最新近世代数期末考试题库教案资料

合集下载

近世代数期末模拟试题练习与答案

近世代数期末模拟试题练习与答案

近世代数模拟试题一、单项选择题1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( )A 、12σB 、1σ2σC 、22σD 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。

A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。

4、a 的阶若是一个有限整数n ,那么G 与-------同构。

5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。

6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。

7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得10=+++n n a a a αα 。

8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。

9、有限群的另一定义:一个有乘法的有限非空集合G 作成一个群,如果满足G 对于乘法封闭;结合律成立、---------。

近世代数复习题及答案

近世代数复习题及答案

近世代数复习题及答案1. 群的定义是什么?请给出一个例子。

答案:群是一个集合G,配合一个运算*,满足以下四个条件:封闭性、结合律、单位元的存在性、逆元的存在性。

例如,整数集合Z在加法运算下构成一个群。

2. 什么是子群?如何判断一个子集是否为子群?答案:子群是群G的一个非空子集H,使得H中的元素在G的运算下满足群的四个条件。

判断一个子集是否为子群,需要验证它是否在群运算下封闭,是否包含单位元,以及每个元素是否有逆元。

3. 什么是正规子群?请给出一个例子。

答案:正规子群是群G的一个子群N,对于G中任意元素g和N中任意元素n,都有gng^-1属于N。

例如,整数集合Z在加法运算下的子群2Z(所有偶数的集合)是一个正规子群。

4. 什么是群的同态?请给出一个例子。

答案:群的同态是两个群G和H之间的函数φ,使得对于G中任意两个元素a和b,都有φ(a*b) = φ(a) * φ(b)。

例如,函数φ: Z → Z_2定义为φ(n) = n mod 2,是整数群Z到模2整数群Z_2的一个同态。

5. 什么是群的同构?请给出一个例子。

答案:群的同构是两个群G和H之间的双射同态。

这意味着G和H不仅满足相同的群运算规则,而且它们之间存在一一对应关系。

例如,群Z_3(模3整数群)和群{1, -1}在乘法下构成的群是同构的。

6. 什么是环?请给出一个例子。

答案:环是一个集合R,配合两个运算+和*,满足以下条件:(R, +)是一个交换群,(R, *)满足结合律,且乘法对加法满足分配律。

例如,整数集合Z在通常的加法和乘法运算下构成一个环。

7. 什么是理想?如何判断一个子集是否为理想?答案:理想是环R的一个子集I,满足以下条件:I在加法下封闭,对于R中任意元素r和I中任意元素i,都有ri和ir属于I。

判断一个子集是否为理想,需要验证它是否在加法下封闭,以及是否满足吸收性质。

8. 什么是环的同态?请给出一个例子。

答案:环的同态是两个环R和S之间的函数φ,使得对于R中任意两个元素a和b,都有φ(a+b) = φ(a) + φ(b)和φ(a*b) = φ(a) * φ(b)。

(完整word版)近世代数期末考试题库(包括模拟卷和1套完整题)

(完整word版)近世代数期末考试题库(包括模拟卷和1套完整题)

多所高校近世代数题库一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

( )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。

( )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。

( )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。

( )5、如果群G 的子群H 是循环群,那么G 也是循环群。

( )6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。

( )7、如果环R 的阶2≥,那么R 的单位元01≠。

( )8、若环R 满足左消去律,那么R 必定没有右零因子。

( )9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。

( )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。

( )二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( )①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换;③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同;④一个元()n a a a ,,,21 的象可以不唯一。

2、指出下列那些运算是二元运算( ) ①在整数集Z 上,abb a b a +=; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。

《近世代数》教案1

《近世代数》教案1

《近世代数》教案1《近世代数》教案1教案一:近世代数概述一、教学目标1.了解近世代数的起源和发展历程;2.理解近世代数的基本概念和基本运算;3.掌握近世代数的基本定理和性质;4.培养学生的逻辑推理和证明能力。

二、教学内容1.近世代数的起源和发展历程;2.近世代数的基本概念和基本运算;3.近世代数的基本定理和性质。

三、教学重点和难点1.理解近世代数的基本概念;2.掌握近世代数的基本运算;3.理解和运用近世代数的基本定理和性质。

四、教学方法1.前置知识导入:利用历史故事或问题引入近世代数的起源;2.概念解释与讨论:通过引导学生,共同探讨近世代数的基本概念;3.理解和运用:通过实际问题,让学生理解和运用近世代数的基本定理和性质;4.案例分析和练习:通过案例分析和练习,巩固学生对近世代数的理解和应用能力;5.归纳总结:通过归纳总结,整理和进一步理解所学的知识。

