常用水文地质参数的经验值

合集下载

公路工程地形地貌水文及水文地质勘察手册

公路工程地形地貌水文及水文地质勘察手册

公路工程地形地貌水文及水文地质勘察手册1 地形地貌1.1 山岳分类表(据中科院地理所)如表1-1。

表1-1注:切割深度>1000米,称深度切割区;500~1000米,称中切割区;<500米,称浅切割区。

1.2 地形坡度按坡角分类目前,关于地形坡度按坡角分类尚无统一标准,各部门内部及部门间划分标准和称谓均不能协调,建议结合贵州山区特点,在公路工程中对地形坡度作如表1-2划分。

表1-21.3 贵州省地貌类型划分(据《贵州省水文地质志》)如表1-3:表1-32 水文及水文地质2.1 调查的洪水频率要合乎要求(此要求中的桥、隧部分以列入本文中),如高速公路、一级公路中的特大桥,要求调查三百年一遇最高洪水位。

鉴于贵州实际,常年流水河流,报告中应有最高、最低水位,测时水位和相应的流量;季节性河流及桥跨沟谷,要调访最高洪水位。

2.2 地下水类型根据主要充水含水层的容水空间特征,分为:孔隙含水层类型;裂隙含水层类型;岩溶含水层类型(分以溶蚀裂隙为主的岩溶充水、以溶洞为主的岩溶充水、以暗河/管道为主的岩溶充水三个亚类)。

2.3 含水层富水性判别依据《固体矿产地质勘查规范总则》(GB/T13908-2002)①按天然泉水流量Q(l/s)弱富水<1.0中等富水1~10强富水10~50极强富水>50②按钻孔单位涌水量* q(l/s.m)弱富水<1.0中等富水0.1~1强富水1~5极强富水>5*a. 《矿区水文地质工程地质勘探规范》:评价含水层的富水性钻孔单位涌水量以口径91毫米,抽水位降深10米为准,若口径、降深与上述不合时,应进行换算再比较富水性。

b.《岩心钻探规程》:出水量大于0.2L/s的钻孔,不得采用提筒简易抽水。

③《工程地质手册》第三版,按渗透系数k(m/d)如表2-1。

表2-12.4 地下水涌水量计算中实测的两个基本数据是渗透系数和影响半径,作为预估,表2-2~表2-5数值供参考。

表2-2 岩土渗透系数参考值k(m/d)(据《水文地质手册》)表2-3 松散岩层影响半径R经验值《据岩土工程手册》(单位为米)表2-4 各种岩土层的渗透系数和影响半径(据《工程地质手册》第四版)表2-5 某些岩体的渗透系数数值(兴伦电子《工程力学课件》)抽水试验方法与技术要求建议按《贵州建筑岩土工程技术规范》附录B 进行。

第12讲 地下含水层参数的确定

第12讲 地下含水层参数的确定
降雨入渗补给系数α 农田灌溉入渗补给系数β
2.1 给水度μ与潜水蒸发系数C
离补给源较远的观测井,无降雨、开采时段
潜水蒸发为引起地下水消退的单一因子:
μΔh=CEo=Eo (1-h/ho)n
对各时段: Δh/Eo~h
绘图,拟合曲线
纵轴截距为1/μ
横轴截距为潜水蒸发 临界埋深ho
Q =πK
H
2

h2 0
ln(R / r0 )
Q
=πK
H2

h2 1
ln(R / r1 )
水面线
h2
=
Q
πK
r ln(
r0
)+
h2 0
带观测孔的单井稳定抽水试验确定渗透系数
观测孔:至少2个,近孔距抽水井1.6倍含水层厚 度(以消除抽水井附近三维、紊流影响)
观测孔S (或Δh2) ~lgr关系为直线
渗透系数(m/d) <0.1 0.1~0.25 0.25~0.5
1~5 5~10 10~35 25~50 100~1000
作业:
某承压含水层厚度为100m,在一完整井 中以600m3/d的涌水量进行抽水试验,在 距抽水井10m的观测孔处降深变化见下表。 计算该含水层的渗透系数、导水系数、压 力传导系数及贮水系数。(注意单位换算) 时间t(min) 50 100 150 200 300 降深S(m) 1.2 1.45 1.6 1.7 1.86
计算方法 配线法 直线解析法 恢复水位法 试算法 直线斜率法…
直线解析法:
S(r,t) = Q W (u)
4π T
u = r2 = μer2
4at 4Tt
u<0.01时Jacob近似公式:

水文地质手册文前

水文地质手册文前

水文地质手册第二版中国地质调查局主编内容提要《水文地质手册(第二版)》是在1978年我社出版的第一版的基础上,将近几十年水文地质的新理论、新方法技术及新的方向中的新成果加入其中,推陈出新。

全手册为五篇21章。

第一篇地质-水文地质基础。

第二篇水文地质调查,介绍水文地质调查、矿山水文地质调查、农业水文地质调查、地热和矿泉水资源调查。

第三篇方法篇,介绍水文地质遥感、水文地质物探、水文地质钻探、水文地质试验、环境同位素技术、地下水动态监测、样品采集与测试、地下水模拟技术。

第四篇地下水资源评价与保护,介绍水文地质计算、水文地质参数的确定、资源评价和开发管理。

第五篇是信息系统建设与成果编制。

本手册是水文地质工作者及有关师生必备的工具书。

SHUIWEN DIZHI SHOUCE出版发行:地质出版社订购咨询电话:(010)88691582 (邮购部)刘洁开本:787mm×1092mm 132字数:1320千字版次:2012年9月北京第1版印次:2012年9月北京第1次印刷定价:130.00元书号:ISBN 978-7-116-07785-0(如对本书有建议或意见,敬请致电本社;如本书有印装问题,本社负责调换)《水文地质手册》编纂委员会编委会主任:汪民副主任:殷跃平文冬光《水文地质手册》编写单位中国地质调查局水文地质环境地质部中国地质调查局水文地质环境地质调查中心中国地质调查局沈阳地质调查中心中国地质调查局天津地质调查中心中国地质调查局南京地质调查中心中国地质调查局成都地质调查中心中国地质调查局西安地质调查中心中国地质科学院水文地质环境地质研究所中国地质环境监测院中国国土资源航空物探遥感中心中国地质科学院勘探技术研究所中国地质科学院岩溶地质研究所国家地质实验测试中心中国水利水电科学研究院中国科学院地质与地球物理研究所中国地质大学(北京)中国地质大学(武汉)清华大学长安大学吉林大学中国矿业大学(北京)中南大学石家庄经济学院北京师范大学黑龙江省第一水文地质工程地质勘察院河北省地质环境监测总站《水文地质手册》编写人员开篇编写人员:郝爱兵、张二勇、佟元清、朱汝烈、王永池、王秀明第一篇地质-水文地质基础组长:朱汝烈第一章地质基础编写人员:朱汝烈、万力、梁四海第二章水文地质基础编写人员:李俊亭、马志靖、李广贺、梁杏第二篇水文地质调查组长:李文鹏、孙晓明第三章普通水文地质调查编写人员:李文鹏、孙晓明、张福存、郑万模、蒋忠诚、田大勇第四章环境水文地质调查编写人员:佟元清、王永池、孙继朝、蔡五田、陈鸿汉、李广贺、刘长礼、张福存、汤洁、马腾、万力、梁四海、杨旭东、钱开铸第五章矿山水文地质调查编写人员:武强、张志龙、佟元清第六章农业水文地质调查编写人员:王晓光、雒国忠、佟元清第七章地热、矿泉水资源调查评价编写人员:王贵玲、杨旭东、田廷山第三篇技术方法与测试组长:张金昌、朱桦第八章水文地质遥感编写人员:王宇、唐文周、熊盛青、李巨芬、杨进生、王建超第九章水文地质物探编写人员:武毅、潘和平、刘江平、柳建新、朱庆俊第十章水文地质钻探编写人员:叶成明、张金昌第十一章水文地质试验编写人员:李伟、朱桦、肖长来、刘振英、曹剑峰第十二章环境同位素技术编写人员:陈宗宇、安永会第十三章样品采集与测试编写人员:齐继祥、王苏明第十四章地下水动态监测编写人员:史云、李文鹏、雒国忠、朱汝烈第十五章地下水模型技术和管理模型编写人员:邵景力、潘世兵、崔亚莉、邢卫国第四篇地下水资源评价与环境保护组长:石建省、王焰新第十六章水文地质计算编写人员:李俊亭、李国敏、黎明、张福存第十七章水文地质参数的确定编写人员:王文科、刘振英、马志靖第十八章地下水资源评价编写人员:李俊亭、邵景力、崔亚莉、石建省、王贵玲、张福存第十九章地下水资源开发、保护与管理编写人员:佟元清、王永池、孙继朝、王焰新、马腾、王红旗、叶成明、李颖智第五篇信息系统建设与成果编制组长:冯小铭第二十章水文地质信息系统建设编写人员:张永波、阮俊第二十一章水文地质调查成果编写人员:郝爱兵、佟元清、王宇、朱汝烈、王永池、王明德、冯小铭附录编写人员:朱汝烈、佟元清、张永波、阮俊、张二勇、万力、梁四海、王秀明、李颖智、刁玉杰统编:佟元清统编人员:朱汝烈、李俊亭、李景豪、马志靖、秦毅苏、蔡鹤生、刘成琦、王永池编辑整理人员:王秀明、王立新、李颖智、李戎、刁玉杰、范基姣、郭彦威、李胜涛、李戎、金晓琳前言《水文地质手册》(以下简称《手册》)1978年出版后,深受广大水文地质工作者以及相关领域科技人员的欢迎。

