51cysb_列管式换热器设计
列管式换热器设计

列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。
本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。
一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。
它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。
二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。
2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。
3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。
4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。
5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。
6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。
7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。
8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。
三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。
2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。
3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。
4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。
5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。
综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。
设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。
同时,还需要计算换热器的传热系数、压降和热力学参数等。
列管式换热器设计_课程设计说明书 精品

化工原理课程设计说明书列管式换热器设计专业:过程装备与控制工程学院:机电工程学院化工原理课程设计任务书某生产过程的流程如图3-20所示。
反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。
已知混合气体的流量为220301kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。
已知:混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg = ℃ 热导率10.0279w m λ= ℃ 粘度51 1.510Pa s μ-=⨯ 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg = K 热导率10.624w m λ= K 粘度310.74210Pa s μ-=⨯目录1、确定设计方案 ............................................................................................. - 5 -1.1选择换热器的类型 (5)1.2流程安排 (5)2、确定物性数据............................................................................................. - 5 -3、估算传热面积............................................................................................. - 6 -3.1热流量 (6)3.2平均传热温差 (6)3.3传热面积 (6)3.4冷却水用量 (6)4、工艺结构尺寸............................................................................................. - 6 -4.1管径和管内流速 (6)4.2管程数和传热管数 (6)4.3传热温差校平均正及壳程数 (7)4.4传热管排列和分程方法 (7)4.5壳体内径 (7)4.6折流挡板 (8)4.7其他附件 (8)4.8接管 (8)5、换热器核算 ................................................................................................ - 9 -5.1热流量核算 (9)5.1.1壳程表面传热系数.......................................................................................... - 9 -5.1.2管内表面传热系数.......................................................................................... - 9 -5.1.3污垢热阻和管壁热阻.................................................................................... - 10 -5.1.4传热系数........................................................................................................ - 10 -5.1.5传热面积裕度................................................................................................ - 10 -5.2壁温计算.. (10)5.3换热器内流体的流动阻力 (11)5.3.1管程流体阻力................................................................................................ - 11 -5.3.2壳程阻力........................................................................................................ - 12 -5.3.3换热器主要结构尺寸和计算结果................................................................ - 12 -6、结构设计 .................................................................................................. - 13 -6.1浮头管板及钩圈法兰结构设计 (13)6.2管箱法兰和管箱侧壳体法兰设计 (14)6.3管箱结构设计 (14)6.4固定端管板结构设计 (15)6.5外头盖法兰、外头盖侧法兰设计 (15)6.6外头盖结构设计 (15)6.7垫片选择 (15)6.8鞍座选用及安装位置确定 (15)6.9折流板布置 (16)6.10说明 (16)7、强度设计计算........................................................................................... - 16 -7.1筒体壁厚计算 (16)7.2外头盖短节、封头厚度计算 (17)7.3管箱短节、封头厚度计算 (17)7.4管箱短节开孔补强校核 (18)7.5壳体接管开孔补强校核 (19)7.6固定管板计算 (20)7.7浮头管板及钩圈 (21)7.8无折边球封头计算 (21)7.9浮头法兰计算 (22)参考文献 ....................................................................................................... - 23 -1、确定设计方案1.1选择换热器的类型两流体温的变化情况:热流体进口温度110℃ 出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。
列管式换热器的设计.doc

列管式换热器的设计列管式换热器的应用已有很悠久的历史。
现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。
同时板式换热器也已成为高效、紧凑的换热设备,大量地应用于工业中。
为此本章对这两类换热器的工艺设计进行介绍。
列管式换热器的设计资料较完善,已有系列化标准。
目前我国列管式换热器的设计、制造、检验、验收按“钢制管壳式(即列管式)换热器”(GB151)标准执行。
列管式换热器的设计和分析包括热力设计、流动设计、结构设计以及强度设计。
其中以热力设计最为重要。
不仅在设计一台新的换热器时需要进行热力设计,而且对于已生产出来的,甚至已投人使用的换热器在检验它是否满足使用要求对,均需进行这方面的工作。
热力设计指的是根据使用单位提出的基本要求,合理地选择运行参数,并根据传热学的知识进行传热计算。
流动设计主要是计算压降,其目的就是为换热器的辅助设备——例如泵的选择做准备。
当然,热力设计和流动设计两者是密切关联的,特别是进行热力计算时常需从流动设计中获取某些参数。
结构设计指的是根据传热面积的大小计算其主要零部件的尺寸,例如管子的直径、长度、根数、壳体的直径、折流板的长度和数目、隔板的数目及布置以及连接管的尺寸,等等。
在某些情况下还需对换热器的主要零部件——特别是受压部件做应力计算,并校核其强度。
对于在高温高压下工作的换热器,更不能忽视这方面的工作。
这是保证安全生产的前提。
在做强度计算时,应尽量采用国产的标准材料和部件,根据我国压力容器安全技术规定进行计算或校核(该部分内容属设备计算,此处从略)。
列管式换热器的工艺设计主要包括以下内容:①根据换热任务和有关要求确定设计方案;②初步确定换热器的结构和尺寸;③核算换热器的传热面积和流体阻力;④确定换热器的工艺结构。
1.1设计方案的确定1.1.1换热器类型的选择(1)固定管板式换热器这类换热器如图2-1(a)所示。
列管式换热器的工艺设计

