电磁场与电磁波天线部分实验报告

合集下载

电磁场与电磁波实验报告

电磁场与电磁波实验报告

实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念。

2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。

点电荷q 在无限大真空中产生的电场强度E 的数学表达式为(1-1)真空中点电荷产生的电位为(1-2)其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为4= (1-3) 电位为4= (1-4) 本章模拟的就是基本的电位图形。

4.实验内容及步骤(1)点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图。

程序1:负点电荷电场示意图clear[x,y]=meshgrid(-10:1.2:10);E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;E=(-q./m1).*r;surfc(x,y,E);负点电荷电势示意图clear[x,y]=meshgrid(-10:1.2:10); E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;z=-q./m1surfc(x,y,z);xlabel('x','fontsize',16)ylabel('y','fontsize',16)title('负点电荷电势示意图','fontsize',10)程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10)); R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));Z=q*k*(1./R2-1./R1);[ex,ey]=gradient(-Z);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(Z)),max(max(Z)),40); contour(X,Y,Z,cv,'k-');hold onquiver(X,Y,ex,ey,0.7);clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));U=q*k*(1./R2-1./R1);[ex,ey]=gradient(-U);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(U)),max(max(U)),40); surfc(x,y,U);实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念。

电磁场与电磁波实验报告-校园无线信号场强特性的研究

电磁场与电磁波实验报告-校园无线信号场强特性的研究

电磁场与电磁波实验报告题目:校园无线信号场强特性的研究班级:学号:班内序号:学生姓名:班级:学号:班内序号:学生姓名:电磁场与电磁波实验报告-校园无线信号场强特性的研究目录【实验目的】 (1)【实验原理】............................................................. 错误!未定义书签。

【实验内容】 (6)【实验步骤】 (6)1.实验对象的选择 (6)2.数据采集 ........................................................ 错误!未定义书签。

3. 数据处理 (7)【实验代码】............................................................. 错误!未定义书签。

【实验结果分析】 .................................................... 错误!未定义书签。

【实验心得】. (15)【附录】 (16)一、实验目的1.掌握在移动环境下阴影衰落的概念以及正确的测试方法;2.研究校园内各种不同环境下阴影衰落的分布规律;3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4.通过实地测量,分析建筑物穿透损耗随频率的变化关系;5.研究建筑物穿透损耗与建筑材料的关系。

电磁场与电磁波实验报告-校园无线信号场强特性的研究二、实验原理1.电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。

对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。

因此基站的覆盖区的大小,是无线工程师所关心的。

决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。

电磁场与电磁波实验报告 2

电磁场与电磁波实验报告 2

电磁场与电磁波实验报告实验一 电磁场参量的测量一、 实验目的1、 在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。

2、 熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β和波速υ。

二、 实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。

本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λπβ2=,βωλν==f得到电磁波的主要参量:β和ν等。

本实验采取了如下的实验装置设入射波为φj i i e E E -=0,当入射波以入射角1θ向介质板斜投射时,则在分界面上产生反射波r E 和折射波t E 。

设介质板的反射系数为R ,由空气进入介质板的折射系数为0T ,由介质板进入空气的折射系数为c T ,另外,可动板2r P 和固定板1r P 都是金属板,其电场反射系数都为-1。

在一次近似的条件下,接收喇叭处的相干波分别为1001Φ--=j i c r e E T RT E ,2002Φ--=j i c r e E T RT E这里 ()13112r r r L L L ββφ=+=;()()231322222L L L L L L r r r r βββφ=+∆+=+=;其中12L L L -=∆。

又因为1L 为定值,2L 则随可动板位移而变化。

当2r P 移动L ∆值,使3r P 有零指示输出时,必有1r E 与2r E 反相。

故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。

从而测出电磁波的波长λ和相位常数β。

下面用数学式来表达测定波长的关系式。

在3r P 处的相干波合成为()210021φφj j i c r r r e e E T RT E E E --+-=+=或写成 ()⎪⎭⎫ ⎝⎛+-∆Φ-=200212cos 2φφj i c r eE T RT E (1-2)式中L ∆=-=∆Φβφφ221为了测量准确,一般采用3r P 零指示法,即02cos =∆φ或π)12(+=∆Φn ,n=0,1,2......这里n 表示相干波合成驻波场的波节点(0=r E )数。