最新整理环境影响评价辅导:水文地质参数(1)

最新整理环境影响评价辅导:水文地质参数(1)

环境影响评价辅导:水文地质参数(1)八、水文地质参数水文地质参数是表征岩土水文地质性能大小的数量指标,是地下水资源评价的重要基础资料,主要包括含水层的渗透系数和导水系数、承压含水层贮水系数、潜水含水层的给水度、弱透水层的越流系数及含水介质的水动力弥散系数。

确定这些水文地质参数的方法可以概括为两类:一类是用水文地质试验法(如野外现场抽水试验、注水试验、渗水试验及室内渗压试验、达西试验、弥散试验等),这种方法可以在较短的时间内求出含水层参数而得到广泛应用;另一类是利用地下水动态观测资料来确定,是一种比较经济的水文地质参数测定方法,并且测定参数的范围比前者更为广泛,可以求出一些用抽水试验不能求得的一些参数。

1.给水度给水度是表征潜水含水层给水能力和储蓄水量能力的一个指标,在数值上等于单位面积的潜水含水层柱体,当潜水位下降一个单位时,在重力作用下自由排出的水量体积和相应的潜水含水层体积的比值。

给水度不仅和包气带的岩性有关,而且随排水时间、潜水埋深、水位变化幅度及水质的变化而变化。

各种岩性给水度经验值见表3-20。

表3-20各中岩性给水度经验值岩性给水度岩性给水度黏土0.02?0.035细砂0.08?0.11亚黏土0.03?0.045中细砂0.085?0.12亚砂土0.035?0.06中砂0.09?0.13黄土状亚黏土0.02?0.05中粗砂0.10?0.15黄土状亚砂土0.03?0.06粗砂0.11?0.15粉砂0.06?0.08黏土胶结的砂岩0.02-0.03粉细砂0.07?0.010裂隙灰岩0.008?0.10岩土性质对给水度的影响,主要有三个方面,即岩土的矿物成分,颗粒大小、级配及分选程度,空隙情况。

不同的矿物成分对水分子的吸附力不同,吸附力与给水度成反比;岩土颗粒从两个方面影响给水度,一是吸附的水量不同,颗粒小的吸附水量多,相应的给水度就小,颗粒粗的吸附水量少,给水度则大;二是颗粒大小、级配及分选程度决定了空隙大小,级配愈不均匀,给水度就愈小,反之,级配均匀,给水度愈大。

地下水水源保护区划分

地下水水源保护区划分

一、地下水水源保护区划分根据《饮用水水源保护区划分技术规范》(HJ/T338-2007),安全系数 取150%,污染物水平迁移时间T一级保护区取100 d,二级保护区取1000d。

根据甘肃省天水地质工程勘察院《甘肃省泾川县城区供水水源地(屈潭沟—二十里铺)前期论证报告》、甘肃水文地质工程地质勘测院《甘肃省泾川县县城供水水源地水文地质勘测报告》等报告提供的有关资料,确定水源地水文地质参数,结果见表1。

