八年级上学期期末数学试卷 (解析版)
2023-2024学年辽宁省大连市沙河口区八年级(上)期末数学试卷(含解析)

2023-2024学年辽宁省大连市沙河口区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列亚运会的会徽中,是轴对称图形的是( )A. B. C. D.2.下列长度的三条线段中,能组成三角形的是( )A. 3cm,5cm,8cmB. 8cm,8cm,18cmC. 1cm,1cm,1cmD. 3cm,4cm,8cm3.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC三个内角度数分别是( )A. 30°,60°,90°B. 45°,45°,90°C. 20°,40°,60°D. 36°,72°,108°4.点(−4,3)关于x轴对称的点坐标是( )A. (−4,−3)B. (4,3)C. (4,−3)D. (3,−4)5.计算2−3的结果是( )A. 8B. 0.8C. −8D. 186.下列计算正确的是( )A. x3⋅x−3=0B. x2⋅x3=x6C. (x2)3=x5D. x2÷x5=1x37.如图是一个钝角△ABC,利用一个直角三角板作边AC上的高,下列作法正确的是( )A. B.C. D.8.在解一个分式方程时,老师设计了一个接力游戏,规则是:每人只能看见前一个人给的式子,进行一步计算后将结果传递给下一个人,最后完成计算.下面是其中一个组的解答过程,老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.老师:3x−1=1−xx+1.甲:3(x+1)=(x+1)(x−1)−x(x−1).乙:3x+3=x2+1−x2+x.丙:3x−x=1−3.丁:解得,x=−1.在接力中,出现计算错误步骤的同学是( )A. 甲B. 乙C. 丙D. 丁9.如果二次三项式a2+mab+b2是一个完全平方式,那么m的值是( )A. 1B. 2C. ±2D. ±110.在如图的3×3正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数是( )A. 2B. 3C. 4D. 5二、填空题:本题共5小题,每小题3分,共15分。
四川省乐山市市中区2023-2024学年八年级上学期期末数学试题(解析版)

2023-2024学年四川省乐山市市中区八年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.1. 下列各数中,是无理数的是( )A. B. 0 C. D. 【答案】D【解析】【分析】本题考查的是无理数的识别.根据无理数是无限不循环小数解答即可.【详解】解:A 、是整数,属于有理数,故本选项不符合题意;B 、0是整数,属于有理数,故本选项不符合题意;C,3是整数,属于有理数,故本选项不符合题意;D 、是无理数,故本选项符合题意;故选:D .2. 下列计算结果是a 5 的是( )A. a 2+a 3B. a 10÷a 2C. (a 2)3D. a 2·a 3【答案】D【解析】【分析】根据实数的运算依次计算即可选出正确答案.【详解】解:A .a 2与a 3不属于同类项,所以不能相加,故A 不符合题意;B .a 10÷a 2=a 10-2=a 8,故B 不符合题意;C .(a 2)3=a 6,故C 不符合题意;D .a 2•a 3=a 5,故D 符合题意;故选:D .【点睛】本题考查实数的运算,涉及同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方和积的乘方,熟练掌握计算法则,细心运算是解题关键.3. 计算的结果为( )A. 3B. C. D. 【答案】D【解析】3-π3-3=π10099133⎛⎫-⨯- ⎪⎝⎭3-1313-【分析】本题主要考查积的乘方公式,正确进行公式的变形是关键.逆用积的乘方公式即可求解.【详解】解:原式故选D .4. 下列命题是真命题的有( )①等边三角形3个内角都为;②斜边和一条直角边分别相等的两个直角三角形全等;③全等三角形对应边上的高相等;④三边长分别为5,12,13的三角形是直角三角形.A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】本题考查了真假命题的判断.根据全等三角形的性质,等腰三角形的性质以及勾股定理逆定理逐项判断即可作答.【详解】解:①等边三角形3个内角都为,本项是真命题;②斜边和一条直角边分别相等的两个直角三角形全等,本项是真命题;③全等三角形对应边上的高相等,本项是真命题;④∵,∴三边长分别为5,12,13的三角形是直角三角形,本项是真命题.综上,①②③④都是真命题;故选:A .5. 如图,要测量河岸相对的两点A 、B 间的距离,先在的垂线上取两点C 、D ,使,再定出的垂线,使点A 、C 、E 在同一条直线上,测量的长度就是的长,这里,其根据是( )A. B. C. D. 【答案】C 9999113()()33=-⨯-⨯-13=-60︒60︒22251213+=AB BF BC CD =BF DE DE AB ABC EDC △≌△S.A.SA.A.S A.S.A H.L【解析】【分析】本题主要考查全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.根据全等三角形的判定方法进行证明即可.【详解】解:在和中,故选C .6. 如图,在数轴上,A 、B ,点A 是线段的中点,则点C 所对应的实数为( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查数轴上表示的数以及中点的定义,熟练掌握数轴上两点之间的距离计算是解题的关键.由点A 是线段的中点,得到,即可得到答案.【详解】解:设点C 所对应的实数为,点A 是线段的中点,,A 、B ,,,解得故选:D .7. 如图,中,,,,分别以它的三边为直径向上作三个半圆,则图中阴影部分的面积为( ),BF AB DE BD⊥⊥ 90ABC CDE \Ð=Ð=°ABC V EDC △90ABC EDC CB CDACB ECD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩(ASA)ABC EDC ∴≌△△1-BC 11--22-BC AC AB =x BC ∴AC AB = 1-1,(1)1AC x AB ∴=--=--=+11x ∴--=+2x =-Rt ABC △90C ∠=︒6AC =8BC =A. B. C. 24 D. 【答案】C【解析】【分析】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.先求出直角三角形的斜边,再进行计算即可.【详解】解: 中,,,,,,.故选C .8. 如图,中,,点O 是边垂直平分线的交点,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了线段垂直平分线的性质,三角形内角和定理,等边对等角.连接,利用线段垂直平分线的性质结合等边对等角求得,,,再利用三角形内角和定理即可求解.【详解】解:连接,4.5π8π12.5πRt ABC △90C ∠=︒6AC =8BC=10AB ===2221111346852222S πππ=⨯+⨯+⨯⨯-⨯9258242422πππ=++-=ABC V 58A ∠=︒AB AC 、BCO ∠28︒32︒36︒40︒OA OB 、13∠=∠24∠∠=56∠=∠OA OB 、∵点O 是边垂直平分线的交点,∴,,∴,∴,,,∵,∴,,∴,∴,故选:B .9. 对于实数a 、b ,定义的含义为:当时,,当时,,例如:,已知,,,且x 和y 为两个连续正整数,则的算术平方根为( )A. 16B. 8C. 4D. 2【答案】D【解析】【分析】本题主要考查新定义,准确理解题意是解题的关键.根据题意求出的值即可得到答案.,由于x 和y 为两个连续正整数,,,的算术平方根为,故选D .10. 如图,中,,交于E ,C 为上一点,.若,AB AC、OA OB =OA OC =OA OB OC ==13∠=∠24∠∠=56∠=∠58A ∠=︒354618058122∠+∠+∠+∠=︒-︒=︒123458BAC ∠+∠=∠+∠=∠=︒561225864∠+∠=︒-︒=︒1664322BCO ∠=∠=⨯︒=︒{},min a b a b <,{}min a b a =a b >,{}b min a b =2}2{1,min =--}min x x =}min y =x y 、x >y <34<<3,4x y ∴==4==2ABD △45D ∠=︒BE AC ⊥AD BD AB AC =2BC =则的长为( )A. 1B. C. D. 2【答案】B【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的外角性质.作于点,作于点,求得,再求得,,从而求得,根据证明,据此求解即可.【详解】解:设,作于点,作于点,∵,∴,,∵,垂足为,∴,∴,∵,∴,∵是的一个外角,∴,而,∴,∴,∴,DEAF BC ⊥F EH BD ⊥H CAF BAF DBE α∠=∠=∠=45AEB α∠=︒+45BAE α∠=︒+BA BE =AAS BAF EBH ≌△△DBE α∠=AF BC ⊥F EH BD ⊥H AB AC =112BF CF BC ===BAF CAF ∠=∠BE AC ⊥G 90AFC BGC ∠=∠=︒90CAF BAF ACF DBE α∠=∠=︒-∠=∠=45D ∠=︒45DAF ∠=︒AEB ∠BED V 45AEB α∠=︒+45BAE DAF BAF AEB α∠=∠+∠=︒+=∠BA BE =()AAS BAF EBH V V ≌1EH BF ==∵,,∴是等腰直角三角形,∴,∴故选:B .二、填空题:本大题共6个小题,每小题3分,共18分.11. 计算:992+198+1=________.【答案】10000【解析】【分析】将992化为后利用完全平方公式计算,再将结果相加即可.【详解】解:原式===10000.故答案为:10000.【点睛】本题考查用完全平方公式简便运算.熟记完全平方公式并能对原式正确变形是解题关键.12 分解因式:______.【答案】【解析】【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】故答案为:.【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解.13. 如图,在中,,,D 为上一点,且,则_____..EH BD ⊥45D ∠=︒EHD △1DH EH ==DE ==2(1001)-2(1001)1981-++1000020011981-+++2xy x -=()()11x y y +-2xy x-()21x y =-()()11x y y =+-()()11x y y +-ABC V AB AC =108BAC ∠=︒BC AB BD =CAD ∠=【答案】##36度【解析】【分析】本题考查了等腰三角形的性质,三角形内角和定理.根据等边对等角结合三角形内角和定理求得和的度数,进一步计算即可求解.详解】解:∵,,∴,∵,∴,∴,故答案为:.14. 若,则__________.【答案】81【解析】【分析】根据,得到,再利用整体思想,代入求值即可.【详解】解:∵,∴,∴;故答案为:.【点睛】本题考查代数式求值,幂的乘方的逆用以及同底数幂的乘法,解题的关键是掌握相关运算法则,利用整体思想代入求值.15. 如图,在中,.按以下步骤作图:①以点C 为圆心,适当长为半径画弧,分别交于点M 、N ;②分别以M 、N为圆心,大于的长为半径画弧,两弧交于点F ;③作射线.若,E 为边的中点,D 为射线上一动点.则的最小值为 _____.【36︒B ∠BAD ∠AB AC =108BAC ∠=︒()1180362B C BAC ∠=∠=︒-∠=︒AB BD =()118036722BAD BDA ∠=∠=⨯︒-︒=︒36CAD BAC BAD ∠=∠-∠=︒36︒2340x y +-=927x y ⋅=2340x y +-=234x y +=2340x y +-=234x y +=()23234927333381x y x y x y +⋅=⋅===81Rt ABC △90ACB ∠=︒AC CB 、12MN CF 2BC =BC CF BD DE +【解析】【分析】本题考查了作图-基本作图,全等三角形的判定和性质,角平分线的性质和最短线段问题.利用基本作图得到得平分,作上截取,连接交于D ,根据证明得到,接着利用两点之间线段最短可判断此时的值最小,最小值为的长,然后利用勾股定理计算出即可.【详解】解:由作法得平分,作上截取,连接交于D ,如图,∵平分,∴,∵,,∴,∴,∴,∴此时的值最小,最小值为的长,∵,E 为边的中点,∴,在,,∴CF ACB ∠AC CG CE =BG CF SAS DCE DCG ≌△△DG DE =BD DE +BG BG CF ACB ∠AC CG CE =BG CF CF ACB ∠DCE DCG ∠=∠CD CD =CG CE =()SAS DCE DCG ≌△△DG DE =BD DE BD DG BG +=+=BD DE +BG 2BC =BC 1CG CE ==Rt BCG V BG ==BD DE +16. 南宋数学家杨辉在其著作《详解九章算法》中揭示了(n 为自然数)展开式的各项的次数和系数规律,后人也将此称为“杨辉三角”.如图,请你仔细观察这两个规律,写出展开式中的第二项 _____.【答案】【解析】【分析】本题主要考查杨辉三角,熟练掌握杨辉三角的规律即可得到答案.根据杨辉三角的规律即可解答.【详解】解:根据题意可得:展开式中的第二项为,即为.故答案为:.三、本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17. 计算:.【答案】【解析】【分析】本题主要考查立方根以及算术平方根的混合计算,熟练掌握运算法则是解题的关键.根据运算法则进行求解即可.【详解】解:原式.18. 因式分解:.【答案】【解析】()na b+202412x⎛⎫- ⎪⎝⎭20231012x -202412x ⎛⎫- ⎪⎝⎭2024112024(2x --20231012x -20231012x -23--16-934=---16=-322344x y x y xy -+()22xy x y -【分析】先提取公因式,再应用完全平方公式,即可求解,本题考查了因式分解,解题的关键是:熟练应用完全平方公式,进行因式分解.【详解】解:,故答案为:.19. 计算:.【答案】【解析】【分析】本题考查整式的混合运算.先利用完全平方公式、平方差公式以及单项式乘多项式的运算,再合并同类项,最后进行除法运算.【详解】解:.20. 如图,在△ABC 中,D 是边BC 的中点,过点C 画直线CE ∥AB ,交AD 的延长线于点E .求证:AD =ED .【答案】见解析【解析】【分析】由CE ∥AB ,得∠BAD =∠E ,由D 是边BC 的中点,得BD =CD ,证△ABD ≌△ECD (AAS ),即可得出结论.【详解】证明:∵CE ∥AB,xy 322344x y x y xy -+()2244xy x xy y =-+()22xy x y =-()22xy x y -()()()()()2222222x y x y x y x x y x -⎡⎤⎣+⎦-+--÷-g g x y+()()()()()2222222x y x y x y x x y x -⎡⎤⎣+⎦-+--÷-g g ()()22222444422x xy y x y x xy x =-++--+÷-()()2222x xy x =--÷-()()22222x x xy x --÷÷--=x y =+∴∠BAD =∠E ,∵D 是边BC 的中点,∴BD =CD ,在△ABD 和△ECD 中,,∴△ABD ≌△ECD (AAS ),∴AD =ED .【点睛】本题考查了全等三角形的判定与性质、平行线的性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.21. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲!如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,斜边为c .(1)请利用“赵爽弦图”证明:;(2)若大正方形的面积为20,小正方形面积为4,求其中一个直角三角形的面积.【答案】(1)见解析(2)【解析】【分析】本题主要考查勾股定理,熟练掌握勾股定理以及完全平方公式是解题的关键.