五、教学过程1.前置知识导入(10分钟)-引入:《近世代数》是一门重要的数学学科,它是现代数学的基石之一、那么,你们以为近世代数是从什么时候开始出现的呢?我们来听听关于近世代数起源的故事吧。

-故事:公元16世纪,意大利的一位数学家卡尔达诺被人请到一个庄园解决一个心理障碍的问题,他最终发现了它的根源与代数方程式求解有关。

这个故事揭示了近世代数起源的一部分,下面我们一起来探索更多关于近世代数的知识。

2.概念解释与讨论(20分钟)-定义:近世代数是一门研究代数结构及其性质的学科,它主要研究了代数系统的运算规则和代数方程式的求解方法。

-基本概念:群、环、域是近世代数中的基本概念。

群是指一个非空集合和一个在这个集合上的运算,满足封闭性、结合律、单位元和逆元的性质;环是指一个非空集合和两个在这个集合上的运算,满足加法封闭性、结合律、单位元和可逆性,以及乘法封闭性和结合律;域是指一个非空集合和两个在这个集合上的运算,满足加法封闭性、结合律、单位元和可逆性,以及乘法封闭性、结合律、单位元和可逆性。

近世代数期末考试题库

近世代数期末考试题库

世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,则ϕ是从A 到B 的( c ) A 、满射而非单射 B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( d )个元素。

A 、2B 、5C 、7D 、103、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是(b )乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数(c )A 、不相等B 、0C 、相等D 、不一定相等。

5、n 阶有限群G 的子群H 的阶必须是n 的(d )A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。

2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的单位元。

3、环的乘法一般不交换。

如果环R 的乘法交换,则称R 是一个交换环。

4、偶数环是整数环的子环。

5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个变换全。

6、每一个有限群都有与一个置换群同构。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是 1 ,元a 的逆元是1-a 。

8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最大理想,那么---------。

9、一个除环的中心是一个-域-----。

三、解答题(本大题共3小题,每小题10分,共30分)1、设置换σ和τ分别为:⎥⎦⎤⎢⎣⎡=6417352812345678σ,⎥⎦⎤⎢⎣⎡=2318765412345678τ,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。

近世代数期末考试

近世代数期末考试

7.由1))((11111111121112121==----------a a a a a a a a a a a a a a m m m m m m m ,故11121121)(----=a a a a a a m m .对第2个问题,上面一段正是证明了它的充分性,再证必要性.设121=⋅u a a a m ,则任意i ,1)(111=--u a a a a a m i i i ,故每个i a 有逆元素.注:直接根据逆元的定义和广义结合律证明.8.11)1(11)1)(1()1(=+-=-+-=-+-=+-=-ba ba ca ab b ba babca bca ba bca ba d babcababca ba ba bca ba d -+-=-+=-1)1)(1()1(.11)1(1=+-=-+-=ba ba a ab bc ba即1-ba 在R 内也可逆又由c abc cab c ab ab c =+=+=-=-11,1)1()1(得.故cab)ab(11abcab ab 1bca)b a(11adb 1++=++=++=+c abc =+=15.设⎪⎪⎭⎫ ⎝⎛=a b a A 0,⎪⎪⎭⎫ ⎝⎛=c d c B 0,其中a,b,c,d 都是复数,a ≠0且c ≠0,则 ⎪⎪⎭⎫ ⎝⎛+=ac bc ad ac AB 0也和A,B 具有相同的形式. 显然,⎪⎪⎭⎫ ⎝⎛=1001I 是单位元且⎪⎪⎪⎪⎭⎫ ⎝⎛-=a a b ab a C 1012是A 的逆矩阵.又矩阵乘法满足结合律,故结论得证.注:根据群的定义直接验证,需要说明AB 也和A,B 具有相同的形式.7.对,G a ∈a 有右逆b.b 又有右逆a ',这时a 为b 的左逆.由ab e a b ==',得到()()a a ab a b a a '='='=,可知a a '=.这样e ab ba ==,即b 是a 的逆.12.设{}s g g G ,,1 =.由性质(2),G ag ag G a s ⊆∈∀},{,1 ,且是s 个不同的元,故G ag ag s =}{1 .同样由性质(3)可得,G a g a g s =},{1 。

