H与点A重合时,(1)中的结论依然成立的,请予以证明;不成立的,请写出它们新的关系,并说明理由;(3)如图3,若AB=8,BE=4,连接AC,正方形BEFG绕点B顺时针旋转角度α(0°≤α≤90°),当点F落在对角线AC上时,请直接写出此时△AGF的面积.2023-2024学年山东省济南市历下区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.该图形既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;B.该图形不是轴对称图形,是中心对称图形,故本选项不符合题意;C.该图既是中心对称图形,又是轴对称图形,故本选项符合题意;D.该图形是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点评】本题考查了中心对称图形和轴对称图形,熟练掌握中心对称图形和轴对称图形的概念是解题的关键.2.【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程”进行分析即可.【解答】解:A、该方程是分式方程,不是关于x的一元二次方程,故本选项不符合题意;B、该方程是关于x的一元二次方程,故本选项符合题意;C、当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意;D、该方程是关于x的一元三次方程,故本选项不符合题意;故选:B.【点评】本题主要考查了一元二次方程的定义,关键是掌握一元二次方程的一般形式.3.【分析】直接利用分式的基本性质分别化简,进而判断得出答案.【解答】解:A.无法化简是最简分式,故此选项符合题意;B.==,不是最简分式,不合题意;C.=,不是最简分式,不合题意;D.﹣=﹣,不是最简分式,不合题意;故选:A.【点评】此题主要考查了最简分式,正确掌握最简分式的定义是解题关键.一个分式的分子与分母没有公因式时,叫最简分式.4.【分析】根据分式有意义的条件是分母不等于零判断.【解答】解:A.当a=1时,分式没有意义.故本选项不合题意;B.当a=0时,分式没有意义.故本选项不合题意;C.当a=1时,分式没有意义.故本选项不合题意;D.因为a2≥0,所以2a2+1≠0,所以分式总有意义,故本选项符合题意.故选:D.【点评】本题的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.5.【分析】设这个多边形的边数为n,根据题意列得方程,解方程即可.【解答】解:设这个多边形的边数为n,则(n﹣2)•180°=360°,解得:n=12,即这个多边形的边数为12,故选:C.【点评】本题考查多边形的内角和及外角和,结合已知条件列得正确的方程是解题的关键.6.【分析】把x=1代入方程计算求出a+b+c的值.【解答】解:把x=1代入方程得:a+b+c=0,故选:A.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.【分析】由三角形的中位线定理得到EF∥BC,BC=2EF,BE=AE=3,利用等腰三角形的判定结合平行线的性质和角平分线的定义求出DE=3,可得EF=4,即可求出BC的长.【解答】解:∵EF是△ABC的中位线,AE=3,∴EF∥BC,BC=2EF,BE=AE=3,∴∠EDB=∠DBC,∵BD平分∠EBC,∴∠EBD=∠DBC,∴∠EDB=∠EBD,∴ED=BE=3,∵DF=1,∴EF=ED+DF=3+1=4,∴BC=8,故选:B.【点评】本题考查三角形的中位线定理,等腰三角形的判定,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【分析】根据题意可知,装裱后的长为(54+2x)cm,宽为(27+2x)cm.再根据整幅图画宽与长的比是5:12,即可得到相应的方程.【解答】解:由题意可得:,故选:D.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找到等量关系,列出相应的分式方程.9.【分析】先根据旋转的性质得到∠BOE=∠COF=α,由于∠BOF=∠BOE+∠COF﹣∠COE,所以α+α﹣15°=85°,然后解方程即可.【解答】解:∵△ABC绕点O顺时针旋转角度α后得到△DEF,∴∠BOE=∠COF=α,∵∠BOF=∠BOE+∠COF﹣∠COE,∴α+α﹣15°=85°,解得α=50°.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.