表1 泾川县水源地水文地质参数1.1 水源井保护区半径计算根据经验公式(1)计算得一、二级保护区半径见表2。

表2 泾川县各水源地一、二级保护区半径经验公式计算值1.2 计算成果对比分析及保护区半径确定根据水源保护技术规范的相关技术要求,对泾川县王村镇、水泉寺、杨柳湾3个水源地采用经验公式进行了计算。

对计算结果与技术规范提供的经验值(表3)表3 孔隙水潜水型水源地保护区范围经验值进行比较,根据规范规定:“在确保饮用水水源水质不受污染的前提下,划定的水源保护区范围应尽可能小”这一原则,结合水源地周围主要工程项目布局现状,最后确定王村镇、水泉寺2个水源地一级保护区半径为500 m,二级保护区半径均为5000 m,杨柳湾水源地一级保护区半径为200 m,二级保护区半径均为2000 m。

泾川县水源地保护区实际采用半径见表4。

表4 泾川县水源保护区实际采用半径1.3水源保护区范围地下水一级保护区的划分,如果水源为单井,将以单井影响半径的外切正方形为保护区,如果水源为群井,则以单井影响半径画圆,各单井圆外切线交点所构成的多边形为保护区。

地下水二级保护区是在一级保护区范围的基础上,按照半径扩大10倍进行划分。

1.3.1一级保护区范围泾川县城区饮用水3个水源地一级保护区共3个,总控制面积15.259 km2。

其中:王村镇水源地1个,控制面积11.27 km2,控制点W1—2、W1—3在泾河左岸一级阶地上;水泉寺水源地 1 个,控制面积3.07km2;杨柳湾水源地1个,控制面积0.919 km2。

水文地质学部分实用公式

水文地质学部分实用公式

1、 突水系数《煤矿床水文地质、工程地质及环境地质勘察评价标准》(MT/T1091-2008)附录E(1)适用于水文地质条件简单、含水层富水性较弱、补给条件差的矿区Ts 突水系数MPa/mP 隔水层承受的水压,MPaCp 采矿对底板隔水层的扰动破坏厚度,m M 底板隔水层厚度,m(2)水文地质条件复杂、含水层富水性较强、补给条件较好的矿区。

含义同上。

2、 地下径流模数=集水面积平均流量 单位:2km s /L ⋅3、矿井涌水量:一、水文地质比拟法预算矿井涌水量 原理和应用条件:水文地质比拟法就是利用地质和水文地质条件相似、开采方法基本相同的开采矿区或生产矿井的排水资料,来预计勘探矿区或新建矿井的涌水量。

应用前提是勘探矿区的地质、水文地质条件与开采矿区或生产矿井基本相似,老矿井要有较长期的水量观测资料,以保证涌水量与各影响因素之间数学关系表达式的可靠性。

一般而言,水文地质比拟法主要适用于条件比较简单,充水岩层的透水性比较均一的孔隙或裂隙充水矿床,特别是用于已有多年生产历史的矿井。

根据上水平的实际排水资料预测延伸水平的涌水量或根据生产采区的排水资料预测延伸水平的涌水量,效果更好。

计算方法:(1)富水系数比拟法:根据0p P Q K =K p 为富水系数,Q 0为一定时期内从矿井排出的总水量,m 3; P 0为同时期内的矿石开采量,t ; 得出:Q=K p ·P原来的生产矿井的K p 值乘以同时期新矿井的设计开采量P ,即得新矿井的涌水量(2)单位涌水量比拟法:根据地下水符合层流或紊流状态,选择下述公式:层流000S F Q q =紊流0000S F Q q =F 0、S 0、Q 0分别为老矿井的开采面积、水位降深和排水量。

