解一元一次不等式
初中数学解一元一次不等式(组)专题

5 ∴不等式组的解集是 <x≤3.
2
其解集在数轴上表示为:
x-3≤2,①
11.求不等式组 1
的正整数解.
1+2x>2x②
解:解不等式①,得 x≤5.
2 解不等式②,得 x<3.
2 ∴不等式组的解集为 x<3.
∴这个不等式组不存在正整数解.
1
3
12.(十堰中考)x 取哪些整数值时,不等式 5x+2>3(x-1)与 x≤2- x 都
2
2
成立?
5x+2>3(x-1),①
解:根据题意解不等式组1
3
2x≤2-2x.②
5 解不等式①,得 x>- .
2
解不等式②,得 x≤1.
5 ∴- <x≤1.
2
故满足条件的整数有-2,-1,0,1.
2x+y=-3m+2,
13.(呼和浩特中考)若关于 x,y 的二元一次方程组
的
x+2y=4
3 解满足 x+y>- ,求出满足条件的 m 的所有正整数值.
2+2x≥1+x.②
解:解不等式①,得x>2. 解不等式②,得x≥-1. ∴不等式组的解集为x>2.
x-1>2x,① 8.(泰州中考)解不等式组:1
2x+3<-1.②
解:解不等式①,得x<-1. 解不等式②,得x<-8. ∴不等式组的解集为x<-8.
2(x+2)≤x+3,①
9.解不等式组x x+1
解一元一次不等式(组)专题
类型1 解一元一次不等式
x x-3
1.(安徽中考)解不等式: >1- .
3
6
解:去分母,得2x>6-(x-3).
去括号,得2x>6-x+3.
解一元一次不等式的六个技巧

解一元一次不等式的六个技巧解一元一次不等式的基本方法是五步法:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.但,怎样才能正确而迅速地解一元一次不等式呢同学们可结合一元一次不等式的特点,采取一些灵活、简捷的方法与技巧.现撷取几例介绍,供大家参考:一、巧抵消例1、 解不等式53x —23-x >9+426x - 解析:由于426x -=-23-x ,原不等式可变为:53x —23-x >9-23-x 则:53x >9,所以x >15 评注:把原不等式中相关的式子变形,然后进行抵消,使解题过程变得简捷.其中蕴含着整体思想.二 、巧凑整例2 、解不等式25.0125.05.2x x +-<-. 两边同乘以4得 x x 2210--<-.移项、合并同类项得 x<-12.评注:本题若两边同乘以2,直接去分母,也可以解决问题.但,考虑到分子中的小数,由不等式的性质,不等式两边同乘以一个适当的数“2”,可将小数转化为整数,这样,为下面的运算提供了方便.三、巧拆分例3、 解不等式13965401072814+-<---x x x . 由不等式变形得 132)82(42+-<---x x x .去括号、移项、合并同类项得 8x<4.则x<21 评注:当分子里包含的各项系数能被分母整除时,可以把它拆开,这样省去了去分母这一步骤,也就简化了运算过程,这样还能少犯运算错误,直可谓是一举两得.四、巧分配例4、 解不等式x x ---]21432[23)(>-1 解析:注意到13223=⨯,采用乘法分配律去括号时,可由外往里, 则有:x x ---314>-1,所以43x ->3,故,x <-4. 评注:去括号一般是内到外,也就是,按小、中、大括号的顺序进行.但,有时可反其道而行之,即由外到内去括号,这往往能另辟捷径.五、巧合并例5、 解不等式 )2()1(41)2(3)1(43--->---x x x x . 由不等式变形得 )2()2(3)1(41)1(43--->-+-x x x x . 去括号、移项、合并同类项得 -x>-3.∴x<3.评注:直接去括号较繁,注意到左边各项均含有因式(x-1) 、(x-2),根据不等式括号内代数式的特征把 (x-1) 、(x-2) 看作一个整体,先带括号进行移项、合并同类项运算就会简便得多.六、巧整合例6、 解不等式 3{2x-1-[2(2x-1)+3]}>-3.解析: 把2x-1看作一个整体,则有: 3{(2x-1)-[2(2x-1)+3]}>-3. 大、中括号得,3(2x-1)-6(2x-1)-9>-3,整体合并,得-3(2x-1)>6,所以有,x <21-. 评注:本题如果按照常规解法,也是可行的,但运算量较大.这种方法中,把2x-1看作一个整体,去括号、合并同类项后,再解不等式,就显得轻松多了.可见得,在解题过程中,若恰当运用整体思想,则大有收益,妙不可言.。
解一元一次不等式(选择题)