近世代数期末考试真题

近世代数期末考试真题

近世代数期末练习题一、判断题(在括号里打上 √ 或 ⨯ )1、一个阶是11的群只有两个子群。

( )2、循环群的子群是循环子群。

( )3、在一个环中,若右消去律成立,则左消去律成立。

( )4、消去律在无零因子环中一定成立。

( )5、在环中,逆元一定不是零因子。

( )6、在一个域中一定不存在零因子。

( )7、模99的剩余类环99Z 是一个域。

( )8、模19的剩余类环19Z 是一个整环。

( )9、整除关系是整数集Z 的元素间的一个等价关系。

( )10、同余关系是整数集Z 的元素间的一个等价关系。

( )11、群G 的两个子群的交还是子群。

( )12、环R 的一个子环和一个理想的交一定是R 的子环。

( )13、群G 的不变子群也是G 的子群,环R 的理想也是R 的子环。

( )14、设群G 与群G'同态,则G 的不变子群的同态像是G'的不变子群。

( )15、一个域一定是一个整环。

( )二、填空题1、在3次对称群3S 中,元素(123)的阶为 ,(123)的逆元为 ,(123)所生成的子群在3S 中的指数为 ,该子群是否3S 的不变子群? 。

2、环Z 6的全部零因子是 ,全部可逆元是 。

3、在环Z 10中,[6]+[7]= ,[6][7]= ,[6]-[7]= ,[6]3= ,[7]-1= 。

三、证明:(1)若群G 的元a 的阶为2, 则a – 1 = a . (2)若群G 的元 a 的阶大于2, 则a – 1 ≠ a . (3)在群G 中, 元 a 与逆元a –1有相同的阶.四、证明:设群G 中元a 的阶为n . 证明a s = a t ⇔ n | ( s – t ) .五、设R 是一个环,证明R 是交换环当且仅当(a+b) 2=a 2+2ab+b 2。

六、设G 是一个群,证明G 是交换群当且仅当(ab) -1=a -1b -1。

近世代数期末考试卷与答案

近世代数期末考试卷与答案

近世代数期末考试卷与答案近世代数试题一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。

错选、多选或未选均无分。

1、设G 有6个元素的循环群,a 是生成元,则G 的子集()是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,()不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?()A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=() A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它()。

A 、不可能是群B 、不一定是群C 、一定是群D 、是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。

4、a 的阶若是一个有限整数n ,那么G 与-------同构。

5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。

6、若映射?既是单射又是满射,则称?为-----------------。

7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得010=+++n n a a a ααΛ。

8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为---------。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,则ϕ是从A 到B 的( ) A 、满射而非单射 B 、单射而非满射 C 、一一映射 D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。

A 、2B 、5C 、7D 、103、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说 A 、不是唯一 B 、唯一的 C 、不一定唯一的 D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( ) A 、不相等 B 、0 C 、相等 D 、不一定相等。

5、n 阶有限群G 的子群H 的阶必须是n 的( ) A 、倍数 B 、次数 C 、约数 D 、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B ---------。

2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的--------。

3、环的乘法一般不交换。

如果环R 的乘法交换,则称R 是一个------。

4、偶数环是---------的子环。

5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。

6、每一个有限群都有与一个置换群--------。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。

8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最大理想,那么---------。

9、一个除环的中心是一个-------。

三、解答题(本大题共3小题,每小题10分,共30分)1、设置换σ和τ分别为:⎥⎦⎤⎢⎣⎡=6417352812345678σ,⎥⎦⎤⎢⎣⎡=2318765412345678τ,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。

2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。

3、设集合)1}(,1,,2,1,0{φm m m M m -⋯⋯=,定义m M 中运算“m +”为a m +b=(a+b)(modm),则(m M ,m +)是不是群,为什么?四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、设G 是群。

证明:如果对任意的G x ∈,有e x =2,则G 是交换群。

2、假定R 是一个有两个以上的元的环,F 是一个包含R 的域,那么F 包含R 的一个商域。

近世代数模拟试题二一、单项选择题二、1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( )A 、12σB 、1σ2σC 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。

A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。

4、a 的阶若是一个有限整数n ,那么G 与-------同构。

5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。

6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。

7、α叫做域F 的一个代数元,如果存在F 的-----na a a ,,,10Λ使得010=+++n n a a a ααΛ。

8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为---------。

9、有限群的另一定义:一个有乘法的有限非空集合G 作成一个群,如果满足G 对于乘法封闭;结合律成立、---------。

10、一个环R 对于加法来作成一个循环群,则P 是----------。

三、解答题(本大题共3小题,每小题10分,共30分)1、设集合A={1,2,3}G 是A 上的置换群,H 是G 的子群,H={I,(1 2)},写出H 的所有陪集。