所以新矿井的涌水量Q 比拟计算式为F 、S 分别为新矿井的设计开采面积和水位降深。

既非层流又非稳流,改进公式:m 和n为待定系数,根据经验通过计算或曲线拟合确定,或用最小二乘法求得。

水文地质参数计算迭代法

水文地质参数计算迭代法

第一种模式承压水含水层厚降深影响半径代号QQ M S R 单位立方米/小时立方米/天升/秒米米米模式自动计算自动计算自动计算输入输入输入结果20.67011836496.082841 5.7416995441.4 3.3218.54546最大水量(1.75倍降深36.17270712868.14497110.047974441.4 5.8118.54546最大水量(降深到顶板622.593926414942.2542172.94276441.410018.54546第二种模式承压水影响半径依据经验公式含水层厚降深影响半径代号QQ M S R 单位立方米/小时立方米/天升/秒米米米模式自动计算自动计算自动计算输入输入输入正常水量7.83517209188.044132.1764367441.41 5.642196正常水量正常水量)(lg 73.200Lgr R MS K Q -=)(lg 73.200Lgr R MS K Q -=最大水量(1.75倍降深12.23566883293.656052 3.3987969441.4 1.759.831468最大水量(降深到顶板392.12404329410.97704108.92335441.4100558.6261第一种模式潜水潜水计算涌水量含水层厚降深影响半径代号H0S R单位立方米/小时立方米/天升/秒米米米模式自动计算自动计算自动计算输入输入输入正常水量561.833937213484.0145156.06498800.7638.0258537.22最大水量(1.75倍降深)494.879236311877.1017137.46645800.71116.543758537.22最大水量(降深到含水层厚度的一半)439.524560810548.5895122.09016800.7400.378537.22第二种模式潜水潜水计算涌水量含水层厚降深影响半径代号H0S R单位立方米/小时立方米/天升/秒米米米模式自动计算自动计算自动计算输入输入输入正常水量561.810323313483.4478156.05842800.7638.0258540.097最大水量(1.75倍降深)462.572488711101.7397128.49236800.71116.5437514943.05最大水量(降深到含水层厚度的一半)466.621136811198.9073129.61698800.7400.375360.086承压转潜水计算涌水量第一种模式含水层厚度降深影响半径代号m SR单位立方米/小时立方米/天升/秒米米米Q 流量Q正常水量Q 正常水量)(lg 2(366.1220Lgr R hw m m H K Q ---=))(lg )2(366.10LgrRS S HKQ --=)(lg )2(366.10LgrRS S HKQ --=正常水量30.59348499734.243648.498190340.15240.31563.04最大水量(1.75倍降深)-20.47614172-491.4274-5.68781740.15420.5251056.593最大水量(降深到含水层厚度的一半)26.81982868643.6758887.449952440.15220.225554.6423承压转潜水计算涌水量第一种模式含水层厚度降深影响半径代号m S R单位立方米/小时立方米/天升/秒米米米模式自动计算自动计算自动计算输入输入输入正常水量65.522242581572.5338218.20062340.15240.31215.365最大水量(1.75倍降深)-19.69363061-472.64713-5.47045340.15420.5251338.262最大水量(降深到含水层厚度的一半)25.67795563616.2709357.132765540.15220.225702.1497水文地质参数:非完整承压水井第一种模式有效厚度降深影响半径代号Q Ma S R0单位立方米/小时立方米/天升/秒米米米模式自动计算自动计算自动计算输入输入输入正常水量36.38257768873.18186410.10627210076022600水文地质参数:非完整承压水井第二种模式有效厚度降深影响半径代号QMa SR0单位立方米/小时立方米/天升/秒米米米流量Q )(lg 2(366.1220Lgr R hw m m H K Q ---=)2M()Mat ()Lgr (lgR S Ma 2.73K Q 21⨯⨯-⨯⨯=2M()Mat ()Lgr (lgR S Ma 2.73K Q 21⨯⨯-⨯⨯=正常水量10.79999094259.199783 2.999997510079.35185.4203进水厚度降深影响半径代号Q Q L Sw R=1.6×L单位立方米/小时立方米/天升/秒米米米模式自动计算自动计算自动计算输入输入输入结果5.345752542128.298061 1.4849313100 3.32160最大水量(1.75倍降深)9.355066948224.521607 2.5986297100 5.81160最大水量(降深到顶板)161.01664283864.3994344.726845100100160最大水量(降深到底板)322.03328577728.7988689.45369100200160渗透系数渗透系数降深代号KMS 单位立方米/小时立方米/天升/秒米/天米米模式自动计算自动计算自动计算输入输入输入结果1093.87652326253.0365303.854590.1400500正常水量含水层初期突然弹性释放计算(非稳定流量Q井壁进水的非完整计算计算)6.1(lg 73.20Lgr L LS K Q W -=)(1416.34u W SM K Q ⨯⨯⨯⨯=Q(m³/h)Q(m³/d)19.7472.812.4297.6R:影响半径实际观测水井半径渗透系数水头高于顶板高度rw KH 米米/天米输入输入输入0.05650.3120.05650.3120.05650.312100影响半径依据经验公式推算:R=10sk^0.5+rw水井半径渗透系数水头高于顶板高度rw KH 米米/天米输入输入输入0.05650.312)7300Lgr R MSK0.05650.3120.05650.312100R:影响半径实际观测水井半径渗透系数剩余厚度rw Khw 米米/天米输入输入输入2.820.0559162.7152.820.0559-315.8042.820.0559400.37影响半径依据经验公式推算:R=2s(kh)^0.5+rw水井半径渗透系数剩余厚度rw Khw 米米/天米输入输入输入2.820.0559162.7152.820.0559-315.8042.820.0559400.37R:影响半径实际观测水井半径渗透系数从地板起算的水头高度剩余厚度rwKH0hw米米/天米米)220Lgr R hw m m H ---)))0LgrS S H-输入输入输入输入9750.00623240.32.760.0628240.3-180.2252.760.0628240.320.075影响半径依据经验公式推算:R=2s(kh)^0.5+rw水井半径渗透系数从地板起算的水头高度剩余厚度rw K H0hw米米/天米米输入输入输入输入9750.00623240.302.760.0628240.3-180.2252.760.0628240.320.075R:影响半径实际观测钻孔半径坑道内有效揭露厚度渗透系数r t K米米米/天输入输入输入4450100.008影响半径依据经验公式推算:R=10SK^0.5+rw钻孔半径坑道内有效揭露厚度渗透系数rtK 米米米/天)g 2(220Lgr R hw m m H ---)41)Mat 2Ma ()Ma t ()r S 21-⨯⨯⨯41)Mat 2Ma ()Ma t ()r S 21-⨯⨯⨯输入输入输入0.05500.054574条件:L/Rw>5水井半径渗透系数水头高于顶板高度含水层厚度rw K H M米米/天米米输入输入输入输入10.31210010.31210010.31210010010.312100100井半径时间储水系数泰斯井函数泰斯井函数误差r t s弹u W(u)W(u)最后一项误差米天输入输入输入自动计算自动计算2.50.10.00013.91E-059.573171 1.51582E-25非稳定流)Q(L/S) 5.472222 3.444444Q(L/S) 5.472222 3.444444。