电磁场与电磁波实验报告

电磁场与电磁波实验报告

广东第二师范学院学生实验报告一线等。

本实验重点介绍其中的一种半波天线。

半波天线又称半波振子,是对称天线的一种最简单的模式。

对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。

这种天线是最通用的天线型式之一,又称为偶极子天线。

而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。

半波振子因其一臂长度为λ/4 ,全长为半波长而得名。

其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子( L=λ/4 )的远区场强有以下关系式:│E│=[60Imcos(πcosθ/2)]/R 。

sinθ=[60Im/R 。

]│f(θ)│式中, f(θ) 为方向函数。

对称振子归一化方向函数为│F(θ)│=│f(θ)│/fmax=|cos(πcosθ/2)/sinθ| 其中 fmax 是 f(θ) 的最大值。

由上式可画出半波振子的方向图如下 :半波振子方向函数与ψ无关,故在 H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。

在 E 面的方向图为 8 字形,最大辐射方向为θ=π/2 ,且只要一臂长度不超过 0.625λ,辐射的最大值始终在θ=π/2 方向上;若继续增大 L ,辐射的最大方向将偏离θ=π/2 方向。

【实验内容】(一)测量电磁波发射频率(二)制作半波振子天线广东第二师范学院学生实验报告三广东第二师范学院学生实验报告四天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