北京市七年级数学下学期期末三年(2020-2022)试题知识点分类汇编-18解一元一次不等式(选择题)1.(2022春•怀柔区校级期末)不等式x+1>0的解是()A.﹣3B.﹣2C.﹣1D.02.(2022春•石景山区期末)定义一种运算:a*b=,则不等式2x*(x+3)>1的解集是()A.x>或x>﹣2B.x>或﹣2<x<3C.x≥3或﹣2<x<3D.x≥3或2<x<33.(2022春•朝阳区校级期末)在平面直角坐标系中,如果点P(﹣1,﹣2+m)在第三象限,那么m的取值范围为()A.m<2B.m≤2C.m≤0D.m<04.(2022春•海淀区校级期末)一个一元一次不等式的解集在数轴上表示如图所示,则该不等式的解集为()A.x≥2B.x<2C.x>2D.x≤25.(2022春•西城区校级期末)如果关于x的不等式3x﹣a≤﹣1的解集如图所示,则a的值是()A.a=﹣1B.a=﹣2C.a≤﹣1D.a≤﹣26.(2022春•西城区校级期末)不等式x﹣3≤3x+1的解集在数轴上表示正确的是()A.B.C.D.7.(2021春•北京期末)我们定义一个关于实数a,b的新运算,规定:a*b=3a﹣2b,例如,4*5=3×4﹣2×5.若实数m满足m*2<1,则m的取值范围是()A.B.C.D.8.(2021春•丰台区校级期末)已知关于x的方程2x﹣a=x﹣1的解是非负数,则a的取值范围为()A.a≥1B.a>1C.a≤1D.a<19.(2021春•海淀区校级期末)如果关于x的不等式(4﹣3a)≥0.5(3x+5a)的解集如图所示,则a的值是()A.a=﹣1B.a=﹣2C.a=2D.a=110.(2021春•顺义区期末)已知关于x,y的二元一次方程ax+b=y,当x分别取值时对于y的值如表所示,则关于x的不等式ax+b<0的解集为()x…﹣10123…y…3210﹣1…A.x<0B.x>0C.x<2D.x>211.(2021春•昌平区期末)已知x+y=3,如果x<y且x,y是正整数,那么不等式﹣kx+y>0中k的取值范围是()A.k<2B.k<﹣2C.k<D.k<﹣12.(2021春•西城区校级期末)不等式x﹣1>0的解集在数轴上表示为()A.B.C.D.13.(2021春•延庆区期末)不等式x﹣2>0的解集在数轴上表示为()A.B.C.D.14.(2021春•石景山区校级期末)不等式2﹣x<1的解集在数轴上表示正确的是()A.B.C.D.15.(2021春•西城区校级期末)不等式+2>x的解集是()A.x<5B.x>﹣5C.x>﹣1D.x<116.(2020春•丰台区期末)不等式x﹣1<0的解集在数轴上表示正确的是()A.B.C.D.17.(2020春•海淀区校级期末)关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是()A.m<﹣1B.m>﹣1C.m>0D.m<018.(2020春•东城区期末)我们定义一个关于实数a,b的新运算,规定:a*b=4a﹣3b.例如:5*6=4×5﹣3×6,若m满足m*2<0,则m的取值范围是()A.m<B.m>C.m<D.m>19.(2020春•延庆区期末)不等式3x+2≤2x+1的解集在数轴上表示正确的是()A.B.C.D.20.(2020春•昌平区期末)不等式2x≥8的解集在数轴上表示正确的是()A.B.C.D.21.(2020春•房山区期末)不等式x﹣1<0的解集为()A.x<﹣1B.x<1C.x>﹣1D.x>122.(2020春•房山区期末)关于x的方程x﹣2m=1的解为正数,则m的取值范围是()A.m<﹣B.m<C.m>﹣D.m>23.(2020春•海淀区校级期末)下列各数中,不是不等式2(x﹣5)<x﹣8的解的是()A.5B.﹣5C.﹣3D.﹣424.(2020春•东城区校级期末)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.参考答案与试题解析1.【解析】解:∵x+1>0,∴x>﹣1,A、﹣3<﹣1,故A不符合题意;B、﹣2<﹣1,故B不符合题意;C、﹣1=﹣1,故C不符合题意;D、0>﹣1,故D符合题意;【答案】D.2.【解析】解:由新定义得或,解得x≥3或﹣2<x<3.【答案】C.3.【解析】解:由题意知﹣2+m<0,则m<2,【答案】A.4.【解析】解:不等式的解集是x≤2,【答案】D.5.【解析】解:∵3x﹣a≤﹣1,∴3x≤a﹣1,则x≤,由数轴知x≤﹣1,∴=﹣1,解得a=﹣2,【答案】B.6.