(1)根据小正方形的面积加上四个直角三角形的面积等于大正方形的面积即可证明;(2)根据(1)中得到的计算即可.【小问1详解】解:直角三角形较长直角边长为a ,较短直角边长为b ,斜边为c ,小正方形的面积四个直角三角形的面积大正方形的面积,,,BAD E ADB EDC BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩222+=a b c 4222+=a b c +=221()42a b ab c ∴-+⨯=22222a ab b ab c ∴-++=;【小问2详解】解:由题意可得:,即,,故一个直角三角形的面积为.22. 如图,在中,,点D 、E 、F 分别在AB 、BC 、AC 边上,且,.(1)求证:是等腰三角形;(2)当时,求的度数.【答案】22. 见解析23. 【解析】【分析】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理.(1)利用证明即可求证;(2)根据,结合全等三角形的性质即可求解.【小问1详解】证明:∵,,,,,,∴是等腰三角形;【小问2详解】∴222+=a b c 221()42a b ab c -+⨯=144202ab +⨯=142ab ∴=4ABC V AB AC =12∠=∠BE CF =DEF V 36A ∠=︒DEF ∠72DEF ∠=︒ASA DBE ECF V V ≌()180DEF FEC BED ∠=︒-∠+∠AB AC =B C ∴∠=∠12∠=∠ BE CF =()ASA DBE ECF ∴V V ≌DE EF ∴=DEF V解:∵,,,,,.23. 嘉州学校坚持“立德树人,五育并举”,为提高学生运动技能,计划利用课后服务时间开设以下五种体育课程:A .足球,B .篮球,C .排球,D .羽毛球,E .乒乓球.每名学生都必须且只能在这五种课程中选择一类自己最喜欢的课程,学校对学生选择的课程进行了一次随机抽样调查,并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)求本次抽样调查学生的人数;(2)在扇形统计图中,求“排球”所在扇形的圆心角的度数;(3)补全条形统计图;(4)根据以上统计分析,估计该校七年级440名学生中最喜爱“篮球”的人数.【答案】(1)本次抽样调查学生的人数为200名;(2)“排球”所在扇形的圆心角的度数为;(3)见解析(4)该校七年级440名学生中最喜爱“篮球”的人数约有120名.【解析】【分析】本题考查了条形统计图、扇形统计图的制作方法和统计图中各个数据之间的关系,正确识别统计图是解答问题的前提.(1)从两个统计图中可得喜欢“足球”的人数为40人,占调查人数的,可求出调查人数;(2)用乘以样本中“排球”所占的比即可;(3)计算出喜欢“乒乓球”和“篮球”人数,再补全条形统计图;36A ∠=︒18036722B ︒-︒∴∠==︒1108BDE ∴∠+∠=︒DBE ECF △≌△BDE FEC ∴∠=∠1108FEC ∴∠+∠=︒()180172DEF FEC ∴∠=︒-∠+∠=︒36︒20%360︒(4)根据样本估计总体即可求解.【小问1详解】解:本次抽样调查学生的人数为(名);【小问2详解】解:“排球”所在扇形的圆心角的度数为;【小问3详解】解:喜欢“乒乓球”的人数为(名),喜欢“篮球”人数为(名),补全条形统计图如图所示:;【小问4详解】解:(名).答:该校七年级440名学生中最喜爱“篮球”的人数约有120名.24. 我们把二次三项式恒等变形为(h 、k 为常数)的形式叫做配方.巧妙地运用配方法不仅可以将一个的多项式进行因式分解,也能求一个二次三项式的最值,还能结合非负数的意义来解决一些实际问题.例如,分解因式:.解:.请用配方法解答下列问题:(1)分解因式:①,②;(2)求多项式的最小值;(3)已知a 、b 、c 是的三边长,且满足.判断的形状.【答案】(1)①;②(2) 的4020%200÷=2036036200°´=°20025%50⨯=2004050302060----=60400120200⨯=2ax bx c ++()2a x h k ⋅++245x x +-()()()2222454492351x x x x x x x +-=++-=++-=-g 223x x +-2245a ab b +-2245x x -+ABC V 222a b c ab bc ca ++=++ABC V (3)(1)x x +-(5)()a b a b +-3(3)等边三角形【解析】【分析】本题主要考查因式分解的应用,关键是配方法的灵活运用.(1)根据题意进行分解即可;(2)分解因式再根据平方的非负性即可得到答案;(3)分解因式进行判定.【小问1详解】解:①原式;②原式;【小问2详解】解:原式,,故多项式的最小值为;【小问3详解】解:,,,,,,2214x x =++-2(1)4x =+-(12)(12)x x =+++-(3)(1)x x =+-222449a ab b b =++-22(2)9a b b =+-(23)(23)a b b a b b =+++-(5)()a b a b =+-22(21)25x x =-+-+22(1)3x =-+2(1)0x -≥ 2245x x -+3 222a b c ab bc ca ++=++2220ab bc c a c a b ∴--++=-2222222220a b c ab bc ca ∴++---=2222220222a b ab bc c b a c a c ∴-+--+++=+222()()()0a b b c c a ∴-+-+-=0,0,0a b b c c a ∴-=-=-=,即的形状为等边三角形.25. 【阅读下列材料】:若,,则,,∴.)∵,,∴.“称为“基本不等式”,利用它可求一些代数式的最值及解决一些实际问题.(a 、b 为正数;积定和最小;和定积最大;当时,取等号.)【例】:若,,,求的最小值.解:∵,, ∴,∴.∴时,的最小值为8.【解决问题】(1)用篱笆围成一个面积为的长方形菜园,当这个长方形的边长为多少时,所用篱笆最短?最短篱笆的长是多少;(2)用一段长为篱笆围成一个长方形菜园,当这个长方形的边长是多少时,菜园面积最大?最大面积是多少;(3)如图,四边形的对角线相交于点O ,、的面积分别为2和3,求四边形面积的最小值.【答案】(1)这个长方形的长、宽分别为米,米; (2)菜园的长为50m ,宽为m 时,面积最大为;(3)四边形面积的最小值为.【解析】【分析】本题主要考查完全平方公式的应用,二次根式的应用.的a b c ==∴ABC V 0a >0b >2a =2b =2a b =+-=20≥0a b +-≥a b +≥a b +≥a b =0a >0b >16ab =a b +0a >0b >16ab =0a b +-≥8a b +≥=4a b ==a b +2100m 100m ABCD AC BD 、AOD △BOC V ABCD 2521250m ABCD 5+(1)设这个长方形垂直于墙的一边的长为x 米,则平行于墙的一边为米,则,,所以所用篱笆的长为米,再根据材料提供的信息求出的最小值即可;(2)设垂直于墙的一边为x m ,利用矩形的面积公式得到菜园的面积关于x 的关系式,再利用非负数的性质求解即可;(3)设点B 到的距离为,点D 到的距离为,又、的面积分别是2和3,则,,,从而求得,然后根据材料提供的信息求出最小值即可.【小问1详解】解:设这个长方形垂直于墙的一边的长为x 米,则平行于墙的一边为米,则,∴,∴所用篱笆的长为米,∵当且仅当时,的值最小,最小值为,∴或(舍去).∴这个长方形的长、宽分别为米,米时,所用的篱笆最短,最短的篱笆是【小问2详解】解:设垂直于墙的一边为x m ,则平行于墙的一边长为m ,∴菜园的面积,又∵,∴当时,菜园的面积有最大值为1250,答:菜园的长为50m ,宽为m 时,面积最大为;【小问3详解】y 100xy =100y x =1002x x ⎛⎫+ ⎪⎝⎭1002x x ⎛⎫+ ⎪⎝⎭AC ()110h h >AC ()220h h >AOD △COB △24OA h =16OC h =1264AC OC OA h h =+=+ABCD S 四边形y 100xy =100y x=1002x x ⎛⎫+ ⎪⎝⎭1002x x +≥=1002x x =1002x x+x =x =-()1002x -()()22100221002251250x x x x x -=-+=--+()22250x --≤25x =2521250m解:设点B 到的距离为,点D 到的距离为,又∵、的面积分别是2和3,∴,,∴,∴∵.∴当且仅当时,取等号,即,∴四边形面积的最小值为.26.(1)【课本探究】如图1,小明将两个含全等的三角尺摆放在一起,可以得到为等边三角形,从而发现:,即:.请将小明的这个发现写成命题的形式;(2)【小试牛刀】①如图2,在中,,,平分,若,求的长;②如图3,在等边中,是边上的中线,点P 为上一动点,连结,若,求的最小值;(3)【拓展应用】如图4,在四边形中,,,,点M 从点B 出发,沿线段以每秒2个单位长度的速度向终点A 运动,过点M 作于点E ,作交延长线于点N ,交射线于点F ,点M 运动时间为.求t 为何值时,与全等,并说明理由.的AC ()110h h >AC ()220h h >AOD △COB △24OA h =16OC h =1264AC OC OA h h =+=+121122ABC ADC ABCD S S S AC h AC h =+=⋅+⋅V V 四边形()1212AC h h =+()211212123216452h h h h h h h h ⎛⎫=++=++ ⎪⎝⎭211232h h h h +≥=211232h h h h =211232h h h h +ABCD 5+30︒ABC V 1122BD CD BC AB ===12BD AB =Rt ABC △90ACB ∠=︒30B ∠=︒AD BAC ∠2CD =BC ABC V AD BC AD BP 4BC =12BP AP +ABCD AB CD ∥6AB BC ===60B ∠︒BA ME BC ⊥MN AB ⊥DC BC ()s t BME V CFN V【答案】(1)角所对的直角边等于斜边的一半;(2)①;②的最小值为;(3)秒或3秒时,与全等.【解析】【分析】(1)根据题意可得,角所对的直角边等于斜边的一半;(2)①在中,,推出,再证明,即可得答案;②过点P 作于点E ,过点B 作于点F ,求得,当点B 、P 、E 三点共线且时,的值最小,最小值为的长,据此即可求解;(3)分点在线段上或点在的延长线上,分别根据图形可得,从而解决问题.【详解】解:(1)根据题意可得,角所对的直角边等于斜边的一半;(2)①如图2,在中,, ,,平分,∴,∴,,,∴,,;②如图3,过点P 作于点E ,过点B 作于点F,30︒6BC =12BP AP+1t =BME V CFN V 30︒Rt ABC △30CAD ∠=︒24AD CD ==4AD DB ==PE AC ⊥BF AC ⊥12PE AP =BF AC ⊥BP PE +BF F BC F BC 2BF BM =30︒Rt ABC △90ACB ∠=︒30B ∠=︒60CAB ∴∠=︒AD BAC ∠1302CAD DAB CAB ∠=∠=∠=︒24AD CD ==30B DAB ∠=∠=︒4AD DB ∴==6BC CD DB =+= 2CD =6BC ∴=PE AC ⊥BF AC ⊥是等边三角形,∴,,,,,∴,∴∵,当点B 、P 、E 三点共线且时,的值最小,最小值为的长,∴的最小值为;(3)当点在线段上时,∵,,,,,,,ABC V 60BAC ∠=︒30DAC DAB ∴∠=∠=︒12PE AP ∴=60ABC ∠=︒ 30ABF ∴∠=︒122AF AB ==BF ==12BP AP BP PE +=+∴BF AC ⊥BP PE +BF 12BP AP +F BC AB CD ∥MN AB ⊥90N ∴∠=︒BME CFN ≌△△2CF BM t ∴==60B ∠=︒ 30BME ∠=︒∴,,;当点在的延长线上时,,,同理得,,,;综上:或3时,与全等.【点睛】本题主要考查了全等三角形的性质,等边三角形的性质,平行线的性质,含角所对的直角边等于斜边的一半,勾股定理,垂线段最短等知识,熟练掌握全等三角形的性质进行分类讨论是解题的关键.24BF BM t ∴==246t t ∴+=1t ∴=F BC BME CFN ≌△△BM CF ∴=4BF t =26BC t ∴==3t ∴=1t =BME V CFN V 30︒。
八年级(上)期末数学试卷附答案解析

八年级(上)期末数学试卷一、选择题:每空3分,共30分.1.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠12.下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,93.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.4.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形5.如图,每个小正方形的边长为1,△ABC的三边a、b、c的大小关系式正确的是()A.c<a<b B.a<b<c C.a<c<b D.c<b<a6.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°8.如图,在△ABC中,∠B=42°,AD⊥BC于点D,点E是BD上一点,EF⊥AB 于点F,若ED=EF,则∠AEC的度数为()A.60°B.62°C.64°D.66°9.(2x)n﹣81分解因式后得(4x2+9)(2x+3)(2x﹣3),则n等于()A.2 B.4 C.6 D.810.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.B.C.D.二、填空题:每空3分,共18分.11.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=.12.当x=时,2x﹣3与的值互为倒数.13.如图,已知△ABC的三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,若∠BAC=80°,则∠BOD的度数为.14.因式分解:(x2+4)2﹣16x2=.15.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是°.16.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是.三、解答题:第17-21题各8分,第22-23题各10分,第24题12分,共72分。
湖北省宜昌市2023-2024学年八年级上学期期末数学试题(含解析)