【分析】①正确,利用三角形中位线定理证明;②正确,利用直角三角形斜边中线的性质证明即可;③错误,△OGF的面积=1;④正确,连接OP,求出OP,PF,利用两点之间线段最短解决问题.【解答】解:∵四边形ABCD是正方形,∴OA=OB,∵OG⊥AB,∴AG=GB,∵AF=EF,∴FG∥EB,∴∠AFG=∠AEB=90°,故①正确,∵∠AFG=90°,AP=PG,∴AP=PF=PG,∴∠FAP=∠AFP,∴∠FPG=∠FAG+∠AFP=2∠FAB,故②正确,如图1中,当四边形AOBE是正方形时,FG∥EB∥OA,∴△FOG的面积=△AFG的面积=AF•FG=××=1,故③错误,如图2中,连接OP.∵OP===,PF=AG=1,∴OF≥OP﹣PF=﹣1,∴OF的最小值为﹣1.故④正确.故选:B.【点评】本题考查正方形的性质,直角三角形斜边中线的性质,三角形中位线定理,勾股定理,两点之间线段最短等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题(本大题共5个小题,每小题4分,共20分.)11.【分析】先求出正八边形的一个外角的度数,再根据邻补角的定义即可求出答案.【解答】解:∵正八边形的一个外角的度数为360°÷8=45°,∴正八边形的一个内角的度数为180°﹣45°=135°.故答案为:135.【点评】本题主要考查多边形内角与外角,熟练掌握多边形的外角和公式是解题的关键.12.【分析】先把能够分解因式的分母分解因式,然后约分,最后按照同分母的分式相加减法则进行计算即可.【解答】解:原式===,故答案为:.【点评】本题主要考查了分式的加减运算,解题关键是熟练掌握几种常见的分解因式的方法和分式的约分.13.【分析】因为四边形ABCD是菱形,AC=6,BD=8,则AC⊥BD,OA=OC=3,OB=OD=4,利用勾股定理求出菱形的边长为5.则菱形ABCD的面积为,根据AE⊥CD,则,求出AE即可.【解答】解:∵四边形ABCD是菱形,AC=6,BD=8,∴AC⊥BD,OA=OC=3,OB=OD=4,∴CD==5,即菱形的边长为5.∵四边形ABCD是菱形,AC=6,BD=8,∴菱形ABCD的面积为,∵AE⊥CD,∴,∴.故答案为:.【点评】本题考查菱形的性质,勾股定理,解题的关键是掌握相关知识的灵活运用.14.【分析】根据空地的面积与宽,利用矩形面积公式求出长,设水渠的宽度为x m,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设水渠的宽度为x m,空地的长为7812÷62=126(m),根据题意得:(62﹣x)(126﹣3x)=7200,整理得:x2﹣104x+204=0,即(x﹣2)(x﹣102)=0,解得:x1=2,x2=102(不合题意,舍去),则水渠的宽度为2m.故答案为:2.【点评】此题考查了一元二次方程的应用,平移的性质,弄清题意是解本题的关键.15.【分析】过D作DE⊥OC于E,过C作CF⊥OD于F,根据矩形的性质得到AB=CD,OD=,OC=,根据全等三角形的判定和性质定理即可得到结论.【解答】解:过D作DE⊥OC于E,过C作CF⊥OD于F,∵四边形ABCD是矩形,∴AB=CD,OD=,OC=,∴OD=OC,=,∴S△COD∴CF=DE,∵CM=DN,∴Rt△CMF≌Rt△DNE(HL),∴FM=NE,设FM=NE=x,∴DF=DM+FM=2+x,CE=CN﹣NE=6﹣x,∵CD=DC,DE=CF,∴Rt△CFD≌Rt△DEC(HL),∴DF=CE,∴2+x=6﹣x,∴x=2,∴CE=4,∵CD=AB=7,∴DE2=CD2﹣CE2=72﹣42=33,∴DN===,故答案为:.【点评】本题考查了矩形的性质,全等三角形的判定和性质,熟练掌握矩形的性质以及全等三角形的判定和性质是解题的关键.三、解答题(本大题共10个小题,共90分.请写出文字说明、证明过程或演算步骤.)16.【分析】先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.【解答】解:=•=,当x=2时,原式===.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解题的关键.17.【分析】根据题意可得根的判别式Δ>0,列出不等式求解即可.【解答】解:∵关于x的一元二次方程x2﹣2mx+m2﹣n+1=0有两个不相等的实数根,∴Δ=b2﹣4ac=(﹣2m)2﹣4(m2﹣n+1)>0,∴n>1.【点评】本题重点考查了一元二次方程根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)中,当Δ>0时,方程有两个不相等的两个实数根是解答此题的关键.18.