因此,在移动通信系统中,一般均采用垂直极化的传播方式。

电磁波的极化是电磁理论中的一个重要概念,它表征在空间给定点上电场强度矢量的取向随时间变化的特性,并用电场强度矢量 E 的端点在空间描绘出的轨迹来表示。

最新电磁场与电磁波实验报告

最新电磁场与电磁波实验报告

最新电磁场与电磁波实验报告
在本次实验中,我们深入研究了电磁场与电磁波的基本特性,并进行了一系列的实验来验证理论和观测实际现象。

以下是实验的主要部分和观察结果的概述。

实验一:静电场的建立与测量
我们首先建立了一个简单的静电场,通过使用高压电源对两个相对的金属板进行充电。

通过改变电源的电压,我们观察到金属板上的电荷积累情况,并使用电位差计测量了电场强度。

实验数据显示,电场强度与电压成正比,这与库仑定律的预测一致。

实验二:电磁波的产生与传播
接下来,我们通过振荡电路产生了电磁波。

在一个封闭的微波腔中,我们使用电磁波发生器产生不同频率的电磁波,并通过特殊的探测器来测量波的传播特性。

实验结果表明,电磁波的传播速度在不同的介质中有所变化,这与介质的电磁特性有关。

实验三:电磁波的极化与干涉
在这部分实验中,我们研究了电磁波的极化现象。

通过使用不同极化的波前,我们观察到了波的干涉效应。

特别是在双缝干涉实验中,我们观察到了明显的干涉条纹,这证明了电磁波的波动性质。

实验四:电磁波的吸收与反射
最后,我们探讨了电磁波与物质相互作用的过程。

通过将电磁波照射在不同材料的样品上,我们测量了波的吸收和反射率。

实验发现,吸收和反射率与材料的电磁性质密切相关,并且可以通过改变波的频率来调整这些性质。

通过这些实验,我们不仅验证了电磁场与电磁波的基本理论,而且加深了对这些现象在实际应用中的理解。

这些实验结果对于无线通信、雷达技术以及其他相关领域的研究和开发具有重要的指导意义。

电磁场与电磁波实验报告

电磁场与电磁波实验报告

实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念;2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场;点电荷q 在无限大真空中产生的电场强度E 的数学表达式为204qE r r πε= r 是单位向量 1-1真空中点电荷产生的电位为04qr ϕπε= 1-2其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为1221014ni n i i i q E E E E r r πε==+++=∑ i r 是单位向量1-3 电位为121014ni n i i q r ϕϕϕϕπε==+++=∑ 1-4 本章模拟的就是基本的电位图形;4.实验内容及步骤1 点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图;程序1:负点电荷电场示意图clearx,y=meshgrid-10:1.2:10;E0=8.85e-12;q=1.610^-19;r=;r=sqrtx.^2+y.^2+1.010^-10m=4piE0r;m1=4piE0r.^2;E=-q./m1.r;surfcx,y,E;负点电荷电势示意图clearx,y=meshgrid-10:1.2:10; E0=8.85e-12;q=1.610^-19;r=;r=sqrtx.^2+y.^2+1.010^-10m=4piE0r;m1=4piE0r.^2;z=-q./m1surfcx,y,z;xlabel'x','fontsize',16ylabel'y','fontsize',16title'负点电荷电势示意图','fontsize',10程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; X,Y=meshgridx,y;R1=sqrtX+1.^2+Y.^2+1.010^-10;R2=sqrtX-1.^2+Y.^2+1.010^-10;Z=qk1./R2-1./R1;ex,ey=gradient-Z;ae=sqrtex.^2+ey.^2;ex=ex./ae;ey=ey./ae; cv=linspaceminminZ,maxmaxZ,40; contourX,Y,Z,cv,'k-';hold onquiverX,Y,ex,ey,0.7;clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; X,Y=meshgridx,y;R1=sqrtX+1.^2+Y.^2+1.010^-10;R2=sqrtX-1.^2+Y.^2+1.010^-10;U=qk1./R2-1./R1;ex,ey=gradient-U;ae=sqrtex.^2+ey.^2;ex=ex./ae;ey=ey./ae; cv=linspaceminminU,maxmaxU,40; surfcx,y,U;实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念;2.实验仪器计算机一台3.基本原理电场的大小和方向均不随时间变化的场称为恒定电场,如直流导线,虽说电荷在导线内运动,但电场不随时间变化而变化,所以,直流导线形成的电场是恒定电场;对于恒定电场,我们可以假设其为静电场,假设有静止不动的分布在空间中的电量q产生了这一电场;通过一些边界条件等确定自己所需要的变量,然后用静电场的方法来求解问题;4.实验内容及步骤1高压直流电线表面的电场分布仿真题目:假设两条高压导线分别是正负电流,线间距2m,线直径0.04m,电流300A,两条线电压正负110kV,求表面电场分布;程序clearx,y=meshgrid -2:0.1:2; r1=sqrtx+1.^2+y.^2+0.14; r2=sqrtx -1.^2+y.^2+0.14; k=100/log1/0.02; E=k1./r1-1./r2; surfcx,y,E;xlabel'x','fontsize',16 ylabel'y','fontsize',16 title'E','fontsize',10 RR D=2m X Y P 图2-1高压直流电线示意图 R2 R1clearx,y=meshgrid-2:0.1:2;r1=sqrtx+1.^2+y.^2+0.14; r2=sqrtx-1.^2+y.^2+0.14; k=100/log1/0.02;m=log10r2./r1;U=km;surfcx,y,U;xlabel'x','fontsize',16 ylabel'y','fontsize',16title'U','fontsize',10实验三 恒定磁场的仿真1.实验目的建立恒定磁场中磁场空间分布的直观概念;2.实验仪器计算机一台3.基本原理磁场的大小和方向均不随时间变化的场,称为恒定磁场; 线电流i 产生的磁场为:024IdldB r μπ=说明了电流和磁场之间的关系,运动的电荷能够产生磁场;4.实验内容及步骤圆环电流周围引起的磁场分布仿真题目:一个半径为0.35的电流大小为1A 的圆环,求它的磁场分布;分析:求载流圆环周围的磁场分布,可以用毕奥—萨伐尔定律给出的数值积分公式进行计算:图3-1载流圆环示意图程序 clear x=-10:0.5:10; u0=4pi10^-7; R=0.35;I=1;B=u0IR.^2./2./R.^2+x.^2.^3/2; plotx,B;RrpxdB实验四电磁波的反射与折射1.实验目的1熟悉相关实验仪器的特性和使用方法2掌握电磁波在良好导体表面的反射规律2.实验仪器DH1211型3厘米信号源1台、可变衰减器、频率调节器、电流指示器、喇叭天线、金属导体板1块、支座一台;3.基本原理电磁波在传播过程中如遇到障碍物,必定要发生反射;当电磁波入射到良好导体近似认为理想导体平板上时将发生全反射;电磁波入射到良好导体近似认为理想导体平板时,分为垂直入射和以一定角度入射称为斜入射;如图4-1所示;入射线与分界面法线的夹角为入射角,反射线与分界面法线的夹角为反射角;垂直入射斜入射入射角0°、反射角0°入射角45°、反射角45°图4-1用一块金属板作为障碍物,测量当电波以某一入射角投射到此金属板上的反射角,验证电磁波的反射规律:1电磁波入射到良好导体近似认为理想导体平板上时将发生全反射; 2入射角等于反射角;4.实验内容及步骤1熟悉仪器的特性和使用方法 2连接仪器,调整系统3测量入射角和反射角反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致;而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应900刻度的一对刻线一致;这时小平台上的00刻度就与金属板的法线方向一致;转动小平台,使固定臂指针指在某一角度处,这一角度的读数就是入射角,然后转动活动臂在表头上找到一个最大指示,此时活动臂上的指针所指的刻度就是反射角;支座 喇叭天线金属导体铝板频率调节器DH1121B 3厘米信号源可变衰减器电流指示器检波器活动臂。