2、设E是所有偶数做成的集合,“•”是数的乘法,则“•”是E中的运算,(E,•)是一个代数系统,问(E,•)是不是群,为什么?3、a=493, b=391, 求(a,b), [a,b] 和p, q。

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、若<G,*>是群,则对于任意的a、b∈G,必有惟一的x∈G使得a*x=b。

2、设m 是一个正整数,利用m 定义整数集Z 上的二元关系:a 〜b 当且仅当m ︱a –b 。

近世代数模拟试题三一、单项选择题1、6阶有限群的任何子群一定不是( )。

A 、2阶 B 、3 阶 C 、4 阶 D 、 6 阶2、设G 是群,G 有( )个元素,则不能肯定G 是交换群。

A 、4个 B 、5个 C 、6个 D 、7个3、有限布尔代数的元素的个数一定等于( )。

A 、偶数B 、奇数C 、4的倍数D 、2的正整数次幂 4、下列哪个偏序集构成有界格( ) A 、(N,≤) B 、(Z,≥) C 、({2,3,4,6,12},|(整除关系)) D 、 (P(A),⊆)5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有( )A 、(1),(123),(132)B 、12),(13),(23)C 、(1),(123)D 、S3中的所有元素二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、群的单位元是--------的,每个元素的逆元素是--------的。

2、如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f1----------。

3、区间[1,2]上的运算},{min b a b a =ο的单位元是-------。

4、可换群G 中|a|=6,|x|=8,则|ax|=——————————。

5、环Z 8的零因子有 -----------------------。

6、一个子群H 的右、左陪集的个数----------。

7、从同构的观点,每个群只能同构于他/它自己的---------。

8、无零因子环R 中所有非零元的共同的加法阶数称为R 的-----------。

9、设群G 中元素a 的阶为m ,如果e a n=,那么m 与n 存在整除关系为--------。

三、解答题(本大题共3小题,每小题10分,共30分)1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?2、S 1,S 2是A 的子环,则S 1∩S 2也是子环。

S 1+S 2也是子环吗?3、设有置换)1245)(1345(=σ,6)456)(234(S ∈=τ。

1.求στ和στ-1;2.确定置换στ和στ-1的奇偶性。

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、一个除环R 只有两个理想就是零理想和单位理想。

2、M为含幺半群,证明b=a-1的充分必要条件是aba=a和ab2a=e。

近世代数模拟试题四一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有()个元素。

A.2B.5C.7D.102.设A=B=R(实数集),如果A到B的映射ϕ:x→x+2,∀x∈R,则ϕ是从A到B的()A.满射而非单射B.单射而非满射C.一一映射D.既非单射也非满射3.设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有()A.(1),(123),(132)B.(12),(13),(23)C.(1),(123)D.S3中的所有元素4.设Z15是以15为模的剩余类加群,那么,Z15的子群共有()个。

A.2B.4C.6D.85.下列集合关于所给的运算不作成环的是()A.整系数多项式全体Z[x]关于多项式的加法与乘法B.有理数域Q上的n级矩阵全体M n(Q)关于矩阵的加法与乘法C.整数集Z关于数的加法和新给定的乘法“ο”:∀m, n∈Z, mοn=0D.整数集Z关于数的加法和新给定的乘法“ο”:∀m, n∈Z, mοn=1二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设“~”是集合A的一个关系,如果“~”满足___________,则称“~”是A的一个等价关系。

7.设(G,·)是一个群,那么,对于∀a,b∈G,则ab∈G也是G中的可逆元,而且(ab)-1=___________。

8.设σ=(23)(35),τ=(1243)(235)∈S5,那么στ=___________(表示成若干个没有公共数字的循环置换之积)。

9.如果G是一个含有15个元素的群,那么,根据Lagrange定理知,对于∀a∈G,则元素a的阶只可能是___________。

10.在3次对称群S3中,设H={(1),(123),(132)}是S3的一个不变子群,则商群G/H中的元素(12)H=___________。

11.设Z6={[0],[1],[2],[3],[4],[5]}是以6为模的剩余类环,则Z6中的所有零因子是___________。

12.设R是一个无零因子的环,其特征n是一个有限数,那么,n是___________。

相关文档
最新文档