【分析】由四边形ABCD是平行四边形,易证得△BOE≌△DOF(ASA),即可证得BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴OB=OD,AB∥CD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴BE=DF.【点评】此题考查了平行四边形的性质,全等三角形的判定和性质,解决本题的关键是得到△BOE≌△DOF.19.【分析】(1)先找出最简公分母2(x﹣2),去分母后求出x的值,然后检验确定分式方程的解即可;(2)利用配方法求解即可.【解答】解:(1)方程两边同乘2(x﹣2),得4x﹣(x﹣2)=﹣3,解得x=﹣,检验:当x=﹣时2(x﹣2)≠0,∴原分式方程的解是x=﹣;(2)x2+6x﹣1=0,x2+6x=1,x2+6x+9=10,即(x+3)2=10,∴x+3=,∴x1=﹣3+,x2=﹣3﹣.【点评】本题考查了解分式方程,解一元二次方程,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.解分式方程必须要检验.20.【分析】(1)由题意得,△ABC是向右平移5个单位长度,向下平移6个单位长度得到的△A1B1C1,根据平移的性质作图即可.(2)根据旋转的性质作图即可.(3)结合平行四边形的性质可得答案.【解答】解:(1)由题意得,△ABC是向右平移5个单位长度,向下平移6个单位长度得到的△A1B1C1.如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)∵四边形ABCD为平行四边形,∴CD∥AB,CD=AB,∴点D的坐标为(﹣5,3).【点评】本题考查作图﹣平移变换、旋转变换、平行四边形的性质,熟练掌握平移的性质、旋转的性质、平行四边形的性质是解答本题的关键.21.【分析】(1)设这两个月中该景区游客人数的月平均增长率为x,根据4月份游客人数约为16万人次,6月份游客人数约为25万人次.列出一元二次方程,解之取符合题意的值即可;(2)由题意列式计算即可.【解答】解:(1)设这两个月中该景区游客人数的月平均增长率为x,由题意得:16(1+x)2=25,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去),答:这两个月中该景区游客人数的月平均增长率为25%;(2)由题意可知,25(1+25%)=31.25(万人次),答:7月份的游客人数为31.25万人次.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【分析】(1)依据题意,根据所给条件判断四边形的形状即可得解;(2)①依据题意,画出图形得到△ABD是等边三角形,然后计算即可;②依据题意,连接BD、AC交于点O,利用勾股定理解题即可.【解答】解:(1)∵每个图形的边长均为0.3m,∴图形为菱形.故选:B.(2)①当每个图形的内角度数为60°时,如图,连接BD.∴△ABD是等边三角形.∴BD=AB=0.3m.∴伸缩门的长度为a=0.3×12+0.5=4.1(m),b=7﹣4.1=2.9(m).故答案为:4.1;2.9.②如图,每个图形的内角度数为120°时,连接BD、AC交于点O,∴∠ABC=60°,即△ABC是等边三角形.∴AC=0.3.又∵四边形ABCD是菱形,∴OA=AC=0.15,BD=2BO.∴BD=m.∴大门打开的宽度为7﹣×12﹣0.5≈0.26(m).【点评】本题主要考查了动点问题的函数图象、等边三角形的判定与性质、菱形的性质、勾股定理,解题时要熟练掌握并能灵活运用是关键.23.【分析】(1)求出方程的解,再判断是否为倍根方程;(2)设方程x2﹣6x+c=0的两个根为x1,x2,由倍根方程”的定义可知x2=2x1,利用根与系数的关系即可求得c的值;(3)设一元二次方程x2+bx+c=0,的两个实数根分别为x1、x2,由题意可知x1=2x2,x1=或x2=2x1,x1=,即可得到方程的根是2、4或、.【解答】解:(1)解方程x2+9x+18=0得:x1=﹣3,x2=﹣6,∵x2=2x1,∴方程x2+9x+18=0是倍根方程;故答案为:“倍根方程”;(2)设方程x2﹣6x+c=0的两个根为x1,x2,∵一元二次方程x2﹣6x+c=0是“倍根方程”,∴x2=2x1,∴3x1=6,2=c,∴x1=2,∴c=8;(3)设一元二次方程x2+bx+c=0,的两个实数根分别为x1、x2,∵这个方程既是“倍根方程”又是“方根方程”,∴x1=2x2,x1=,∴2x2=,解得x2=2或x2=0(舍去),∴x1=4,或x2=2x1,x1=,∴x2=,解得x2=或x2=0(舍去),∴x1=,∴这个方程的根是2、4或、.