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与电磁波实验报告电磁波反射和折射实验实验目的:1. 探究电磁波在不同介质中的反射和折射规律;2. 学习使用测量工具和观察现象,从实验中深化对电磁波的认知。

实验器材:1. 实验室用的电磁波发生器、接收器和天线;2. 不同介质的板子,如玻璃、塑料、水等;3. 直尺、支架、测角器等测量工具。

实验原理:1. 电磁波反射规律当电磁波从空气传播到介质边界时,如果介质的折射率大于空气,那么电磁波会被反射回来。

反射角等于入射角,即角度相等。

2. 电磁波折射规律当电磁波传播到介质边界时,如果两侧的折射率不同,电磁波会发生折射。

角度满足斯涅尔定律,即入射角和折射角的正弦之比在两个不同介质中是常数,即:sinθ1/sinθ2=n2/n1,其中θ1是入射角,θ2是折射角,n1和n2分别是两个介质的折射率。

实验步骤:1. 将电磁波发生器的天线对准接收器,并调整距离,使得接收器接收到最大强度的信号。

2. 选择一个介质板,将其放置在天线和接收器之间。

记录下入射角和反射角的值。

3. 更换不同的介质板,如玻璃、水、塑料等,重复步骤2。

4. 对于折射实验,将介质板斜放,入射光线从上方斜射入水中,观察折射出来的角度。

5. 测量介质板的厚度,并计算出介质的折射率。

实验结果:1. 反射实验中,记录下了不同介质的入射角和反射角。

通过比较不同介质的反射角可以发现,当折射率越大的时候,反射角越小,反之越大。

2. 折射实验中,记录下了入射角和折射角的值,并计算出了水的折射率。

分析与讨论:通过实验发现,电磁波的反射和折射规律与光学的规律相同,具有相似的物理原理。

另外,实验中需要注意精确度,例如使用测角器来测量角度,要保证角度的精确度,以免影响结果。

此外,实验中不同介质的反射、折射规律的不同也需要谨慎对待。

电磁场电磁波实验报告

电磁场电磁波实验报告

第二师学院学生实验报告一相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。

本实验重点介绍其中的一种半波天线。

半波天线又称半波振子,是对称天线的一种最简单的模式。

对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。

这种天线是最通用的天线型式之一,又称为偶极子天线。

而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。

半波振子因其一臂长度为λ/4 ,全长为半波长而得名。

其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(L=λ/4 )的远区场强有以下关系式:│E│=[60Imcos(πcosθ/2)]/R 。

sinθ=[60Im/R 。

]│f(θ)│式中,f(θ) 为方向函数。

对称振子归一化方向函数为│F(θ)│=│f(θ)│/fmax=|cos(πcosθ/2)/sinθ| 其中fmax 是f(θ) 的最大值。

由上式可画出半波振子的方向图如下:半波振子方向函数与ψ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。

在E 面的方向图为8 字形,最大辐射方向为θ=π/2 ,且只要一臂长度不超过0.625λ,辐射的最大值始终在θ=π/2 方向上;若继续增大L ,辐射的最大方向将偏离θ=π/2 方向。

【实验容】第二师学院学生实验报告三第二师学院学生实验报告四律,就称电磁波为极化电磁波(简称极化波)。

如果极化电磁波的电场强度始终在垂直于传播方向的(横)平面取向,其电场矢量的端点沿一闭合轨迹移动,则这一极化电磁波称为平面极化波。

电场的矢端轨迹称为极化曲线,并按极化曲线的形状对极化波命名。

天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在表面产生极化电流,极化电流因受阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电磁场与微波实验》
——天线部分实验报告
姓名:王胤鑫
班级:08211108
序号:09
学号:08210224
实验一网络分析仪测量振子天线输入阻抗
实验目的:
1.掌握网络分析仪校正方法;
2.学习网络分析仪测量振子天线输入阻抗的方法;
3.研究振子天线输入阻抗随振子电径变化的情况。