【解析】解:不等式x﹣3≤3x+1,移项得:x﹣3x≤3+1,合并同类项得:﹣2x≤4解得:x≥﹣2;在数轴上表示为:【答案】D.7.【解析】解:根据题中的新定义化简得:3m﹣4<1,移项得:3m<5,解得:m<.【答案】D.8.【解析】解:原方程可整理为:(2﹣1)x=a﹣1,解得:x=a﹣1,∵关于x的方程2x﹣a=x﹣1的解是非负数,∴a﹣1≥0,解得:a≥1.【答案】A.9.【解析】解:(4﹣3a)≥0.5(3x+5a),4﹣3a≥1.5x+2.5a,﹣1.5x≥2.5a+3a﹣4,﹣1.5x≥5.5a﹣4,x≤﹣,由数轴可得:x≤﹣1,∴﹣=﹣1,解得:a=1,【答案】D.10.【解析】解:由题意得出,解得,则不等式为﹣x+2<0,解得x>2,【答案】D.11.【解析】解:∵x+y=3,x<y且x,y是正整数,∴x=1,y=2,∵﹣kx+y>0,∴﹣k+2>0,∴k<2,【答案】A.12.【解析】解:不等式x﹣1>0,解得:x>1.表示在数轴上为:【答案】A.13.【解析】解:x﹣2>0,x>2,在数轴上表示不等式的解集为:,【答案】D.14.【解析】解:不等式移项合并得:﹣x<﹣1,解得:x>1,表示在数轴上,如图所示【答案】B.15.【解析】解:+2>x,去分母得:2x﹣1+6>3x,移项得:﹣x>﹣5,系数化为1得:x<5.【答案】A.16.【解析】解:x﹣1<0,x<1,【答案】D.17.【解析】解:∵不等式(m+1)x>m+1的解集为x<1,∴m+1<0,即m<﹣1,【答案】A.18.【解析】解:∵m*2<0,∴4m﹣3×2<0,则4m<6,∴m<,【答案】A.19.【解析】解:移项,得:3x﹣2x≤1﹣2,合并同类项,得:x≤﹣1,【答案】B.20.【解析】解:两边都除以2,得:x≥4,【答案】C.21.【解析】解:∵x﹣1<0,∴x<1,【答案】B.22.【解析】解:∵x﹣2m=1,∴x=2m+1,∵方程的解为正数,∴2m+1>0,解得m>﹣,【答案】C.23.【解析】解:2(x﹣5)<x﹣8,2x﹣10<x﹣8,2x﹣x<10﹣8,x<2,【答案】A.24.【解析】解:∵x+1≥2,∴x≥1.【答案】A.。
一元一次不等式变号法则

一元一次不等式变号法则不等式的解就是能够使不等式成立的实数x的取值范围。
在解一元一次不等式时,可以使用变号法则来确定不等式的解集。
变号法则是指在一元一次不等式的左边加上或减去同一个正数(或负数)时,不等式的符号会发生变化。
具体来说,有以下三个规则:规则1:不等式两边同加(或减)一个正数时,不等式的符号不变。
例如,若 ax + b > 0,则 ax + b + c > 0。
规则2:不等式两边同加(或减)一个负数时,不等式的符号发生变化。
例如,若 ax + b > 0,则 ax + b - c < 0。
规则3:不等式两边同乘以一个正数时,不等式的符号不变。
例如,若 ax + b > 0,且 c > 0,则 acx + bc > 0。
利用变号法则,可以按照以下步骤求解一元一次不等式:步骤 1:将一元一次不等式化为形如 ax + b > 0 或 ax + b < 0。
步骤2:对于不等式两边的项,找到其中的一个变号点。
变号点是指使不等式中其中一项为0的取值。
步骤3:根据变号法则确定不等式的解集。
如果不等式中方程等号的一侧恰好有一个变号点,那么这个变号点就是不等式的解。
如果不等式中方程等号两侧分别有两个变号点,那么不等式的解在这两个变号点之间。
如果不等式中方程等号的一侧没有变号点,那么解集为空集。
变号法则的原理是基于实数轴上数的大小关系,在不等式两边加减同一个数或乘同一个正数时,不等式的大小关系不变,只是相对零点向右或左移动。
举一个例子来说明:要求解不等式2x-3>0。
首先将不等式化为标准形式,得到2x>3接下来需要找到变号点。
由于2x是一次项,所以变号点就是使得2x=0的点,即x=0。
然后根据变号法则确定不等式的解集。
当x<0时,2x<0,不满足2x>3,所以x<0不是原不等式的解。
当x>0时,2x>0,满足2x>3,所以x>0是原不等式的解。
中考数学中如何求解一元一次不等式