地质局公布的经验参数

地质局公布的经验参数
变量之间具有严格确定函数关系的地下水数学模型。 3.4 数学模型识别 Calibration of mathematical model
在已知数学模型初始、边界条件下,通过对地下水系统模型的输入和输出计算结果的分 析,以达到选择正确参数(即参数识别)、校正已建立数学模型和边界条件的计算过程。 3.5 数学模型检验 Verification of mathematical model
6.2.1.2 等高线图 (1)地面高程等值线图; (2)各含水层及弱透水层厚度等值线图; (3)识别期、检验期地下水初始及末水位(水头)等值线图(分层); (4)预测期地下水初始水位(水头)等值线图(分层); (5)识别期、检验期地面沉降量等值线图。
6.2.2 数值化动态资料
包含地下水水位动态、地表水水位动态以及降水量、蒸发量、渠系引水量、河道漏失量、 泉水流量、边界流量、地面沉降量、地下水和地表水的灌溉量、人工回灌量动态、分层地下 水开采量等。开采量动态按工业用水、农业灌溉用水、城镇生活用水、农村人畜用水、其它 行业用水五类分项、分层处理。
该模型在解均质、各向同性、底板水平、含水层等厚的井流的边值问题时,可与威瑟斯
5
庞 WitherSpoon 三类模型比较。由于含有弱透水层地下水运动的非稳定流方程,可确定区域 水位单调降低时的垂向水流和粘性土释水速度,模拟越流量和土体变形量。
适用于深层地下水及浅层地下水开发程度较高的地区。
8.2.2 一维水流沉降模型
)
(
x,
y
∈Ω1
;t
>
t
0
)
...
8-1
h1 (x, y,t) = h10 (x, y)
(x, y∈Ω1;t = 0) ... 8-2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档