.....若分式的值为,则( )....11x x -+A .166.已知一个等腰三角形的一边长等于A .13cm A .100厘米xy x y =-≠三、解答题(将解答过程写在答题卡上指定的位置,本大题共有分)19.先化简,再从20.如图,在下列带有坐标系的网格中,,(1)画出关于轴的对称的22121x x x x x -+÷-+-()23A -,(B -ABC x嘉铭同学通过思考发现,可以通过“截长、补短”两种方法解决问题:方法1:如下图,在上截取,使得,连接,可以得到全等三角形,进而解决此问题方法2:如下图,延长到点,使得,连接,可以得到等腰三角形,进而解决此问题(1)根据探究,直接写出,,之间的数量关系;【迁移应用】(2)如下图,在中,是上一点,,于,探究,,之间的数量关系,并证明.【拓展延伸】(3)如下图,为等边三角形,点为延长线上一动点,连接.以为边在上方作等边,点是的中点,连接并延长,交的延长线于点.若,求证:;AC AE AE AB =DE .AB E BE BD =DE .AC AB BD ABC D BC 2B C ∠=∠AD BC ⊥D CD AB BD ABC D AB CD CD CD CDE F DE AF CD G G ACE ∠=∠GF AE AF =+参考答案与解析1.B 【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项正确.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据分式的值为0的条件,列式求解即可.分式的值为0的条件是:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意得: 解得:x=1故答案为B|x|-1=010x ⎧⎨+≠⎩【点睛】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.5.C在和中,,∴,∴,∵,∴,故④正确;故答案为:①②④.【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,等腰三角形三线合一的性质,垂线段最短等知识,能正确证明两个三角形全等是解此题的关键.16.(1)(2)【分析】(1)先计算积的乘方,再根据多项式除以单项式的计算法则求解即可;(2)先根据完全平方公式和平方差公式去括号,然后合并同类项即可.【详解】(1)解:;(2)解:.【点睛】本题主要考查了整式的混合计算,熟知相关计算法则是解题的关键.17.(1)(2)AFB △CNA V 4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩()ASA AFB CAN ≌AF CN =AF AE =AE CN =23y xy+25x +()233xy xy xy ⎡⎤+÷⎣⎦()3223xy x y xy=+÷23y xy =+()()()2122x x x +-+-()22214x x x =++--22214x x x =++-+25x =+()22m n +-()()233x x +-,.21.(1);(2)(3)证明见解析.117678768+=⨯⨯⨯11(1)(2)+1n n n n +=⨯+⨯+,证明,得出,证明出是等腰直角三角形,得出,从而得出,即可得解.【详解】(1)证明:,,,,;(2)解:,而,为等腰直角三角形,过作的垂线交延长线于,,,而,,,在和中,,,,,又,,在中,,为等腰直角三角形,,CH BH 、()SAS BOC CEH ≌OCB EHC BC CH ∠=∠=,B C H V 45CBH ∠=︒45ADB CBH ∠=∠=︒22220a ab b c -+-= ()22a b c ∴-=000a b c >≤> ,,a b c ∴-=AB OC ∴=0b = AB OC =ABC ∴ A BF BF G ABF BCF ∠=∠ 90ABC ∠=︒90FBC FCB ∴∠+∠=︒90BFC ∴∠=︒ABG BCF △90ABF BCF G BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()AAS ABG BCF ∴ ≌AG BF ∴=BG CF =2CF BF = BF FG AG ∴==AFG 90FG AG G =∠=︒,AFG ∴ 45AFG ∠=︒;(3)①证明:,,,,又,,;②的度数为定值,,过作于,取,连接,,,,,,,即是等腰直角三角形,,,∴,∴可由平移所得,,,.135AFB ∴∠=︒()0E c b - ,()E c OE x c b x b OC CE ∴==-=+-=+OC c = CE b ∴=-()0B b ,OB b ∴=-CE OB \=BDE ∠135BDE ∠=︒E EH OE ^E EH OC =CH BH 、OB CE BOC CEH OC EH =∠=∠= ,,()SAS BOC CEH ∴ ≌OCB EHC BC CH ∴∠=∠=,90OCB ECH CHE ECH ∴∠+∠=∠+∠=︒90BCH ∴∠=︒B C H V 45CBH ∴∠=︒AB OC OC EH == ,AB EH =EH AB AE BH ∴∥45ADB CBH ∴∠=∠=︒135BDE ∴∠=︒24.(1);(2) ,证明见解析;(3)证明见解析.【分析】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,等边三角形的性质;(1)方法一:证明得到,,根据三角形的外角性质和等腰三角形的判定证得,则,进而可得结论;方法二:先根据等腰三角形的性质和外角性质证得,再证明得到,进而可得结论;(2)在上取,连接,根据等边对等角得出,根据三角形的外角的中得出,进而得出,即可得证;(3)先证明 ,过作,交于点,证明,根据等角对等边得出,即可得出结论.【详解】(1)证明:方法一:∵平分,∴,在和中,,,,∴∴,,∵,∴,∴,∴,∴;方法二:延长到点E ,使得,连接,∴,则,∵,AC AB BD =+CD AB BD =+ABD AED ≌ BD ED =2AED ABC C ∠=∠=∠ED EC =BD EC =E C ∠=∠()AAS EAD CAD ≌AE AC =CD DE DB =AE AEB B ∠=∠CAE C ∠=∠EA EC =ACE BCD ≌()SAS D D H A E ∥AG H AEF HDF ≌△△GH HD =AD BAC ∠BAD CAD ∠=∠BAD EAD AD AD =BAD EAD ∠=∠AB AE =()SAS ABD AED ≌BD ED =2AED ABC C ∠=∠=∠AED C EDC ∠=∠+∠EDC C ∠=∠ED EC =BD EC =AC AB BD =+AB BE BD =DE E BDE ∠=∠2ABD E BDE E ∠=∠+∠=∠2ABC C ∠=∠∴,∵平分,∴,在和中,,,,∴,∴,∵,∴;(2)在上取,连接,∵于∴∴∵,∴,∴∴;(3)如图所示,∵,为等边三角形,∴,,∴∴,∴ ∴∴过作,交于点,E C ∠=∠AD BAC ∠BAD CAD ∠=∠EAD CAD EAD CAD ∠=∠E C ∠=∠AD AD =()AAS EAD CAD ≌AE AC =AE AB BE =+AC AB BD =+CD DE DB =AE AD BC ⊥DAE AB=AEB B∠=∠AEC C CAE ∠=∠+∠2B C∠=∠CAE C ∠=∠EA EC=CD CE ED AE DB AB DB =+=+=+CDE ABC 60ACB ECD ∠=∠=︒,CA CB CE CD ==ACB ECB ECD ECB∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌()SAS 120EAC DBC ∠=∠=︒60ACE AEC ∠+∠=︒D D H AE ∥AG H∴,∵是的中点,∴,又∴∴ ,,而,∴,又∵∴∴即 .EAF FHD ∠=∠F ED =EF FD AFE HFD∠=∠()ASA AEF HDF ≌AF HF =AE DH =AEF HDF∠=∠120GDF HDF GDH ∠=∠+∠=︒6060120AEF ACE FEC AEC ACE ∠+∠=∠+∠+∠=︒+︒=︒ACE GDH ∠=∠G ACE∠=∠G GDH∠=∠GH HD AE ==GF AE AF =+。
河南省平顶山市汝州市2023-2024学年八年级上学期期末数学试题(解析版)

2023~2024学年上学期期末质量检测八年级数学注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,三个大题,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效。
3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 一个正方体的体积扩大为原来的64倍,则它的棱长变为原来的( )A. 2倍B. 4倍C. 6倍D. 9倍【答案】B【解析】【分析】本题考查了正方体的体积和立方根的应用,熟练应用立方根和正方体的体积计算方法是解答本题的关键.根据正方体的体积公式计算并判断即可.【详解】解:设原正方体的边长为,则体积为,∴将体积扩大为原来的64倍,为,∴,∴它的棱长为原来的4倍,故选:B .2. 如图,将含角的三角板的两个顶点放在直尺的对边上,若,则的度数为( )A. B. C. D. 【答案】C【解析】【分析】首先利用平行线的性质得到,进而求解即可.a 3a 364a 4a =45︒120∠=︒2∠15︒20︒25︒30︒3120∠=∠=︒【详解】如图所示,∵直尺的两边平行,,∴,∴.故选:C .【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是的利用.3. 已知是二元一次方程组的解,则的值为( )A. 7B. 3C.D. 11【答案】A【解析】【分析】本题考查二元一次方程组的解及解二元一次方程组.把代入,可得,利用加减消元法解答.【详解】解:∵是二元一次方程组的解,∴,∴由得:.故选:A4. 如图,货船A 与港口B 相距35海里,我们用有序数对(南偏西,35海里)来描述港口B 相对货船A 的位置,那么货船A 相对港口B 的位置可描述为()120∠=︒3120∠=∠=︒2452025∠=︒-︒=︒45︒21x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩3m n -17-21x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩2821m n n m +=⎧⎨-=⎩①②21x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩2821m n n m +=⎧⎨-=⎩①②-①②37m n -=40︒A. (南偏西,35海里)B. (北偏西,35海里)C (北偏东,35海里) D. (北偏东,35海里)【答案】C【解析】【分析】以点B 为中心点,来描述点A 的方向及距离即可.【详解】解:由题意知货船A 相对港口B 的位置可描述为(北偏东,35海里),故选:C .【点睛】本题考查坐标确定位置,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.5. 贵阳贵安2021年第二届初中教师说课评比顺利结束,陈老师根据七位评委所给的分数,将最后一位参赛教师的得分制作了表格.对七位评委所给的分数,去掉一个最高分和一个最低分后.表中数据一定不发生变化的是( )平均数中位数众数方差86.2分85分84分 5.76A. 方差B. 众数C. 中位数D. 平均数【答案】C【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】解:去掉一个最高分和一个最低分对中位数没有影响,故选C .【点睛】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.6. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单.50︒40︒40︒50︒40︒位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A. B. C. D. 【答案】D【解析】【分析】设马每匹x 两,牛每头y 两,根据马四匹、牛六头,共价四十八两与马三匹、牛五头,共价三十八两列方程组即可.【详解】设马每匹x 两,牛每头y 两,由题意得,故选:D .【点睛】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.7. 已知正比例函数(k 为常数且),若y 的值随着x 值的增大而增大,则一次函数在平面直角坐标系中的图象大致是( )A. B. C. D.【答案】C【解析】【分析】根据正比例函数中,y 的值随着x 值的增大而增大,可得,从而可以判断一次函数图象经过第一、三、四象限.【详解】解:∵正比例函数中,y 的值随着x 值的增大而增大,∴,∴一次函数的图像经过第一、三、四象限,故选:C【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出.8. 在如图的网格中,小正方形的边长均为1,三点均在正方形格点上,则下列结论错误的是46383548x y x y +=⎧⎨+=⎩46483538y x y x +=⎧⎨+=⎩46485338x y x y +=⎧⎨+=⎩46483538x y x y +=⎧⎨+=⎩46483538x y x y +=⎧⎨+=⎩y kx =0k ≠y kx k =-y kx =0k >y kx k =-y kx =0k >y kx k =-0k >、、A B C( )A. B. C. D. 点到直线的距离是2【答案】C【解析】【分析】本题考查了勾股定理及其逆定理,三角形的面积公式,根据勾股定理求得进而根据勾股定理的逆定理,即可求解.【详解】解:∵,∴,∴,故A,B 选项正确;∴,故C 选项错误;设点到直线的距离是,则,∴,故D 选项正确故选:C .9. 下面是投影屏上出示的抢答题,则横线上符号代表的内容正确的是( )如图,.求证:.证明:延长交※与点F则▲(□相等,两直线平行)A. ※代表ABB. 代表C. ▲代表D. □代表同位角【答案】C【解析】【分析】本题主要考查了三角形外角的性质、平行线的判定等知识点,正确作出辅助线、构造三角形外角AB =90BAC ∠=︒10ABC S =△A BC ,,AC AB BC5AC AB BC ======222AB AC BC +=90BAC ∠=︒11522ABC S AC AB =⨯==△A BC d 152ABC S BC d =⨯=V 5225d ⨯==BEC B C ∠=∠+∠AB CD P BE e EFC C =∠+∠BEC B C∠=∠+∠ B ∴∠=AB CD ∴∥e FEC ∠EFC ∠是解答本题的关键.根据图形利用三角形外角的性质、等量代换、平行线的判定将解答补充完整即可解答.【详解】证明:延长交于点F ,则则(内错角相等,相等,两直线平行)则※代表,故A 选项不符合题意;⊙代表,故B 选项不符合题意;▲代表即,故C 选项符合题意;□代表内错角,故D 选项不符合题意.故选C .10. 在平面直角坐标系中,将图1所示的照如图2所示的方式依次进行轴对称变换,若点坐标是,则经过第2023次变换后所得的点的坐标是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每四次对称为一个循环组依次循环是解题的关键,也是本题的难点.观察图形可知每四次对称为一个循环组依次循环,用2023除以4,然后根据商和余数的情况确定出变换后的点A 所在的象限,据此即可解答.【详解】解:∵点A 第一次关于x 轴对称后在第四象限,点A 第二次关于y 轴对称后在第三象限,点A 第三次关于x轴对称后在第二象限,BE DC BEC ∠=EFC C∠+∠BEC B C∠=∠+∠ B EFC∴∠=∠AB CD ∴∥DC BEC ∠EFC ∠EFC ∠ABC V A (),x y 2023A (),x y (),x y -(),x y -(),x y --点A 第四次关于y 轴对称后在第一象限,即点A 回到初始位置,∴每四次对称为一个循环组依次循环,∵,∴经过第2023次变换后所得的A 点与第三次变换的位置相同,在第二象限,坐标为,故选:B .二、填空题(每小题3分,共15分)11. 请写出一个大于1且小于2的无理数:___.(答案不唯一).【解析】【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】大于1且小于2等,(答案不唯一).12. 如图,一次函数与的图象相交于点,则方程组的解是____.【答案】【解析】【分析】由交点坐标,先求出,再求出方程组的解即可.【详解】解:∵的图象经过,∴,解得,202345053÷=⋅⋅⋅(),x y -2π-y kx b =+2y x =+(),4P m 2y x y kx b =+⎧⎨=+⎩24x y =⎧⎨=⎩(),4m m 2y x =+(),4P m 42m =+2m =一次函数与的图象相交于点,方程组的解是,故答案为.【点睛】本题考查一次函数图象的交点与方程组的解的关系,解题的关键在于对知识的熟练掌握.13. 某校学生期末评价从德、智、体、美、劳五方面进行,五方面依次按确定成绩,小明同学本学期五方面得分如图所示(说明:由图可知第一方面“德”,得分为10分),则他的期末成绩为______分.【答案】9【解析】【分析】本题考查了求平均数,熟记加权平均数公式是解题的关键.根据加权平均数的计算公式计算即可得解.【详解】解:由题意可得,(分),故答案为:9.14. 如图在中,分别平分,交于O ,为外角的平分线,交的延长线于点E ,记,,则以下结论①;②;③ ;④,正确的是_____.(把所有正确的结论的序号写在横线上)【答案】①④##④①【解析】∴y kx b =+2y x =+()2,4P ∴2y x y kx b =+⎧⎨=+⎩24x y =⎧⎨=⎩24x y =⎧⎨=⎩2:3:2:2:110293829291923221⨯+⨯+⨯+⨯+⨯=++++ABC V BO CO ,ABC ACB ∠∠,CE ACD ∠BO 1BAC ∠=∠2BEC ∠=∠122∠=∠32BOC ∠=∠901BOC ∠=︒+∠902BOC ∠=︒+∠【分析】本题考查了角平分线的定义、三角形外角的性质,解题关键是理解并能灵活运用相关概念得到角之间的关系.先利用角平分线的定义得到,,,再利用三角形的外角的性质转化各角之间的关系即可求解.