中考数学中如何求解一元一次不等式关键信息项1、一元一次不等式的定义及一般形式名称:____________________________解释:____________________________2、求解一元一次不等式的基本步骤步骤 1:____________________________步骤 2:____________________________步骤 3:____________________________步骤 4:____________________________步骤 5:____________________________3、常见的不等式符号及其含义符号 1:____________________________含义 1:____________________________符号 2:____________________________含义 2:____________________________符号 3:____________________________含义 3:____________________________4、不等式的性质性质 1:____________________________性质 2:____________________________性质 3:____________________________11 一元一次不等式的定义一元一次不等式是指只含有一个未知数,且未知数的次数是 1,不等号两边都是整式的不等式。
其一般形式为:$ax + b > 0$(或$ax + b < 0$,$ax + b \geq 0$,$ax + b \leq 0$),其中$a$、$b$为常数,且$a \neq 0$。
111 与一元一次方程的区别一元一次方程是等式,而一元一次不等式是用不等号连接的式子。
方程的解是使等式成立的未知数的值,而不等式的解是使不等式成立的未知数的取值范围。
一元一次不等式组的解法步骤例题

一元一次不等式组的解法步骤一元一次不等式组是数学中常见的一类问题,它可以通过一定的方法和步骤得到解决。
在本文中,我们将针对一元一次不等式组的解法步骤进行全面评估,并提供例题来帮助读者更深入理解。
解法步骤:1. 确定不等式组的条件:我们需要明确所给出不等式组的条件。
不等式组通常包括多个不等式,我们需要确保每个不等式都满足一元一次不等式的标准形式,即ax+b>c或ax+b<c。
2. 求出每个不等式的解集:针对每个不等式,我们需要求出其解集。
这一步骤需要运用代数式的加减乘除法,并结合不等式的性质来确定不等式的解集。
3. 得出整体的解集:在求出每个不等式的解集之后,我们需要将这些解集合并起来,求得整体的解集。
在合并解集的过程中,需要注意考虑每个不等式的关系,以确保得出正确的整体解集。
下面我们通过一个具体的例题来展示以上的解法步骤:例题:求解不等式组 {2x+1>5, 3x-2<7}解法步骤:1. 确定不等式组的条件:给出的不等式组已经满足一元一次不等式的标准形式,因此不需要进行进一步的调整。
2. 求出每个不等式的解集:分别对每个不等式进行求解,得到2x>4和3x<9。
通过简单的代数运算,我们可以得到x>2和x<3。
3. 得出整体的解集:通过整合每个不等式的解集,我们可以得到最终的解集为2<x<3。
个人观点和理解:从上面的例题中可以看出,解决一元一次不等式组主要是通过逐步求解各个不等式,然后再将它们的解集合并起来,得到最终的整体解集。
在这个过程中,需要注意准确地运用代数运算,同时也要考虑不等式之间的关系,确保最终的解集是正确的。
总结回顾:通过本文的讲解和例题,我们对一元一次不等式组的解法步骤有了更深入的了解。
从确定条件、求解各个不等式到得出整体的解集,这些步骤是解决一元一次不等式组问题的关键。
我们也注意到在解题的过程中,需要不断地练习和总结,才能更熟练地应对各种类型的不等式组问题。
一元一次不等式方程

1
步骤一
将未知数移到方程的一边,使等号两侧的数字和未知数成为一个一元一次不等式。
2
步骤二
根据不等式符号确定解的范围,可以使用数轴或图像来表示。
3
步骤三
解读解所代表的意义,不等式中的正负号相反的项相 互消去,简化求解过程。
数轴表示
利用数轴表示解的范围,可视化 解的位置和数量。
实际应用
分数分式的应用广泛,如人均消 费、比例关系等。
利用图像解一元一次不等式方程
图像可以直观地展示一元一次不等式方程的解的范围和位置。通过绘制直线或曲线,可以更清楚地理解和解释 解的含义。
常见的一元一次不等式方程类型
大于不等式
表示一个数大于另一个数,使 用大于符号(>)表示。
小于不等式
表示一个数小于另一个数,使 用小于符号(<)表示。
大于等于不等式
比较法
通过比较大小来确定解的范围, 特别适用于不等式中含有相同项 的情况。
同号不等式的解法