实验原理:
当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。

实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。

这时可以采用镜像法来分析。

天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。

当h<<λ时,可认为R≈40错误!未找到引用源。

由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为错误!未找到引用源。

=60[ln(2h/a)-1]。

实验步骤:
1.设置仪表为频域模式的回损连接模式后,校正网络分析仪;
2.设置参数并加载被测天线,开始测量输入阻抗;
3.调整测试频率寻找天线的两个谐振点并记录相应阻抗数据;
4.更换不同电径(φ1,φ3,φ9)的天线,分析两个谐振点的阻抗变化情况;
设置参数:BF=600,∆F=25,EF=2600,n=81;
测量图:
1mm天线的smith圆图
3mm天线的smith圆图
9mm天线的smith圆图
实验结果分析
通过3种不同直径的天线的smith圆图的测量,发现随着天线直径的增大,天线的阻抗特性变化越大,理想状态下天线的smith圆图应该是一个中心在正实轴某处的一个规则的圆,但实验结果发现9mm天线的smith圆图的阻抗特性非常不规则,随着频率的增高,其阻抗特性变化非线性。

被测天线的电径对天线的阻抗是基本不产生影响的,上述三图中阻抗有差别主要是因为三根阵子粗细不同因而对空间电磁场产生了一些影响导致了天线阻抗的变化,本质上是不影响的。

天线的电阻随着频率的变化是不断变化的,频率变化范围为600KHz到2600KHz,变化的趋势为——在前20个点基本不变,后面的点基本随着频率的增加电阻增加。

随着频率的增大从负电抗变化到正电抗,每一个都有电抗零点。

心得体会
本次实验让我初步掌握了网络分析仪的使用方法,学会了用网络分析仪测量振子天线输入阻抗,并且了解了振子天线输入阻抗随振子电径的变化。

通过本次实验让我了解到了许多知识,让我受益匪浅。

实验二网络分析仪测试八木天线方向图
实验目的:
1.掌握网络分析仪辅助测试方法;
2.学习测量八木天线方向图方法;
3.研究在不同频率下的八木天线方向图特性。

实验原理:
实验中用的是七单元八木天线,包括一个有源阵子,一个反射器,五个引相器(在此图中再加2个引相器即可)
引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。

此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号迭加,得到加强。

反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用。

一个方向加强,一个方向削弱,便有了强方向性。

发射状态作用过程亦然。

实验步骤:
1.调整分析仪到轨迹(方向图)模式;
2.调整云台起点位置270°;
3.寻找归一化点(最大值点);
4.旋转云台一周并读取图形参数;
5.坐标变换、变换频率(600MHz、900MHz、1200MHz),分析八木天线方向图
特性;
测量图:
600MHz
900MHz
1200MHz
实验结果分析
由三个不同频率下的方向图可知:
1)八木天线的方向图是对称的,既其主瓣和后瓣是相同的,F=600MHz的图主瓣和后瓣比较均匀,说明受到的干扰小,而F=900MHz的图和F=1200MHz的图主瓣和后瓣有很严重的偏差,说明空间电磁场的干扰很大。

2)由上图可知:最大辐射方向基本是在60°和240°这条直线上。

3)在F=600MHz图上和F=900MHz图上旁瓣都很小,既能量大部分都集中在主瓣上,而在F=1200MHz图上由于受空间电磁场的干扰,使得旁瓣所占能量比较大。

4)对于F=600MHz图和F=900MHz图可知其前后比基本趋向于1,而对于F=1200MHz图由于受到影响使得前后壁大于1。

心得体会
今天做实验才第一次知道病了解了八木天线,它的命名原来是以日本人命名的。

八木天线在传播电磁波的时候,会有主瓣和旁瓣后瓣之分。

实验中通过旋转云台,读取数据,可以得到最佳接收状态。

旋转一周后,可以从图上看到不同频率下的方向图。

由于实验中,人为操作的问题,加上两组同时做实验会有相互干扰,导致在1200Mhz时受到干扰大,所得到图形偏差较大。

由此可知,在天线的实际应用中,抗干扰技术非常重要本次实验让我了解了八木天线,进一步加深了网络分析仪的使用,并且学会了测量八木天线方向图,知道了不同频率下八木天线的特性。

通过这次实验让我学到了许多知识,对我有很大的帮助。

相关文档
最新文档