【详解】解:∵平分, 为外角的平分线,∴,,∴,故①正确;∵平分,∴,∴,∴,故④正确;∵不一定是,故②不正确;由于,∴,故③不正确;故答案为:①④.15. 如图,在四边形中,,于点,动点从点出发,沿的方向运动,到达点停止,设点运动的路程为,的面积为,如果与的函数图象如图2所示,那么边的长度为______.【答案】6【解析】【分析】根据题意,分析P 的运动路线,分3个阶段分别进行讨论,可得BC,CD,DA 的值,过D 作DE ⊥AB 于E ,根据勾股定理求出AE ,即可求解.【详解】根据题意,当P 在BC 上时,三角形的面积增大,结合图2可得BC=4;当P 在CD 上时,三角形的面积不变,结合图2可得CD=3;当P 在AD 上时,三角形的面积变小,结合图2可得AD=5;过D 作DE ⊥AB 于E,2ABC EBC ∠=∠2ACD ECD ∠=∠2ACB ACO ∠=∠BO ABC ∠CE ACD ∠2ABC EBC ∠=∠2ACD ECD ∠=∠()1222ACD ABC ECD EBC =-=-=∠∠∠∠∠∠CO ACB ∠2ACB ACO ∠=∠()111809022OCE ACE ACO ACD ACB =+=+=⨯︒=︒∠∠∠∠∠290BOC ∠=∠+︒2∠45︒122∠=∠11902BOC ∠=∠+︒ABCD AB CD ∥AB BC ⊥B P B B C D A →→→A P x ABP ∆y y x AB∵AB ∥CD ,AB ⊥BC ,∴四边形DEBC 为矩形,∴EB=CD=3,DE=BC=4,∴∴AB=AE+EB=6.【点睛】此题主要考查矩形的动点问题,解题的关键是根据题意作出辅助线进行求解.三、解答题(本大题共8个小题、满分75分)16. 解答下列各题(1)解方程组:;(2.【答案】(1) (2)【解析】【分析】本题主要考查了二元一次方程组的解法,二次根式的混合运算:(1)用加减消元法解方程组即可;(2)先计算乘除,再计算加减,即可求解.【小问1详解】解:,得,解得:,将代入①,得,解得:,3==59253x y x y +=⎧⎨-=⎩①②(21÷-+-41x y =⎧⎨=⎩5-①②+312x =4x =4x =459y +=1y =则原方程组的解是;小问2详解】解:原式17. (图1)是由10个边长均为1的小正方形组成的图形,我们沿图的虚线,将它剪开后,重新拼成一个大正方形.(1)在图(1)中,拼成的大正方形的面积为___________,边的长为___________;(2)现将图(1)水平放置在如图(2)所示的数轴上,使得大正方形的顶点与数轴上表示的点重合,若以点为圆心,边的长为半径画圆,与数轴交于点,求点表示的数.【答案】(1)10(2)或【解析】【分析】本题考查实数与数轴,解题的关键是:(1)根据10个边长均为1的小正方形剪开后,重新拼成一个大正方形可得正方形的面积,由正方形面积公式可得的长度;(2)根据数轴上的点表示的数的特点可得E 表示的数.【小问1详解】解:∵由10个边长均为1的小正方形剪开后,重新拼成一个大正方形,∴大正方形的面积为;∴,【41x y =⎧⎨=⎩12=-+-+212=+-5=AB BC ABCD ABCD AD B 1-B BC E E 1-1-ABCD ABCD AD ABCD ABCD 210110⨯=210AD =∴,故答案为:10;【小问2详解】∵,∴以点B 为圆心,边的长为半径画圆,与数轴交于点E ,点E 表示的数为或.18. 命题:直角三角形的两锐角互余.(1)将此命题写成“如果…,那么…”:______;(2)请判断此命题的真假.若为假命题,请说明理由;若为真命题,请根据所给图形写出已知、求证和证明过程.【答案】(1)如果一个三角形是直角三角形,那么它的两个锐角互余(2)该命题是真命题,详见解析【解析】【分析】本题考查的是直角三角形的性质,逆命题的概念:(1)根据逆命题的概念写出原命题的逆命题;(2)根据三角形内角和定理计算,即可证明.【小问1详解】解:如果一个三角形是直角三角形,那么它的两个锐角互余;故答案为:如果一个三角形是直角三角形,那么它的两个锐角互余【小问2详解】解:该命题真命题已知:如图,在中,求证:证明:.是AD =BC AD ==BC 1-+1-ABC V 90B Ð=°90A C ∠+∠=︒180A B C ∠+∠+∠=︒180A C B∴∠+∠=︒-∠90B ∠=︒1809090A C ∴∠+∠=︒-︒=︒19. 近年来,网约车给人们的出行带来了便利,为了解网约车司机的收入情况,小飞和数学兴趣小组同学从甲、乙两家网约车公司分别随机抽取10名司机的月收入(单位:千元)进行统计,情况如下:根据以上信息,整理分析数据如表:平均数中位数众数方差甲公司66b 1.2乙公司6a 4c(1)填空:______,______,______;(2)小飞的叔叔决定从两家公司中选择一家做网约车司机,如果你是小飞,你建议他选哪家公司?简述理由.【答案】(1),6,(2)选甲公司,详见解析【解析】【分析】本题考查中位数、众数的定义、方差的计算以及利用方差等统计量作决策:(1)根据众数的定义可得到众数b ,观察乙网约车司机月收入人数情况统计图,可得中位数是4和5的平均数a ,根据方差的计算公式进行计算方差c 即可;(2)平均数相同时,比较中位数、众数、方差,从收入稳定性考虑,建议选甲网约车公司.【小问1详解】解:解:甲公司“6千元”对应的百分比为,∴“6千元”出现的次数最多,∴;根据题意得:乙公司月收入位于正中间的是4和5,∴;=a b =c =4.57.6110%20%10%20%40%----=6b =45 4.52a +==;故答案为:,6,;小问2详解】选甲公司,理由如下:因为平均数一样,中位数、众数甲公司大于乙公司,且甲公司方差小,更稳定所以选择甲公司.20. 某芒果种植基地,去年结余500万元,估计今年可结余980万元,并且今年收入比去年高,支出比去年低,去年的收入、支出各是多少万元?【答案】收入2120万元,支出1620万元【解析】【分析】本题主要考查了二元一次方程组的实际应用,设去年收入x 万元,支出y 万元,本题的等量关系是:去年的收入去年的支出万元.今年的收入今年的支出万元.然后根据这两个等量关系来列方程组,求出未知数的值即可得到答案.【详解】解:设去年收入x 万元,支出y 万元,根据题意,得解得,答:去年收入2120万元,支出1620万元.21. 在河道A ,B 两个码头之间有客轮和货轮通行.一天,客轮从A 码头匀速行驶到B 码头,同时货轮从B 码头出发,运送一批物资匀速行驶到A 码头,两船距B 码头的距离与行驶时间之间的函数关系如图所示,请根据图象解决下列问题:(1)A ,B 两个码头之间的距离是_________;(2)已知货轮距B 码头的距离与行驶时间的图象表达式为,求客轮距B 码头的距离与时【()()()()222214655629621267.610d ⎡⎤=⨯-⨯+-⨯+-⨯+-=⎣⎦4.57.615%10%-500=-960=()()500115%110%980x y x y -=⎧⎨+--=⎩21201620x y =⎧⎨=⎩(km)y (min)x km 112y x =2(km)y间之间的函数表达式:(3)求出点P 的坐标,并指出点P 的横坐标与纵坐标所表示的实际意思.【答案】(1)80 (2)(3),点P 的横坐标表示两船在第32分钟相遇,点P 的纵坐标表示两船相遇时距离B 码头【解析】【分析】(1)根据函数图象可得;(2)根据图象过点,可设函数表达式为,把(40,0)代入求出k 即可;(3)联立方程组,求解即可.【小问1详解】根据图象得可知:A 、B 两个码头之间的距离是80千米,故答案为:80;【小问2详解】根据图象过点,可设函数表达式为,将点代入得,,解得.∴.【小问3详解】由题意得解得∴,点P 的横坐标表示两船在第32分钟相遇,点P 的纵坐标表示两船相遇时距离B 码头.【点睛】本题考查一次函数的应用,解题的关键是熟练掌握待定系数法.22. 在一次函数的学习中,我们经历了“画出函数的图象——根据图象研究函数的性质——运用函数的性质解决问题”的学习过程,结合上面的学习过程,解决下面的问题:对于函数.(min)x 2280=-+y x (32,16)P 16km(0,80)D 280=+y kx (0,80)D 280=+y kx (40,0)E 40800+=k 2k =-2280=-+y x 1,2280.y x y x ⎧=⎪⎨⎪=-+⎩32,16.x y =⎧⎨=⎩(32,16)P 16km 2y x =-(1)请在给出的平面直角坐标系中,直接画出函数的图象;(2)小明同学通过图像得到了以下性质,其中正确的有______(填序号);①当时,随的增大而增大,当时,随的增大而减小;②此函数的图象关于轴对称.③若方程有解,则;(3)已知点,那么在函数的图象上是否存在一点,使得的面积为12.若存在,求出点坐标;若不存在,请说明理由.【答案】(1)详见解析(2)②③ (3)或【解析】【分析】本题考查了一次函数的图象和性质,三角形面积,熟练掌握一次函数的图象和性质是解题的关键.(1)列表,描点,连线画出函数图象即可;(2)根据图象可判断;(3)先求出,利用三角形面积求得点的纵坐标,进而即可求得点的坐标.【小问1详解】解:列表:01231001函数的图象如图所示:2y x =-0x <y x 0x >y x y 2x n -=2n ≥-()()2,54,5A B ---、2y x =-P ABP V P ()1,1-()1,1--6AB =P P x ⋯3-2-1-⋯y ⋯1-2-1-⋯2y x =-【小问2详解】解:①由函数图象可知,当时,随的增大而减小,当时,随的增大而增大,原说法错误;②由函数图象可知此函数的图象关于轴对称,原说法正确;③由函数图象可知,当,直线与函数有交点,即方程有解,原说法正确;故答案为:②③;【小问3详解】,,的面积为12,,即或(舍去)点的纵坐标为,点的坐标为或.23. 在图a 中,应用三角形外角的性质不难得到下列结论:∠BDC =∠A +∠ABD +∠ACD .我们可以应用这个结论解决同类图形的角度问题.0x <y x 0x >y x y 2n ≥y n =2y x =-2x n -=()()2,54,5A B --- 、6AB ∴=ABP V ()15122P AB y ∴⋅--=3512P y +=1P y ∴=-9P y =-P ∴1-P ∴()1,1-()1,1--(1)在图a 中,若∠1=20°,∠2=30°,∠BEC =100°,则∠BDC = ;(2)在图a 中,若BE 平分∠ABD ,CE 平分∠ACD ,BE 与CE 交于E 点,请写出∠BDC ,∠BEC 和∠BAC 之间的关系;并说明理由.(3)如图b ,若,试探索∠BDC ,∠BEC 和∠BAC 之间的关系.(直接写出)【答案】(1)150°(2)∠BDC +∠BAC =2∠BEC(3)2∠BDC +∠BAC =3∠BEC【解析】【分析】(1)根据题目给出的条件可得:;(2)根据题意得出∠BDC =∠BEC +∠1+∠2,∠BEC =∠BAC +∠ABE +∠ACE ,再根据BE 平分∠ABD ,CE 平分∠ACD ,得出∠ABE =∠1,∠ACE =∠2,然后进行化简即可得出结论;(3)先根据题意得出∠BDC =∠BEC +∠1+∠2,∠BEC =∠BAC +∠ABE +∠ACE ,再根据,,得出∠BEC =∠BAC +2∠1+2∠2,整理化简即可得出结论.小问1详解】解:∵∠1=20°,∠2=30°,∠BEC =100°,∴.故答案为:150°.【小问2详解】由题意可知,∠BDC =∠BEC +∠1+∠2,①∠BEC =∠BAC +∠ABE +∠ACE ,②∵BE 平分∠ABD ,CE 平分∠ACD ,∴∠ABE =∠1,∠ACE =∠2,①-②得∠BDC -∠BEC =∠BEC -∠BAC,【113ABD ∠=∠123ACD ∠=∠12150BDC BEC ∠=∠+∠+∠=︒113ABD ∠=∠123ACD ∠=∠12150BDC BEC ∠=∠+∠+∠=︒即∠BDC +∠BAC =2∠BEC .【小问3详解】由题意可知,∠BDC =∠BEC +∠1+∠2,③∠BEC =∠BAC +∠ABE +∠ACE ,④∵∠1=∠ABD ,∠2=∠ACD ,∴∠ABE =2∠1,∠ACE =2∠2.由④得∠BEC =∠BAC +2∠1+2∠2,⑤③×2-⑤得2∠BDC -∠BEC =2∠BEC -∠BAC ,即2∠BDC +∠BAC =3∠BEC .【点睛】本题主要考查了角平分线的定义,三角形外角的性质,理解题意,充分利用数形结合的思想,是解题的关键.1313。
八年级上学期期末考试数学试卷(附答案解析)

八年级上学期期末考试数学试卷(附答案解析)一、选择题1.下列各式中,无论x取何值,分式都有意义的是()A. xx2+2x+4B. 2x22x+1C. x+1x2D. x2x2.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 两组对边分别相等的四边形是平行四边形3.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A. 15,16B. 15,15C. 15,15.5D. 16,154.若关于x的方程x−1x−2=mx−2+2产生增根,则m的值是()A. 2B. 0C. 1D. −15.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A. ∠DAN =15°B. ∠CMN =45°C. AM =MND. MN =NC6. 如图,在△ABC 中,点M 为BC 的中点,AD 为∠BAN 的平分线,且AD ⊥BD ,若AB =6,AC =9,则MD 的长为( )A. 3B. 92C. 5D. 152 7. 如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC ,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A. 30°B. 45°C. 60°D. 90°8. 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,则AB ,AC ,CE 的长度关系为( )A. AB >AC =CEB. AB =AC >CEC. AB >AC >CED. AB =AC =CE 9. 若x 2=y 7=z 5,则x+y−z x 的值是( ) A. 1 B. 2C. 3D. 4 10. 如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC =( )A. 110°B. 100°C. 90°D. 80°11. 如果把分式2xy x+y 中的x 和y 都扩大3倍,那么分式的值( )A. 扩大3倍B. 缩小3倍C. 缩小6倍D. 不变 12. 已知x 为整数,且分式2x−2x 2−1的值为整数,满足条件的整数x 的个数有( )A. 1个B. 2个C. 3个D. 4个13. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =16,F 是线段DE 上一点,连接AF 、CF ,DE =4DF ,若∠AFC =90°,则AC 的长度是( )A. 6B. 8C. 10D. 12二、填空题14.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是______分.15.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2)形状,则∠FGD等于______度.16.若a:b=1:3,b:c=2:5,则a:c=______.17.已知点A(a,1)与点B(5,b)关于y轴对称,则ba +ab=______.18.如图,在梯形ABCD中,AD//BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为______.19.如图,依据尺规作图的痕迹,计算∠α=______°.三、解答题(20.(1)计算:1−x−2yx+y ÷x2−4xy+4y2x2−y2(2)先化简,再求值:(9x+3+x−3)÷(xx2−9),其中x=−2.21.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=254,求EF的长.参考答案和解析1.【答案】A【解析】解:A、xx2+2x+4=x(x+1)2+3,(x+1)2≥0,则(x+1)2+3≥3,无论x取何值,分式都有意义,故此选项正确;B、当x=−12时,分式分母=0,分式无意义,故此选项错误;C、x=0时,分式分母=0,分式无意义,故此选项错误;D、x=0时,分式分母=0,分式无意义,故此选项错误;故选:A.2.【答案】B【解析】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.3.