【点评】本题考查了一元二次方程的根与系数的关系,一元二次方程的一般形式,新定义“倍根方程”或“方根方程”的意义,理解“倍根方程”或“方根方程”的意义和掌握根与系数的关系是解决问题的关键.24.【分析】(1)根据矩形的性质可得BC=6,AB=4从而得到B的坐标,再由角平分线+平行线可以证出CE=CD,进而得到点E的坐标;(2)利用割补法将△CDP的面积表示出来,再转化为坐标之间的关系求解即可;(3)要使四边形OBPQ是矩形,则△OBP为直角三角形,∠OBP=90°,设出点P的坐标,利用两点距离公式和勾股定理建立方程求解即可.【解答】解:(1)∵四边形OABC为矩形,∴BC∥OA,BC=OA,AB∥OC,AB=OC,∴∠CED=∠ADE,∵OA=6,OC=4,∴B(6,4),∵DE为∠ADC的平分线,∴∠CDE=∠ADE,∴∠CED=∠CDE,∴CE=CD,∵D为OA中点,∴OD=OA=3,∴D(3,0),由勾股定理可得CD=5,∴CE=5,∴E(5,4).(2)①∵四边形OABC为矩形,点D为OA的中点,=S四边形OABC=OA•OC=12,∴S△BCD=S△BCD=12,∴S△CDP延长ED,交y轴于点M,∵D(3,0),E(5,4),∴y DE=2x﹣6,∴M(0,﹣6),∴CM=10,=S△PCM﹣S△DCM=CM•(x P﹣x D)=12,∵S△CDP∴×10×(x P﹣3)=12,∴x P=,∴P(,).②存在,∵点P是射线DE上的动点,∴设P(x,2x﹣6),∵O(0,0),B(6,4),∴OB2=62+42=52,OP2=x2+(2x﹣6)2=5x2﹣24x+36,BP2=(x﹣6)2+(2x﹣6﹣4)2=5x2﹣52x+136,要使四边形OBPQ是矩形,则△OBP为直角三角形,∠OBP=90°,∴OB2+BP2=OP2,即52+5x2﹣52x+136=5x2﹣24x+36,解得x=,∴P(,).【点评】本题主要考查了待定系数法求一次函数、一次函数上点的坐标特征、矩形的性质、三角形的面积公式、勾股定理等知识,熟练掌握相关知识是解决问题的关键.25.【分析】(1)证△CBE≌△ABG(SAS)即可;(2)同第一问思路,证△CBE≌△ABG(SAS)即可得解;(3)由BO=BD=4=BF可得F、O重合,画图示意图,△AGF的面积很容易就得出.【解答】解:(1)∵四边形BEFG和四边形ABCD都是正方形,∴BE=BG,∠CBE=∠ABG=90°,BC=BA,∴△CBE≌△ABG(SAS),∴CE=AG,∠BEC=∠AGB,∵∠AGF+∠AGB=90°,∴∠AGF+∠BEC=90°,故答案为:AG=CE,∠AGF+∠BEC=90°.(2)AG=CE依然成立;∠AGF与∠BEC的关系是∠BEC﹣∠AGF=90°.理由:∵四边形BEFG和四边形ABCD都是正方形,∴BG=BE,AB=BC,∠GBE=90°=∠ABC,∴∠GBA=∠EBC,∴△CBE≌△ABG(SAS),∴AE=CE,∠AGB=∠CEB,∵四边形BEFG是正方形,∴∠BGF=90°,∴∠AGF=∠AGB﹣∠BGF=∠BEC﹣90°,即∠BEC﹣∠AGF=90°.(3)如图,连接BF,连接BD与AC交于点O,∴AC=BD ==8,BF ==4,∴BO =BD=4=BF,∵F在AC上,∴F与O 点重合,如图:=×4×4=8.∴S△AGF【点评】本题主要考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,熟练掌握相关知识点是解题的关键。
2024届广东省珠海市数学八年级第二学期期末综合测试试题含解析
2024届广东省珠海市数学八年级第二学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分) 1.若代数式1x x+ 在实数范围内有意义,则x 的取值范围是( ) A .1x >-B .1x ≥-C .0x ≠D .1x ≥-且0x ≠2.如图,先将矩形ABCD 沿三等分线折叠后得到折痕PQ ,再将纸片折叠,使得点A 落在折痕PQ 上E 点处,此时折痕为BF ,且AB =1.则AF 的长为( )A .4B .559C .955D .53.如图,在平行四边形ABCD 中,用直尺和圆规作的∠BAD 平分线交BC 于点E ,若AE=8,AB=5,则BF 的长为( )A .4B .5C .6D .84.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、1.应该选( )参加. A .甲B .乙C .