加法减法法则
对同号不等式的左右两侧同 时加减同一个数,可以保持 不等式的符号不变。
乘法法则
对同号不等式的左右两侧同 时乘除同一个正数,可以保 持不等式的符号不变。
特殊情况
同号不等式中含有零时,需 特别注意解的情况。
表示一个数大于或等于另一个 数,使用大于等于符号(≥)表 示。
括号的应用
括号在解一元一次不等式方程时起到分组的作用,影响不等式的计算顺序和 解的范围。通过掌握括号的应用,可以更灵活地解题。
分数分式的应用
基本概念
分数分式包含有分数的方程,可 以通过消去分母或通分的方法来 解。
注意事项
需要注意分数分式的定义域和解 的范围,避免进行无效计算。
一元一次不等式组的解法经典例题透析

经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。
思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。
解析:解不等式①,得x≥-;解不等式②,得x<1。
所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。
总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。
有等号画实心圆点,无等号画空心圆圈。
举一反三:【变式1】解不等式组:解析:解不等式①,得:解不等式②,得:在数轴上表示这两个不等式的解集为:∴原不等式组的解集为:【变式2】解不等式组:思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别解法一:解不等式①,得:解不等式②,得:解不等式③,得:在数轴上表示这三个不等式的解集为:∴原不等式组的解集为:解法二:解不等式②,得:解不等式③,得:由与得:再与求公共解集得:.【变式3】解不等式组:解析:解不等式①得:x>-2解不等式②得:x<-7∴不等式组的解集为无解【变式4】解不等式:-1<≤5思路点拨:(1)把连写不等式转化为不等式组求解;(2)根据不等式的性质,直接求出连写不等式的解集。
解法1:原不等式可化为下面的不等式组解不等式①,得x>-1,解不等式②,得x≤8所以不等式组的解集为-1<x≤8。
即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。
所以原不等式的解集为-1<x≤8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组的整数解。
思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/4/1
求下列不等式的正整数解: (1)-4x≥-12; (2)3x-11<0.
2020/4/1
2020/4/1
2020/4/1
学习目标
1、使学生了解一元一次不等式的概念; 2、使学生掌握一元一次不等式的解法; 3、让学生通过联系方程的基本变形,自
己探索一元一次不等式的一般步骤, 体会数学中的比较与转化的作用。
2020/4/1
自学提示
自学教材P47-48,思考下列问题: 1、什么是一元一次不等式?与一元一次方程有何 异同?
2020/4/1
2020/4/1
练习二:
x取什么值时,代数式
3 x 的 8值: 2
①大于7–x ③不大于7–x
②小于7–x ④不小于7–x
2020/4/1
2020/4/1
8 3
七嘴八舌
下列解不等式过程是否正确,如果不正确
请给予改正。
解不等式
x-
x 2
+
x+1 3
<1+
x+8 6
去分母得 6x-3x+2(x+1)< 16+x+8
观察下列不等式找出其特点。
• 1+x>0
• 2x+7<4x+13
• 2x-1<5
• 3x-4>5x+3
以上不等式有一个共同的特点:
它们都只含有一个未知数,且含未知
数的式子是整式,未知数的次数是1.像
这样的不等式叫做一元一次不等式.
与一元一次方程有什么异同? 2020/4/1
2020/4/1
2020/4/1
去括号得 6x-3x+2x+2< 61+x+8 移项得 6x-3x+2x-x< 61+8+-2
合并同类项得
系数化为1,得
2020/4/1
6x< 112 x <>1261
解下列不等式:
(1)
2x-3 3
>
3x-2 2
(2)
4-x 3
<
x-3 5
-1
(3)
x 3
-5≥
4x+6 1-3
1 2
(4) 2-2(x-1) ≤3(2+x)