【答案】C【解析】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,=15.5岁,∴中位数为15+162故选:C.4.【答案】C【解析】解:分式方程去分母得:x−1=m+2x−4,根据题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故选C5.【答案】D【解析】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB//MG//CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°−75°=15°,∠CMN=180°−75°−60°=45°,故A,B,C正确,故选:D.6.【答案】D【解答】解:延长BD交CA的延长线于E,∵AD为∠BAE的平分线,BD⊥AD,∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=12CE=12×15=7.5.故选:D.7.【答案】B【解析】解:∵S△PBC=12S△ABC,∴P在与BC平行,且到BC的距离为12AD的直线l上,∴l//BC,作点B关于直线l的对称点B′,连接B′C交l于P,如图所示:则BB′⊥l,PB=PB′,此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB′=2PM=AD,∵AD⊥BC,AD=BC,∴BB′=BC,BB′⊥BC,∴△BB′C是等腰直角三角形,∴∠B′=45°,∵PB=PB′,∴∠PBB′=∠B′=45°,∴∠PBC=90°−45°=45°;故选:B.8.【答案】D【解答】解:∵AD⊥BC,BD=DC,∴AD垂直平分BC,∴AB=AC,又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE.故选D.9.【答案】B【解答】解:设x2=y7=z5=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入x+y−zx =2k+7k−5k2k=2,故选B.10.【答案】A【解析】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故选:A.11.【答案】A【解析】解:把原分式中的x换成3x,把y换成3y,那么2⋅3x⋅3y 3x+3y =6xyx+y=3×2xyx+y.故选:A.12.【答案】C【解析】解:∵原式=2(x−1)(x+1)(x−1)=2x+1,∴x+1为±1,±2时,2x+1的值为整数,∵x2−1≠0,∴x≠±1,∴x为−2,0,−3,个数有3个.故选:C.13.【答案】D【解析】解:∵D、E分别是AB、AC的中点,BC=8,∴DE=12∵DE=4DF,DE=2,∴DF=14∴EF=DE−DF=6,∵∠AFC=90°,点E是AC的中点,∴AC=2EF=12,故选:D.14.【答案】93【解析】解:根据题意得:90×3+100×3+90×4=93(分),3+3+4答:小红一学期的数学平均成绩是93分;故答案为:93.15.【答案】40【解析】解:根据折叠可知:∠AEG=180°−20°×2=140°,∵AE//BF,∴∠EGB=180°−∠AEG=40°,∴∠FGD=40°.故答案为:40.16.【答案】2:15【解析】解:∵a:b=1:3=2:6,b:c=2:5=6:15,∴a:c=2:15,故答案为:2:1517.【答案】−265【解析】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=−5,b=1,∴ba +ab=−15+(−5)=−265,故答案为:−265.18.【答案】15【解析】解:过点A作AE//CD,交BC于点E,∵AD//BC,∴四边形AECD是平行四边形,∠B=180°−∠BAD=180°−120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=15.故答案为:15.首先过点A作AE//CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD 是平行四边形,△ABE是等边三角形,继而求得答案.19.【答案】56【分析】本题考查的是作图−基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.先根据矩形的性质得出AD//BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD//BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°−34°=56°,∴∠α=56°.故答案为:56.20.【答案】解:(1)原式=1−x−2yx+y ⋅(x+y)(x−y)(x−2y)2=1−x−yx−2y=x−2yx−2y−x−yx−2y=−y2x−y;(2)原式=(9x+3+x2−9x+3)÷x(x+3)(x−3)=x2x+3⋅(x+3)(x−3)x=x(x−3),当x=−2时,原式=(−2)×(−2−3)=10.【解析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【答案】解:(1)∵四边形ABCD是矩形,∴AD//BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO =CO ,在△AOF 和△COE 中,{∠ACB =∠DACAO =CO ∠AOF =∠COE,∴△AOF ≌△COE(ASA),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形;(2)∵菱形AECF 的面积=EC ×AB =12AC ×EF ,又∵AB =6,AC =10,EC =254, ∴254×6=12×10×EF ,解得EF =152.【解析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA ”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形;(2)由菱形的性质可得:菱形AECF 的面积=EC ×AB =12AC ×EF ,进而得到EF 的长.。
2023-2024学年北京市海淀区八年级(上)期末数学试卷及答案解析

2023-2024学年北京市海淀区八年级(上)期末数学试卷一、选择题(本题共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个.1.(3分)榫卯是中国建筑的智慧结晶,仅靠木头之间的相互作用力就可以让建筑或家具牢固、美观.下列榫卯拼接截面示意图中,是轴对称图形的是()A.B.C.D.2.(3分)杭州亚运会主火炬以零碳甲醇作为燃料,在亚运史上首次实现废碳再生、循环内零碳排放.甲醇的密度很小,1cm3甲醇的质量约为0.00079kg,将0.00079用科学记数法表示应为()A.79×10﹣4B.7.9×10﹣4C.79×10﹣5D.0.79×10﹣3 3.(3分)下列运算中,正确的是()A.(a2)3=a8B.(﹣3a)2=6a2C.a2•a3=a5D.a9÷a3=a34.(3分)如图,点E,C,F,B在一条直线上,AB∥ED,∠A=∠D,添加下列条件不能判定△ABC≌△DEF的是()A.AC∥DF B.AB=DE C.EC=BF D.AC=DF 5.(3分)正多边形的一个外角的度数为72°,则这个正多边形的边数为()A.4B.5C.6D.76.(3分)如图是折叠凳及其侧面示意图,若AC=BC=18cm,则折叠凳的宽AB可能为()A.70cm B.55cm C.40cm D.25cm7.(3分)下列各式从左到右变形正确的是()A.B.C.D.8.(3分)如图,在△ABC中,∠BAC=90°,P是△ABC内一点,点D,E,F分别是点P 关于直线AC,AB,BC的对称点,给出下面三个结论:①AE=AD;②∠DPE=90°;③∠ADC+∠BFC+∠BEA=270°.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③二、填空题(本题共16分,每小题2分)9.(2分)若代数式有意义,则实数x的取值范围是.10.(2分)分解因式:a3﹣ab2=.11.(2分)在平面直角坐标系xOy中,点A(﹣1,﹣1)关于x轴的对称点A′的坐标为.12.(2分)计算:(6a3﹣9a2)÷3a2=.13.(2分)已知一个等腰三角形的一个内角为40°,则它的顶角等于.14.(2分)如图,在△ABC中,DE是BC边的垂直平分线.若AB=8,AC=13,则△ABD 的周长为.15.(2分)把一张长方形纸片沿对角线折叠,使折叠后的图形如图所示.若∠BAC=35°,则∠CBD=°.16.(2分)请阅读关于“乐数”的知识卡片,并回答问题:乐数我们将同时满足下列条件的分数称为“乐数”a.分子和分母均为正整数;b.分子小于分母;c.分子、分母均为两位数,且分子的个位数字与分母的十位数字相同;d.去掉分子的个位数字与分母的十位数字后,得到的分数与原来的分数相等.例如:去掉相同的数字6之后,得到的分数恰好与原来的分数相等,则是一个“乐数“.(1)判断:(填“是”或“不是”)“乐数”;(2)写出一个分子的个位数字与分母的十位数字同为9的“乐数”.三、解答题(本题共60分,第17题5分,第18题10分,第19-23题每题5分,第24题6分,第25、26题每题7分)17.(5分)计算:.18.(10分)(1)已知x2+2x﹣2=0,求代数式x(x﹣2)+(x+3)2的值.(2)计算:.19.(5分)小明用自制工具测量花瓶内底的宽.他将两根木条AC,BD的中点连在一起(即AO=CO,BO=DO),如图所示放入花瓶内底.此时,只需测量点与点之间的距离,即为该花瓶内底的宽,请证明你的结论.20.(5分)如图,在△ABC中,∠C=90°,∠A=30°.在线段AC上求作一点D.使得.小明发现作∠ABC的平分线交AC于点D,点D即为所求.(1)使用直尺和圆规,依小明的思路作出点D(保留作图痕迹);(2)完成下面的证明.证明:∵∠A=30°,∠C=90°,∴∠ABC=°.∵BD平分∠ABC,∴∠ABD=,∴∠ABD=∠A.∴AD=.在Rt△BCD中,∠CBD=30°,∴()(填推理依据).∴.21.(5分)如图所示的4×4网格是正方形网格,顶点是网格线交点的三角形称为格点三角形.如图1,△ABC为格点三角形.(1)∠ABC=°;(2)在图2和图3中分别画出一个以点C1,C2为顶点,与△ABC全等,且位置互不相同的格点三角形.22.(5分)列方程解应用题:无人配送以其高效、安全、低成本等优势,正在成为物流运输行业的新趋势.某物流园区使用1辆无人配送车平均每天配送的包裹数量是1名快递员平均每天配送包裹数量的5倍.要配送6000件包裹,使用1辆无人配送车所需时间比4名快递员同时配送所需时间少2天,求1名快递员平均每天可配送包裹多少件?23.(5分)如图,四边形ABCD 中,AB =AC ,∠D =90°,BE ⊥AC 于点F ,交CD 于点E ,连接EA ,EA 平分∠DEF .(1)求证:AF =AD ;(2)若BF =7,DE =3,求CE 的长.24.(6分)小明设计了一个净水装置,将杂质含量为n 的水用m 单位量的净水材料过滤一次后,水中的杂质含量为.利用此净水装置,小明进行了进一步的探究:现有杂质含量为1的水.(1)用2单位量的净水材料将水过滤一次后,水中杂质含量为;(2)小明共准备了6a 单位量的净水材料,设计了如下的三种方案:方案A 是将6a 单位量的净水材料一次性使用,对水进行过滤;方案B 和方案C 均为将6a 单位量的净水材料分成两份,对水先后进行两次过滤.三种方案的具体操作及相关数据如下表所示:方案编号第一次过滤用净水材料的单位量水中杂质含量第二次过滤用净水材料的单位量第二次过滤后水中杂质含量A 6a //B 5a a C4a2a①请将表格中方案C 的数据填写完整;②通过计算回答:在这三种方案中,哪种方案的最终过滤效果最好?(3)当净水材料总量为6a 单位量不变时,为了使两次过滤后水中的杂质含量最少,小明应将第一次净水材料用量定为(用含a 的式子表示).25.(7分)如图,在△ABC中,∠ABC=90°,AB=BC,作直线AP,使得45°<∠PAC <90°.过点B作BD⊥AP于D,在DA的延长线上取点E,使DE=BD.连接BE,CE.(1)依题意补全图形;(2)若∠ABD=α,求∠CBE(用含α的式子表示);(3)用等式表示线段AE,CE,DE之间的数量关系,并证明.26.(7分)在平面直角坐标系xOy中,直线l过原点且经过第三、第一象限,l与x轴所夹锐角为n°.对于点P和x轴上的两点M,N,给出如下定义:记点P关于直线l的对称点为Q,若点Q的纵坐标为正数,且△MNQ为等边三角形,则称点P为M,N的n°点.(1)如图1,若点M(2,0),N(4,0),点P为M,N的45°点,连接OP,OQ.①∠POQ=°;②求点P的纵坐标;(2)已知点M(m,0),N(m+t,0).①当t=2时,点P为M,N的60°点,且点P的横坐标为﹣2,则m=;②当m=﹣2时,点P为M,N的30°点,且点P的横坐标为2,则t=.2023-2024学年北京市海淀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个.1.(3分)榫卯是中国建筑的智慧结晶,仅靠木头之间的相互作用力就可以让建筑或家具牢固、美观.下列榫卯拼接截面示意图中,是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A,B,D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.【点评】本题考查了轴对称图形的概念,熟知轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合是解题的关键.2.(3分)杭州亚运会主火炬以零碳甲醇作为燃料,在亚运史上首次实现废碳再生、循环内零碳排放.甲醇的密度很小,1cm3甲醇的质量约为0.00079kg,将0.00079用科学记数法表示应为()A.79×10﹣4B.7.9×10﹣4C.79×10﹣5D.0.79×10﹣3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00079=7.9×10﹣4.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列运算中,正确的是()A.(a2)3=a8B.(﹣3a)2=6a2C.a2•a3=a5D.a9÷a3=a3【分析】根据幂的乘方法则,积的乘方法则,同底数幂的乘法和除法法则逐项计算,即可判断.【解答】解:(a2)3=a6,故A计算错误,不符合题意;(﹣3a)2=9a2,故B计算错误,不符合题意;a2•a3=a5,故C计算正确,符合题意;a9÷a3=a6,故D计算错误,不符合题意.故选:C.【点评】本题考查幂的乘方,积的乘方,同底数幂的乘法和除法.熟练掌握各运算法则是解题关键.4.(3分)如图,点E,C,F,B在一条直线上,AB∥ED,∠A=∠D,添加下列条件不能判定△ABC≌△DEF的是()A.AC∥DF B.AB=DE C.EC=BF D.AC=DF【分析】利用平行线的性质可得∠E=∠B,然后利用全等三角形的判定方法,逐一判断即可解答.【解答】解:∵AB∥ED,∴∠E=∠B,A、∵AC∥DF,∴∠ACB=∠DFE,∵∠A=∠D,∠E=∠B,∴△ABC和△DEF不一定全等,故A符合题意;B、∵∠A=∠D,AB=DE,∠E=∠B,∴△ABC≌△DEF(ASA),故B不符合题意;C、∵EC=BF,∴EC+CF=BF+CF,∴EF=BC,∵∠A=∠D,∠E=∠B,∴△ABC≌△DEF(AAS),故C不符合题意;D、∵∠A=∠D,∠E=∠B,AC=DF,∴△ABC≌△DEF(AAS),故D不符合题意;故选:A.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.5.(3分)正多边形的一个外角的度数为72°,则这个正多边形的边数为()A.4B.5C.6D.7【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【解答】解:∵正多边形的外角和是360°,∴360÷72=5,那么它的边数是5.故选:B.【点评】本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟记.6.