甲、乙都可以D .无法确定5.若不等式组2123x a x b -<⎧⎨->⎩的解集为11x -<<,则(3)(3)a b -+的值等于( )A .1-B .2-C .2D .46.如图,腰长为2的等腰直角三角形ABC 绕直角顶点A 顺时针旋转45︒得到AB C ''∆,则图中阴影部分的面积等于( )A .422-B .2C .22D .222-7.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2aBC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长8.一天早上小华步行上学,他离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开.为了不迟到,小华跑步到了学校,则小华离学校的距离y 与时间t 之间的函数关系的大致图象是( )A .B .C .D .9.甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同。
贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)
黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下学期期末数学综合测试一、精心选一选,想信你一定能选对!(每小题3分,共30分) 1、若关于x 的方程ax=3x-5有负数解,则a 的取值范围是( )A 、a<3B 、a>3C 、a≥3D 、a≤32、一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时。
A 、11a b+ B 、1abC 、1a b+ D 、ab a b+3、下列命题中假命题是( )A 、三个角的度数之比为1:3:4的三角形是直角三角形B 、三个角的度数之比为1:3:2的三角形是直角三角形C 、三边长度之比为1:3:2的三角形是直角三角形D 、三边长度之比为2:2:2的三角形是直角三角形 4、如图是三个反比例函数xk y 1=,xk y 2=,xk y 3=在x 轴上方的图象,由此观察得到1k 、2k 、3k 的大小关系为( )A 、 321k k k >>B 、 123k k k >>C 、 132k k k >>D 、 213k k k >>5、如图,点A 是反比例函数`4x y =图象上一点,AB ⊥y 轴于点B ,则△AOB 的面积是( )A 、1B 、2C 、3D 、46、在三边分别为下列长度的三角形中,哪些不是直角三角形( )A 、5,13,12B 、2,3,C 、4,7,5D 、1,7、在下列性质中,平行四边形不一定具有的是( )A 、对边相等B 、对边平行C 、对角互补D 、内角和为360° 8、能判定四边形是平行四边形的条件是( )A 、一组对边平行,另一组对边相等B 、一组对边相等,一组邻角相等C 、一组对边平行,一组邻角相等D 、一组对边平行,一组对角相等9、为了考查一批日光灯管的使用寿命,从中抽取了30 只进行试验,在这个问题中,下列说法正确的有( )①总体是指这批日光灯管的全体 ②个体是指每只日光灯管的使用寿命CDOyxxk y 1=xk y 2=xk y 3=第4题图形Oxy A B 第5题图形OPQxy第18题图形③样本是指从中抽取的30只日光灯管的使用寿命 ④样本容量是30只 A 、1个 B 、2个 C 、3个 D 、4个 ※10、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正 方形ABCD 的面积比是( )A 、3:4B 、5:8C 、9:16D 、1:2 二、细心填一填,相信你填得又快又准!(每小题3分,共24分) 11、分式方程31-x +94312-=-x x 的解是 。
12、如图,□ABCD 中,AE ⊥CD 于E ,∠B=55°,则∠D= °,∠DAE= °。
13、将40cm 长的木条截成四段,围成一个平行四边形,使其长边与短边的比为3:2,则较长的木条长 ________________cm ,较短的木条长 cm 。
14、数据1,2,8,5,3,9,5,4,5,4的众数是_________;中位数是__________。
15、已知一个工人生产零件,计划30天完成,若每天多生产5个,则在26天完成且多生产15个。
求这个工人原计划每天生产多少个零件?如果设原计划每天生产x 个,根据题意可列出的方程为 。
16、若y 与x 成反比例,且图像经过点(-1,1),则y= ____________。