(3分)如图是折叠凳及其侧面示意图,若AC=BC=18cm,则折叠凳的宽AB可能为()A.70cm B.55cm C.40cm D.25cm【分析】根据三角形的三边关系即可得到结论.【解答】解:∵AC=BC=18cm,∴0<AB<36,∴折叠凳的宽AB可能为25cm,故选:D.【点评】本题考查了三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.7.(3分)下列各式从左到右变形正确的是()A.B.C.D.【分析】利用分式的性质逐项判断即可.【解答】解:=,则A不符合题意;与不一定相等,则B不符合题意;==,则C符合题意;=,则D不符合题意;故选:C.【点评】本题考查分式的性质,此为基础且重要知识点,必须熟练掌握.8.(3分)如图,在△ABC中,∠BAC=90°,P是△ABC内一点,点D,E,F分别是点P 关于直线AC,AB,BC的对称点,给出下面三个结论:①AE=AD;②∠DPE=90°;③∠ADC+∠BFC+∠BEA=270°.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③【分析】连接AP,CP,BP,根据轴对称的性质得AC,AB,BC分别为PD,PE,PF的垂直平分线,再根据垂直平分线的性质得AD=AP,AE=AP,CD=CP,即可判断①③,根据∠BAC=90°,可得四边形AMPN为矩形,即可判断②.【解答】解:如图,连接AP,CP,BP,∵点D,E,F分别是点P关于直线AC,AB,BC的对称点,∴AC,AB,BC分别为PD,PE,PF的垂直平分线,∴AD=AP,AE=AP,∴AE=AD,故①正确;∵AC,AB分别为PD,PE的垂直平分线,∠BAC=90°,∴四边形AMPN为矩形,∴∠DPE=90°,故②正确;∵AC为PD的垂直平分线,∴AD=AP,CD=CP,∴∠ADP=∠APD,∠CDP=∠CPD,∴∠ADC=∠APC,同理得∠BFC=∠BPC,∠BEA=∠APB,∵∠APC+∠BPC+∠APB=360°,∴∠ADC+∠BFC+∠BEA=360°,故③错误;故选:A.【点评】本题考查了轴对称的性质,熟练掌握轴对称的性质是关键.二、填空题(本题共16分,每小题2分)9.(2分)若代数式有意义,则实数x的取值范围是x≠1.【分析】根据分母不为零的条件进行解题即可.【解答】解:∵代数式有意义,∴x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查分式有意义的条件,掌握分母不为零的条件是解题的关键.10.(2分)分解因式:a3﹣ab2=a(a+b)(a﹣b).【分析】首先提取公因式a,进而利用平方差公式分解因式得出答案.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).故答案为:a(a+b)(a﹣b).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.11.(2分)在平面直角坐标系xOy中,点A(﹣1,﹣1)关于x轴的对称点A′的坐标为(﹣1,1).【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可以直接得到答案.【解答】解:在平面直角坐标系xOy中,点A(﹣1,﹣1)关于x轴的对称点A′的坐标为(﹣1,1).故答案为:(﹣1,1).【点评】此题主要考查了关于x轴对称点的坐标特点,关键是掌握坐标的变化规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;(3)关于原点对称点的坐标特点:横、纵坐标均互为相反数.12.(2分)计算:(6a3﹣9a2)÷3a2=2a﹣3.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(6a3﹣9a2)÷3a2=2a﹣3.故答案为:2a﹣3.【点评】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.13.(2分)已知一个等腰三角形的一个内角为40°,则它的顶角等于40°或100°.【分析】分两种情况:当40°的内角为顶角时;当40°的角为底角时,利用三角形的内角和结合等腰三角形的性质可计算求解.【解答】解:当40°的内角为顶角时,这个等腰三角形的顶角为40°;当40°的角为底角时,则该等腰三角形的另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,故答案为40°或100°.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,注意分类讨论.14.(2分)如图,在△ABC中,DE是BC边的垂直平分线.若AB=8,AC=13,则△ABD 的周长为21.【分析】根据线段垂直平分线的性质得到DB=DC,再根据三角形的周长公式计算,得到答案.【解答】解:∵DE是BC边的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+DB=AB+AD+DC=AB+AC,∵AB=8,AC=13,∴△ABD的周长=8+13=21,故答案为:21.【点评】本题考查的是线段的垂直平分线的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.15.(2分)把一张长方形纸片沿对角线折叠,使折叠后的图形如图所示.若∠BAC=35°,则∠CBD=20°.【分析】由折叠可知∠BAE=∠BAC=35°,∠C=∠E=90°,由长方形形的性质可得FB∥AE,再利用平行线的性质可得∠FBA=∠BAE,利用直角三角形两锐角互余可求出∠CBA的度数,进而求出∠CBD的度数.【解答】解:如图,由折叠可知∠BAE=∠BAC=35°,∠C=∠E=90°,∴∠CBA=90°﹣∠BAC=90°﹣35°=55°,又∵BF∥AE,∴∠DBA=∠BAE=35°,∴∠CBD=∠CBA﹣∠DBA=55°﹣∠35°=20°.故答案为:20.【点评】此题主要考查的是折叠角的问题以及平行线的性质,解决此题的关键折叠时折痕是角平分线,同时正确利用平行线的性质.16.(2分)请阅读关于“乐数”的知识卡片,并回答问题:乐数我们将同时满足下列条件的分数称为“乐数”a.分子和分母均为正整数;b.分子小于分母;c.分子、分母均为两位数,且分子的个位数字与分母的十位数字相同;d.去掉分子的个位数字与分母的十位数字后,得到的分数与原来的分数相等.例如:去掉相同的数字6之后,得到的分数恰好与原来的分数相等,则是一个“乐数“.(1)判断:不是(填“是”或“不是”)“乐数”;(2)写出一个分子的个位数字与分母的十位数字同为9的“乐数”.【分析】(1)依据“乐数”的定义进行判断即可.(2)按题意写出符合要求的“乐数”即可.【解答】解:(1)由题知,去掉分数的分子和分母中的3,所得到的分数为,而,且,所以不是“乐数”.故答案为:不是.(2)因为分数的分子的个位数字与分母的十位数字同为9,则当分子为19时,因为分母的十位数字为9,所以19×5=95,且.而把分数的分子和分母中的9去掉后,得到的分数为,符合要求.故答案为:.【点评】本题考查整式的加减,理解“乐数”的定义是解题的关键.三、解答题(本题共60分,第17题5分,第18题10分,第19-23题每题5分,第24题6分,第25、26题每题7分)17.(5分)计算:.【分析】先根据有理数乘方的法则、绝对值的性质、零指数幂及负整数指数幂的运算法则分别计算出各数,再根据有理数的加减法则进行计算即可.【解答】解:=9﹣1+2+2=12.【点评】本题考查的是负整数指数幂、有理数乘方的法则、绝对值的性质、零指数幂的运算法则,熟知以上知识是解题的关键.18.(10分)(1)已知x2+2x﹣2=0,求代数式x(x﹣2)+(x+3)2的值.(2)计算:.【分析】(1)由x2+2x﹣2=0,得x2+2x=2,把所求式子化简后再代入即可;(2)先算括号内的,把除化为乘,再约分即可.【解答】解:(1)∵x2+2x﹣2=0,∴x2+2x=2,∴x(x﹣2)+(x+3)2=x2﹣2x+x2+6x+9=2(x2+2x)+9=2×2+9=4+9=13;(2)原式=•=•=.【点评】本题考查整式化简求值和分式的化简,解题的关键是掌握整式,分式的相关运算法则.19.(5分)小明用自制工具测量花瓶内底的宽.他将两根木条AC,BD的中点连在一起(即AO=CO,BO=DO),如图所示放入花瓶内底.此时,只需测量点D与点C之间的距离,即为该花瓶内底的宽,请证明你的结论.【分析】首先根据题意可得AO=CO,DO=BO,再加上对顶角相等可得△DCO≌△BAO,根据全等三角形的性质可得AB=CD.【解答】解:在△DCO和△BAO中,,∴△DCO≌△BAO(SAS),∴AB=CD,故只需测量点D与点C之间的距离,即为该花瓶内底的宽.故答案为:D,C.【点评】此题主要考查了全等三角形的应用,关键是掌握全等三角形对应边相等.20.(5分)如图,在△ABC中,∠C=90°,∠A=30°.在线段AC上求作一点D.使得.小明发现作∠ABC的平分线交AC于点D,点D即为所求.(1)使用直尺和圆规,依小明的思路作出点D(保留作图痕迹);(2)完成下面的证明.证明:∵∠A=30°,∠C=90°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=,∴∠ABD=∠A.∴AD=BD.在Rt△BCD中,∠CBD=30°,∴(30度所对的直角边是斜边的一半)(填推理依据).∴.【分析】(1)根据角平分线的作图方法作图即可.(2)根据三角形内角和定理、等腰三角形的性质、含30度角的直角三角形的性质填空即可.【解答】(1)解:如图,点D即为所求.(2)证明:∵∠A=30°,∠C=90°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=,∴∠ABD=∠A.∴AD=BD.在Rt△BCD中,∠CBD=30°,∴(30度所对的直角边是斜边的一半).∴.故答案为:60;BD;30度所对的直角边是斜边的一半.【点评】本题考查作图—复杂作图、含30度角的直角三角形,解题的关键是理解题意,灵活运用所学知识解决问题.21.(5分)如图所示的4×4网格是正方形网格,顶点是网格线交点的三角形称为格点三角形.如图1,△ABC为格点三角形.(1)∠ABC=90°;(2)在图2和图3中分别画出一个以点C1,C2为顶点,与△ABC全等,且位置互不相同的格点三角形.【分析】(1)由勾股定理逆定理即可判断△ABC是直角三角形,从而得到答案;(2)按照条件作出三角形即可.【解答】解:(1)由图可知,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴∠ABC=90°;故答案为:90;(2)如图:△A1B1C1,△A2B2C2即为所求.【点评】本题考查作图﹣应用与涉及作图,解题的关键是掌握勾股定理逆定理和全等三角形判定定理.22.(5分)列方程解应用题:无人配送以其高效、安全、低成本等优势,正在成为物流运输行业的新趋势.某物流园区使用1辆无人配送车平均每天配送的包裹数量是1名快递员平均每天配送包裹数量的5倍.要配送6000件包裹,使用1辆无人配送车所需时间比4名快递员同时配送所需时间少2天,求1名快递员平均每天可配送包裹多少件?【分析】设1名快递员平均每天可配送包裹x件,则1辆无人配送车平均每天可配送包裹5x件,利用工作时间=工作总量÷工作效率,结合“要配送6000件包裹,使用1辆无人配送车所需时间比4名快递员同时配送所需时间少2天”,可列出关于x的分式方程,解之经检验后,即可得出结论.【解答】解:设1名快递员平均每天可配送包裹x件,则1辆无人配送车平均每天可配送包裹5x件,根据题意得:﹣=2,解得:x=150,经检验,x=150是所列方程的解,且符合题意.答:1名快递员平均每天可配送包裹150件.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.(5分)如图,四边形ABCD中,AB=AC,∠D=90°,BE⊥AC于点F,交CD于点E,连接EA,EA平分∠DEF.(1)求证:AF=AD;(2)若BF=7,DE=3,求CE的长.【分析】(1)证出∠AED=∠AEF,由角平分线的性质可得出结论;(2)证明Rt △ABF ≌△RtACD (HL ),由全等三角形的性质可得出BF =CD =7,则可得出答案.【解答】(1)证明:∵∠D =90°,∴AD ⊥DE ,∵EA 平分∠DEF ,∴∠EAD =∠EAF ,∴∠AED =∠AEF ,又∵AF ⊥EF ,∴AF =AD ;(2)解:在Rt △ABF 和△RtACD中,,∴Rt △ABF ≌△RtACD (HL ),∴BF =CD =7,∵DE =3,∴CE =CD ﹣DE =7﹣3=4.【点评】本题考查了全等三角形的判定与性质,角平分线的性质,熟练掌握全等三角形的判定与性质是解题的关键.24.(6分)小明设计了一个净水装置,将杂质含量为n 的水用m 单位量的净水材料过滤一次后,水中的杂质含量为.利用此净水装置,小明进行了进一步的探究:现有杂质含量为1的水.(1)用2单位量的净水材料将水过滤一次后,水中杂质含量为;(2)小明共准备了6a 单位量的净水材料,设计了如下的三种方案:方案A 是将6a 单位量的净水材料一次性使用,对水进行过滤;方案B 和方案C 均为将6a 单位量的净水材料分成两份,对水先后进行两次过滤.三种方案的具体操作及相关数据如下表所示:方案编号第一次过滤用净水材料的单位量水中杂质含量第二次过滤用净水材料的单位量第二次过滤后水中杂质含量A 6a //B5a aC4a2a①请将表格中方案C的数据填写完整;②通过计算回答:在这三种方案中,哪种方案的最终过滤效果最好?(3)当净水材料总量为6a单位量不变时,为了使两次过滤后水中的杂质含量最少,小明应将第一次净水材料用量定为3a(用含a的式子表示).【分析】(1)根据水中的杂质含量即可求解;(2)①同样根据水中的杂质含量即可求解;②当第一次净水材料用量定为6a、5a、4a时,用三次最终过滤后的水中杂质含量相比较即可;(3)将第一次净水材料用量定为6a、5a、4a时,4a的最终过滤效果最好,因此在将第一次净水材料用量定为6a、5a、4a、3a、2a、a时,发现将第一次净水材料用量定为5a 与a、4a与2a时的过滤效果一样,因此将第一次净水材料用量定为3a与4a的过滤效果进行比较,可得3a的最终过滤效果最好.【解答】解:(1)水中的杂质含量为,∴现有杂质含量为1的水,用2单位量的净水材料将水过滤一次后,水中杂质含量为=,故答案为:.(2)①方案C水中杂质含量:,第二次过滤后水中杂质含量:;②﹣=,∵a>0,∴5a2>0,(1+6a)(1+5a)(1+a)>0∴>,同理可得:>,∴<<,∴方案C的最终过滤效果最好;(3)将第一次净水材料用量定为3a时,第二次过滤后水中杂质含量为;将第一次净水材料用量定为2a时,第二次过滤后水中杂质含量为,结果与将第一次净水材料用量定为4a时相同;将第一次净水材料用量定为a时,第二次过滤后水中杂质含量为,结果与将第一次净水材料用量定为5a时相同;∵在将第一次净水材料用量定为6a、5a、4a时,4a的最终过滤效果最好,同理,可得﹣<0,∴将第一次净水材料用量定为3a时,其最终过滤效果最好,∴为了使两次过滤后水中的杂质含量最少,小明应将第一次净水材料用量定为3a.故答案为:3a.【点评】本题考查的是代数式的相关知识,解题的关键是正确运用代数式的减法、乘法与加法运算.25.(7分)如图,在△ABC中,∠ABC=90°,AB=BC,作直线AP,使得45°<∠PAC <90°.过点B作BD⊥AP于D,在DA的延长线上取点E,使DE=BD.连接BE,CE.(1)依题意补全图形;(2)若∠ABD=α,求∠CBE(用含α的式子表示);(3)用等式表示线段AE,CE,DE之间的数量关系,并证明.【分析】(1)由题意画出图形即可;(2)证出∠DBE=∠DEB=45°,由直角三角形的性质可得出答案;(3)在AD延长线上取点F,使DF=AD,连接BF,证明△BEF≌△BEC(SAS),由全等三角形的性质得出FE=CE,则可得出结论.【解答】解:(1)依题意补全图形如下:(2)∵BD⊥AP于D,∴∠BDE=90°,∵BD=DE,∴∠DBE=∠DEB=45°,∵∠ABD=α,∴∠ABE=∠DBE﹣∠ABD=45°﹣α.∵∠ABC=90°,∴∠CBE=∠ABC﹣∠ABE=45°+α;(3)AE+CE=2DE.证明:如图,在AD延长线上取点F,使DF=AD,连接BF,∵BD⊥AP,AD=DF,∴BA=BF.∴∠FBD=∠ABD=α,∵∠DBE=45°,∴∠EBF=∠DBE+∠DBF=45°+α,∴∠EBF=∠CBE,∵AB=BC,∴BF=BC,∵BE=BE,∴△BEF≌△BEC(SAS),∴FE=CE,∵AE=DE﹣AD,CE=FE=DE+DF,AD=DF,∴AE+CE=2DE.