(用含x 的代数式表示)17.在直角梯形中,底AD=6 cm ,BC=11 cm ,腰CD=13 cm ,则这个直角梯形的周长为______cm 。
18、如右图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P ,则它的解析式是_______。
三、用心做一做,培养你的综合运用能力,相信你是最棒的!(共46分) 解答时请写出必要的演算过程或推理步骤。
19、(5分)计算:2424422xyx y xx y x yx yx y⋅-÷-+-+。
20、(5分)已知:如图,在□ABCD 中,对角线AC 交BD 于点O ,四边形AODE 是平行四边形。
求证:四边形ABOE 是平行四边形。
EABCD E 第12题21、(5分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?22、(6分)如图,□ABCD 中,BD ⊥AD ,AD=6cm ,□ABCD 的面积为242cm ,求□ABCD的周长及BD 、AC 的长。
23、(本题满分8分)为了减轻学生的作业负担,烟台市教育局规定:初中学段学生每晚的作业总量不超过1.5小时.一个月后,九(1)班学习委员亮亮对本班每位同学晚上完成作业的时间进行了一次通ABCD O缉,并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)该班共有多少名学生? (2)将①的条形图补充完整.(3)计算出作业完成时间在0.5~1小时的部分对应的扇形圆心角. (4)完成作业时间的中位数在哪个时间段内?(5)如果九年级共有500名学生,请估计九年级学生完成作业时间超过1.5小时的有多少人?24、(8分)如图所示,一根长2a 的木棍(AB ),斜靠在与地面(OM )垂直的墙(ON )上,设木棍的中点为P 。
若木棍A 端沿墙下滑,且B 端沿地面向右滑行。
(1)请判断木棍滑动的过程中,点P 到点O 的距离是否变化,并简述理由。
(2)在木棍滑动的过程中,当滑动到什么位置时,△AOB 的面积最大?简述理由,并求出面积的最大值。
AB PMN O25、(9分)如图,等腰梯形ABCD 中,AD ∥ BC ,点E 是线段AD 上的一个动点(E 与A 、D 不重合),G 、F,、H 分别是BE 、BC 、 CE 的中点。
(1)试探索四边形EGFH 的形状,并说明理由;(2)点E 运动到什么位置时,四边形EGFH 是菱形?并加以证明;(3)若(2)中菱形EGFH 是正方形,请探索线段EF 与线段BC 的关系,并证明你的结论。
参考答案一、选择题 1 2 3 4 5 6 7 8 9 10 答案BDBBBCCDB B二、11、x=2; 12、55°,35°; 13、12,8;14、5;4.5;15、3015265x x +=+;16、11+x ;17、42㎝;18、xy 3=(x>0);三、19、原式=242222222()()()()xyx yx y x y x y x y x y x+-⨯-++-=2222()()()()()()()()()xyx y xy x y xy y x xy x y x y x y x y x y x y x y x y x y---===--+-+-+-++。
20、∵□ABCD 中,对角线AC 交BD 于点O ,∴OB=OD ,又∵四边形AODE 是平行四边形∴AE ∥OD 且AE=OD ,∴AE ∥OB 且AE=OB ,∴四边形ABOE 是平行四边形。
21、设自行车速度为x 千米/小时,则汽车速度为 2.5x 千米/小时,由题意可列方程为xx 5.220604520=-,解得x=16,经检验,x=16适合题意,故2.5x=40,所以自行车速度为16千米/小时,汽车速度为40千米/小时. 22、BD=4cm ;周长为(12+413)cm ;AC=410cm 2324、(1)不变。
理由:在直角三角形中,斜边上的中线等于斜边的一半,因为斜边AB 不变,所以斜边上的中线OP 不变。
(2)当△AOB 的斜边上的高h 等于中线OP 时,△AOB 的面积最大。
如图,若h 与OP不相等,则总有h<OP 。
故根据三角形面积公式,有h 与OP 相等时△AOB 的面积最大此时,S △AOB =2·221·21a a a h AB =⨯=.所以△AOB 的最大面积为2a 。
25、(1)四边形EGFH 是平行四边形。
利用三角形的中位线证明两组对边分别平行。
(2)点E 运动到AD 的中点位置时,四边形EGFH 是菱形。
证一组邻边相等的平行四边形是菱形。
(3)当EF=BC 时,(2)中菱形EGFH 是正方形,利用对角线相等的菱形是正方形。
AB PMN Oh。