【点评】本题是三角形综合题,考查了全等三角形的判定与性质,等腰三角形的性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.26.(7分)在平面直角坐标系xOy中,直线l过原点且经过第三、第一象限,l与x轴所夹锐角为n°.对于点P和x轴上的两点M,N,给出如下定义:记点P关于直线l的对称点为Q,若点Q的纵坐标为正数,且△MNQ为等边三角形,则称点P为M,N的n°点.(1)如图1,若点M(2,0),N(4,0),点P为M,N的45°点,连接OP,OQ.①∠POQ=30°;②求点P的纵坐标;(2)已知点M(m,0),N(m+t,0).①当t=2时,点P为M,N的60°点,且点P的横坐标为﹣2,则m=6;②当m=﹣2时,点P为M,N的30°点,且点P的横坐标为2,则t=3或﹣6.【分析】(1)①如图1,过点Q作QE⊥x轴于E,过点P作PF⊥y轴于F,根据定义:记点P关于直线l的对称点为Q,若点Q的纵坐标为正数,且△MNQ为等边三角形,则称点P为M,N的n°点.可知△MNQ为等边三角形,l与x轴所夹锐角为45°,则QM =MN=2,ME=MN=1,∠QMN=60°,即可求得答案;②先证明△POF≌△QOE(AAS),根据全等三角形的性质即可求得答案;(2)①过点Q作QE⊥x轴于E,过点P作PF⊥y轴于F,作PK∥y轴交直线l于K,交x轴于T,连接KQ交x轴于W,连接PQ交直线l于L,根据定义可得QE=,OE =m+1,OP=OQ,∠KOT=∠LOM=60°,P、Q关于直线l对称,再由勾股定理即可求得答案;②分两种情况:t>0或t<0,分别画出图象,结合定义即可求得答案.【解答】解:(1)①如图1,过点Q作QE⊥x轴于E,过点P作PF⊥y轴于F,∵M(2,0),N(4,0),∴MN=2,OM=2,∵△MNQ为等边三角形,QE⊥MN,∴QM=MN=2,ME=MN=1,∠QMN=60°,∴QE===,OE=OM+ME=2+1=3,∵OM=QM,∴∠QOM=∠OQM=30°,∵点P为M,N的45°点,∴l与x轴所夹锐角为45°,∵点P关于直线l的对称点为Q,∴∠POQ=2×(45°﹣30°)=30°,OP=OQ,∠POF=∠QOE=30°,故答案为:30.②在△POF和△QOE中,,∴△POF≌△QOE(AAS),∴OF=OE=3,PF=QE=,∴P(,3);(2)①∵M(m,0),N(m+t,0),∴MN=m+t﹣m=t,∴当t=2时,MN=2,如图2,过点Q作QE⊥x轴于E,过点P作PF⊥y轴于F,作PK∥y轴交直线l于K,交x轴于T,连接KQ交x轴于W,连接PQ交直线l于L,∵点P为M,N的60°点,∴QE=,OE=m+1,OP=OQ,∠KOT=∠LOM=60°,∴∠PKO=30°,∵P、Q关于直线l对称,∴PQ⊥l,PK=QK,∠QKL=∠PKL=30°,。
辽宁省沈阳市铁西区2023-2024学年八年级上学期期末数学试题(含解析)

A .正数B .负数C .有理数2.如图,直线,则的度数为(A .B 3.若直线(是常数,A .B 4.下列计算正确的是(,45,20AB CD ABE D ∠=∠=︒︒∥E ∠20︒y kx =k 2-35︒45︒A.B.7.《九章算术》是中国古代重要的数学著作,其中盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会A .该函数的最大值为7C .当时,对应的函数值第二部分二、填空题(本题共5小题,每小题14.同一地点从高空中自由下落的物体,物体的高度有关. 若物体从离地面为间为(单位:),且1x =t s t三、解答题(本题共过程)16.(1)计算:(2)解二元一次方程组:18.用二元一次方程组解应用题:根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨乙地降价5元. 已知销售单价调整前甲地比乙地少整前甲、乙两地该商品的销售单价.19.如图,在四边形中,(1)试说明:(2)若,平分252+ABCD AD E ECD ∠=∠60E ∠=︒CE(1)在“摄影”测试中,七位评委给小涵打出的分数如下:(2)求的值;(3)学校决定根据总评成绩择优选拔12名小记者,试分析小涵能否入选,并说明理由.21.如图1,已知向以的速度匀速运动到点. 图2是点化的关系图象.n ,,ABD CBD AB AD CB =V V ≌1cm/s B(1)__________;(2)求的值.22.要制作200个两种规格的顶部无盖木盒,体无盖木盒,种规格是长、宽、高各为有200张规格为的木板材,对该种木板材有甲、割、拼接等板材损耗忽略不计.(1)设制作种木盒个,则制作种木盒__________个;若使用甲种方式切割的木板材则使用乙种方式切割的木板材__________张;(2)若200张木板材恰好能做成200个两种规格的无盖木盒,请分别求出数和使用甲、乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元. 根据市场调研,种木盒的销售单价定为元,种木盒的销售单价定为元,在(2)的条件下,请直接写出这批木盒的销售利润(用含的式子表BD =a ,A B B 20cm,20cm,10cm 40cm 40cm ⨯A x B ,A B ,A B A a B 120a ⎛⎫- ⎪w a(2)如图2,在等腰直角三角形点在直线下方,把【问题应用】若,求【问题迁移】D BC 42,32BC BD ==7.D【分析】直接利用每人出九钱,会多出答案.,四边形是正方形,,,∴90DGH ∠=︒ ABCD 6AD AB ∴==90A ∠=45ADB ABD ∴∠=∠=︒45GHD GDN ∴∠=∠=︒17.【分析】本题主要考查了平行线的性质,三角形的内角和,解题的关键是掌握两直线平行,内错角相等,三角形的内角和为180度;根据三角形的内角和,得出,,再根据平行线的性质得出,最后根据即可求解.【详解】解:∵,∴,∵,∴,∵,∴,∴.18.调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元【分析】本题主要考查了二元一次方程组的实际应用,设调整前甲地该商品的销售单价x 元,乙地该商品的销售单价为y 元,根据“甲地上涨,乙地降价5元. 已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元”列出方程组求解即可.【详解】解:设调整前甲地该商品的销售单价x 元,乙地该商品的销售单价为y 元,,解得:,答:调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元.19.(1)见解析(2)【分析】本题考查了平行线的判定与性质,角平分线,三角形内角和定理.熟练掌握平行线的判定与性质,角平分线,三角形内角和定理是解题的关键.(1)由,可得,则,,进而结论得证;(2)由平分,可得,则,根据,计算求解即可.15CED ∠=︒60ACB ∠=︒45DEF ∠=︒60CEF ACB ∠=∠=︒CED CEF DEF ∠=∠-∠30,90∠=︒∠=︒A B 60ACB ∠=︒EF BC ∥60CEF ACB ∠=∠=︒90,45EDF F ∠=︒∠=︒45DEF ∠=︒15CED CEF DEF ∠=∠-∠=︒10%()10110%15x y x y +=⎧⎨++=-⎩4050x y =⎧⎨=⎩=60B ∠︒AD BC ∥B EAD ∠=∠EAD D ∠=∠AE CD ∥CE BCD ∠BCE ECD ∠=∠60ECD BCE E ∠=∠=︒∠=180B BCE E ∠=︒∠-∠-22.(1),(2)故制作种木盒乙种方式切割的木板材(3)()200x -A 50850w a =+【点睛】本题主要考查了等边三角形的性质,全等三角形的判定和性质,勾股定理,折叠的性质,熟练掌握相关性质定理,正确画出辅助线,构造直角三角形是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上学期期末数学试卷 (解析版)一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.如图,一棵大树在离地面3m ,5m 两处折成三段,中间一段AB 恰好与地面平行,大树顶部落在离大树底部6m 处,则大树折断前的高度是( )A .9mB .14mC .11mD .10m3.如图,在ABC ∆中,AB AC =,AD 是边BC 上的中线,若5AB =,6BC =,则AD 的长为( )A .3B 7C .4D 114.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( ) A .a >bB .a =bC .a <bD .以上都不对5.如果m 是任意实数,则点()P m 4m 1-+,一定不在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.下列计算,正确的是( )A .a 2﹣a=aB .a 2•a 3=a 6C .a 9÷a 3=a 3D .(a 3)2=a 67.下列一次函数中,y 随x 增大而增大的是( )A .y=﹣3xB .y=x ﹣2C .y=﹣2x+3D .y=3﹣x8.点P(-2,3)关于x 轴的对称点的坐标为( ) A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 9.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( )A .(﹣2,﹣3)B .(2,﹣3)C .(﹣4,3)D .(3,﹣4)10.如图,若BD 为等边△ABC 的一条中线,延长BC 至点E ,使CE =CD =1,连接DE ,则DE 的长为( )A .3 B .3C .5 D .5二、填空题11.如图,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E ,若3PE =,则点P 到AB 的距离是______.12.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.13.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.14.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______.15.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.16. 在实数范围内分解因式35x x -=___________.17.如图,在平面直角坐标系中,函数y=﹣2x 与y=kx+b 的图象交于点P (m ,2),则不等式kx+b >﹣2x 的解集为_____.18.如图,等腰直角三角形ABC 中, AB=4 cm.点 是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.19.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.20.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.三、解答题21.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算.22.分别画出满足下列条件的点:(尺规作图,请保留作图痕迹,不写作法.作图痕迹请加粗加黑!)(1)在边BC上找一点P,使P到AB和AC的距离相等;(2)在射线AP上找一点Q,使QA QC.23.如图,四边形ABCD中,AC=5,AB=4,CD=12,AD=13,∠B=90°.(1)求BC边的长;(2)求四边形ABCD的面积.24.如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC长分别为13米、20米.(1)若拉索AB⊥AC,求固定点B、C之间的距离;(2)若固定点B、C之间的距离为21米,求主梁AD的高度.25.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.27.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0Bb 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.28.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).29.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.30.直角三角形ABC中,90ACB∠=︒,直线l过点C.(1)当AC BC=时,如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E,ACD与CBE△是否全等,并说明理由;(2)当8AC cm=,6BC cm=时,如图2,点B与点F关于直线l对称,连接BF CF、,点M是AC上一点,点N是CF上一点,分别过点M N、作MD⊥直线l于点D,NE⊥直线l于点E,点M从A点出发,以每秒1cm的速度沿A C→路径运动,终点为C,点N从点F出发,以每秒3cm的速度沿F C B C F→→→→路径运动,终点为F,点,M N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒,当CMN△为等腰直角三角形时,求t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.【详解】解:∵油箱中有油4升,每小时耗油0.5升,∴y=4-0.5x,∵4-0.5x≥0,∴x≤8,∴x的取值范围是0≤x≤8,所以,函数图象为:故选:D.【点睛】本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.2.D解析:D【解析】【分析】作BD⊥OC于点D,首先由题意得:AO=BD=3m,AB=OD=2m,然后根据OC=6米,得到DC=4 m,最后利用勾股定理得BC的长度即可.【详解】解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=5-3=2m,∵OC=6m,∴DC=6-2=4m,∴由勾股定理得:,∴旗杆的高度为5+5=10m,故选:D.【点睛】本题考查了勾股定理的应用,正确作出辅助线,构造直角三角形是解答本题的关键.3.C解析:C【解析】【分析】首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB=DC12=CB,AD⊥BC,再利用勾股定理求出AD的长.【详解】∵AB=AC,AD是边BC上的中线,∴DB=DC12=CB=3,AD⊥BC,在Rt△ABD中,∵AD2+BD2=AB2,∴AD==4.故选:C.【点睛】本题考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出△ADB是直角三角形.4.A解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.5.D解析:D【解析】【分析】求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.【详解】∵()()m 1m 4m 1m 450+--=+-+=>, ∴点P 的纵坐标一定大于横坐标..∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标. ∴点P 一定不在第四象限. 故选D .6.D解析:D 【解析】 【详解】A 、a 2-a ,不能合并,故A 错误;B 、a 2•a 3=a 5,故B 错误;C 、a 9÷a 3=a 6,故C 错误;D 、(a 3)2=a 6,故D 正确, 故选D .7.B解析:B 【解析】 【分析】根据一次函数的性质对各选项进行逐一分析即可. 【详解】解:A 、∵一次函数y=﹣3x 中,k=﹣3<0,∴此函数中y 随x 增大而减小,故本选项错误;B 、∵正比例函数y=x ﹣2中,k=1>0,∴此函数中y 随x 增大而增大,故本选项正确;C 、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y 随x 增大而减小,故本选项错误;D 、正比例函数y=3﹣x 中,k=﹣1<0,∴此函数中y 随x 增大而减小,故本选项错误. 故选B . 【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.8.B解析:B 【解析】 【分析】根据平面直角坐标系中关于x 轴对称的点,横坐标相同,纵坐标互为相反数解答. 【详解】解:根据平面直角坐标系中对称点的规律可知,点P(-2,3)关于x轴的对称点坐标为(-2,-3).故选:B.【点睛】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.B解析:B【解析】【分析】首先确定各点所在象限,再根据到x轴的距离为3个单位可得此点的纵坐标的绝对值为3,进而可得答案.【详解】A、(﹣2,﹣3)在第三象限,故此选项不合题意;B、(2,﹣3)在第四象限,到x轴的距离为3个单位,故此选项符合题意;C、(﹣4,3)在第二象限,故此选项不合题意;D、(3,﹣4)在第四象限,到x轴的距离为4个单位,故此选项不符合题意;故选:B.【点睛】此题主要考查根据象限判定坐标,熟练掌握,即可解题.10.B解析:B【解析】【分析】由等边三角形的性质及已知条件可证BD=DE,可知BC长及BD⊥AC,在Rt△BDC中,由勾股定理得BD长,易知DE长.【详解】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=12∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD =DE ,∵BD 是AC 中线,CD =1,∴AD =CD =1,∵△ABC 是等边三角形,∴BC =AC =1+1=2,且BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==即DE =BD故选:B .【点睛】本题主要考查了等边三角形的性质,灵活利用等边三角形三线合一及三个角都是60度的性质是解题的关键. 二、填空题11.3【解析】【分析】根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可.【详解】解:∵点是的平分线上一点,且,∴P 点到AB 上的距离也是3.故答案为3.【点睛】本题考解析:3【解析】【分析】根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可.【详解】解:∵点P 是BAC ∠的平分线AD 上一点,且PE AC ⊥,∴P 点到AB 上的距离也是3.故答案为3.【点睛】本题考查了角平分线的性质,解决本题的关键是正确的理解题意,能够熟练掌握角平分线的性质.12.(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).【点睛】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.13.3-【解析】【分析】作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC的长度即为AF的长度. 【详解】解析:3-3【解析】【分析】作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC的长度即为AF的长度.【详解】解:如下图,作AH⊥BC于H.则∠AHC=90°,∵四边形形ABCD为长方形,∴∠B=∠C=∠EAB=90°,∵AF⊥CD,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°,∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==, 根据勾股定理2222213BH AB AH =-=-=∵BC=3, ∴33AF HC BC BH ==-=-.故填:3-3.【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.14.60【解析】【分析】根据题意可以判断为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2,,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.15.【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED ,GF 分别是AB ,AC 的垂直平分线,∴AE=BE ,AG=GC ,∴△AEG 的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED ,GF 分别是AB ,AC 的垂直平分线,∴AE=BE ,AG=GC ,∴△AEG 的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.16.【解析】提取公因式后利用平方差公式分解因式即可,即原式=.故答案为解析:(x x x -【解析】提取公因式后利用平方差公式分解因式即可,即原式=2(5)(x x x x x -=-.故答案为(.x x x17.x >﹣1【解析】【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【详解】当解析:x>﹣1【解析】【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【详解】当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为x>﹣1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.18.【解析】试题解析:连接CE,如图:∵△ABC和△ADE为等腰直角三角形,∴AC=AB,AE=AD,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=解析:42【解析】试题解析:连接CE,如图:∵△ABC和△ADE为等腰直角三角形,∴AB,AD,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=∠3,∵AC AE==AB AD∴△ACE∽△ABD,∴∠ACE=∠ABC=90°,∴点D从点B移动至点C的过程中,总有CE⊥AC,即点E运动的轨迹为过点C与AC垂直的线段,,当点D运动到点C时,,∴点E移动的路线长为cm.19.AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD解析:AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.20.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=12∠BAC,∵∠BAC=120°,∴∠BAD=12×120°=60°,故答案为:60°.【点睛】本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质.三、解答题21.(1)甲厂家所需金额为: 1680+80x;乙厂家所需金额为: 1920+64x;(2)16张.【解析】【分析】(1)根据甲乙两厂家的优惠方式,可表示出购买桌椅所需的金额;(2)令甲厂家的花费大于乙厂家的花费,解出不等式,求解即可确定答案.【详解】解:(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x;(2)由题意,得:1680+80x>1920+64x,解得:x>15.答:购买的椅子至少16张时,到乙厂家购买更划算.【点睛】本题考查一元一次不等式的应用,正确理解题目中的数量关系是本题的解题关键.22.(1)见解析;(2)见解析.【解析】【分析】(1)根据角平分线的性质可知,角平分线上的点到角两边的距离相等,故做角A的角平分线交BC于点P,P点即为所求.(2)根据垂直平分线的性质,垂直平分线上的点到线段两端点的距离相等,故作出线段AC的垂直平分线,交射线AP与点Q,Q点即为所求.【详解】作法:1.以点A为圆心,以任意长为半径画弧,两弧交角BAC两边于点M,N.2.分别以点M,N为圆心,以大于12MN的长度为半径画弧,两弧交于点D.3.作射线AD,交BC与点P,如图所示,点P即为所求.(2)作法:1.以线段的AC两个端点为圆心,以大于AC一半长度为半径分别在线段两边画相交弧;2得出相交弧的两个交点F、E;3用直尺连接这两个交点,所画得的直线与射线AP交与点Q,如图所示,点Q即为所求.【点睛】本题考查了角平分线的性质和垂直平分线的性质,根据角平分线和垂直平分线的作法即可解决问题,能够熟练掌握二者的作法是解决本题的关键.23.(1)3;(2)36.【解析】【分析】(1)先根据勾股定理求出BC的长度;(2)根据勾股定理的逆定理判断出△ACD是直角三角形,四边形ABCD的面积等于△ABC 和△ACD的面积和,再利用三角形的面积公式求解即可.【详解】解:(1)∵∠ABC=90°,AC=5,AB=4∴3=,(2)在△ACD 中,AC 2+CD 2= 52+122=169AD 2 =132=169,∴AC 2+CD 2= AD 2,∴△ACD 是直角三角形,∴∠ACD=90°;由图形可知:S 四边形ABCD =S △ABC +S △ACD = 12AB•BC+ 12AC•CD , =12×3×4+ 12×5×12, =36.【点睛】 本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.24.(1)BC 2)12米.【解析】【分析】(1)用勾股定理可求出BC 的长;(2)设BD=x 米,则BD=(21-x )米,分别在Rt ABD ∆中和Rt ACD ∆中表示出2AD ,于是可列方程22221320(21)x x -=--,解方程求出x,然后可求AD 的长.【详解】解:(1)∵AB ⊥AC∴=(2)设BD=x 米,则BD=(21-x )米,在Rt ABD ∆中,2222213AD AB BD x =-=-在Rt ACD ∆中,2222220(21)AD AC CD x =-=--,∴22221320(21)x x -=--,∴x=5,∴12AD =(米).【点睛】本题考查了勾股定理的应用,根据勾股定理列出方程是解题关键.25.(1)反比例函数解析式为y=12x;(2)点B 的坐标为(9,3);(3)△OAP 的面积=5.【解析】【分析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.【详解】(1)将点A(4,3)代入y=kx,得:k=12,则反比例函数解析式为y=12x;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴2243+,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=13x,由1312y xyx⎧=⎪⎪⎨⎪=⎪⎩可得点P坐标为(6,2),(负值舍去),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=12×(2+6)×3﹣12×6×2﹣12×2×1=5.【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.四、压轴题26.(1)5y x =+;(2)3)PB 的长为定值52 【解析】【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+.当0y =时,5x =-.当0x =时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=.解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,AM =∴由勾股定理,OM ==.180AOM AOB BON ∠+∠+∠=︒.90AOB ∠=︒.90AOM BON ∴∠+∠=︒.90AOM OAM ∠+∠=︒.BON OAM ∴∠=∠.在AMO ∆与OBN ∆中,90BON OAM AMO BNO OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS ∴∆≅∆.BN OM ∴==..(3)如图所示:过点E 作EG y ⊥轴于G 点.AEB ∆为等腰直角三角形,AB EB ∴=90ABO EBG ∠+∠=︒.EG BG ⊥,90GEB EBG ∴∠+∠=︒.ABO GEB ∴∠=∠.AOB EBG ∴∆≅∆.5BG AO ∴==,OB EG = OBF ∆为等腰直角三角形,OB BF ∴=BF EG ∴=.BFP GEP ∴∆≅∆.1522BP GP BG ∴===. 【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB ,求OM ,用勾股定理求AB ,再证AMO OBN ∆≅∆,构造 AOB EBG ∆≅∆,求BG ,再证BFP GEP ∆≅∆.27.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【解析】【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明. 【详解】 解:(1)21280a b a b --++-=,又∵|21|0a b --≥,280a b +-≥,|21|0a b ∴--=,280a b +-=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E 作//EF CD ,交y 轴于点F ,如图所示,则ECD CEF ∠=∠,2BCE ECD ∠=∠,33BCD ECD CEF ∴∠=∠=∠,过点O 作//OG AB ,交PE 于点G ,如图所示,则OGP BPE ∠=∠,PE 平分OPB ∠,OPE BPE ∴∠=∠,OGP OPE ∴∠=∠,由平移得//CD AB ,//OG FE ∴,FEP OGP ∴∠=∠,FEP OPE ∴∠=∠,CEP CEF FEP ∠=∠+∠,CEP CEF OPE ∴∠=∠+∠,CEF CEP OPE ∴∠=∠-∠,3()BCD CEP OPE ∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.28.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD =DE .证明:∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC ∠∠=,∠BDF =∠BCA∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴DF =BD∵点D 是BC 的中点∴BD =CD∴DF =CD∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠==∵ABC ∆是等边三角形,点D 是BC 的中点∴AD ⊥BC∴90ADC ∠︒=∵60BDF ADE ∠∠︒==∴30ADF EDC ∠∠︒==在ADF ∆与EDC ∆中AFD ECD DF CDADF EDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴()ADF EDC ASA ∆∆≌∴AD =DE ;(2)结论:AD =DE .证明:如下图,过点D 作DF ∥AC ,交AB于F∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF∥AC∴BFD BAC BDF BCA∠∠∠∠=,=∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴BF=BD∴AF=DC∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵∠ADC是ABD∆的外角∴60ADC B FAD FAD∠∠∠︒∠=+=+∵60ADC ADE CDE CDE∠∠∠︒∠=+=+∴∠FAD=∠CDE在AFD∆与DCE∆中AFD DCEAF CDFAD EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()AFD DCE ASA∆∆≌∴AD=DE;(3)如下图,ADE∆是等边三角形.证明:∵BC CD=∴AC CD=∵CE平分ACD∠∴CE垂直平分AD∴AE=DE∵60ADE∠=︒∴ADE∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键. 29.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.30.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.。