列管式换热器的工艺设计1. 选择合适的管束布置方式。
常见的管束布置方式有并列布置、交叉布置、三角形布置等。
不同的布置方式会影响换热器的传热效率和压降。
在设计中需要根据具体的工艺要求和流体性质选择合适的管束布置方式。
2. 确定换热器的传热面积。
传热面积是影响换热器传热效果的重要参数。
在工艺设计中需要根据需要传热的热负荷和流体的性质确定合适的传热面积,从而实现换热效果的最优化。
3. 确定换热介质的流体参数。
在工艺设计中需要考虑换热介质的流体参数,包括流体的流速、流量、温度、压力等。
这些参数将影响换热器的设计工况和传热效果。
4. 确定换热器材质和结构。
对于换热介质具有腐蚀性的情况,需要选择耐腐蚀的材质,如不锈钢、合金钢等。
同时还需考虑换热器的结构设计,包括管束的支撑、固定、热胀冷缩等问题。
5. 考虑换热器的清洗和维护问题。
在工艺设计中需要考虑换热器的清洗和维护问题,包括布置清洗口、维护通道等,以便于日常的维护和保养。
综上所述,列管式换热器的工艺设计需要考虑多个方面的因素,涉及流体力学、传热学、材料科学等多个领域的知识。
只有综合考虑这些因素,才能实现换热器的高效、可靠和经济运行。
列管式换热器是一种重要的传热设备,其设计涉及多个方面的工程和科学原理。
在工艺设计中,除了考虑传热面积、布置方式、介质参数、材质和结构等方面,还需要考虑换热器的热损失、压降、噪声和振动等问题。
这些因素都对换热器的正常运行和性能有重要影响,因此在工艺设计中需要进行充分考虑。
首先,要合理设计换热器的传热面积。
传热面积是换热器的关键设计参数,直接影响着换热器的传热效果。
如果传热面积过小,会造成传热不足,影响换热效率;而如果传热面积过大,会增加设备成本和占地面积。
因此,在工艺设计中需要根据具体的工艺要求和传热性能,合理确定换热器的传热面积。
其次,布置方式的选择对换热器的传热效果和压降有重要影响。
不同的布置方式会影响介质在管束中的流动状态,从而影响换热器的传热效果和压降。
列管式换热器课程设计

组装:将管子和管板组装成换热器
焊接:将换热器焊接成一体
检验:对换热器进行压力试验、泄漏试验等检验,确保其 质量和性能符合要求
焊接工艺和要求
焊接方法:采用电弧焊、气焊或激光焊等方法
焊接材料:选用耐腐蚀、耐高温、高强度的合金材料
焊接工艺参数:控制焊接电流、电压、速度等参数,保证焊接质量 焊接检验:进行无损检测,如X射线、超声波等,确保焊接质量符合要 求
Part Four
列管式换热器的传 热计算
传热系数的计算
传热系数的影响因素:包括 流体的性质、流速、温度、 压力等
传热系数的定义:表示单位 时间内单位面积上的传热量
传热系数的计算方法:包括 实验法、理论法和数值法
传热系数的应用:用于计算 换热器的传热量、传热面积
等参数
传热面积的计算
传热面积的定 义:换热器中 流体与壁面接
触的面积
计算公式: A=πD*L,其 中A为传热面 积,D为管径,
L为管长
影响因素:流 体的种类、温 度、流速、压
力等
计算方法:根 据流体的种类、 温度、流速、 压力等参数, 选择合适的计 算公式进行计
算
流体阻力的计算
流体阻力的定义:流体在流动 过程中产生的阻力
流体阻力的计算公式: f=1/2*ρ*v^2*A
检验和试验要求
压力试验:进行压力试验, 检查换热器是否泄漏
尺寸检查:检查换热器尺寸 是否符合设计要求
外观检查:检查换热器外观 是否完好,有无破损、变形 等
热工性能试验:进行热工性 能试验,检查换热器传热效
率是否符合设计要求
耐腐蚀试验:进行耐腐蚀试 验,检查换热器是否耐腐蚀
列管式换热器设计说明书

目录一、课程设计目的 (2)二、由给定的换热面积确定换热器主要结构 (3)三、列管式换热器机械结构设计 (8)四、其他结构设计 (10)五、换热器机械设计(强度计算) (12)六、心得体会 (14)七、参考文献 (15)列管式换热器设计说明书一、课程设计目的过程设备设计是学习化工设备设计基础知识,培养学生化工设备设计能力的重要教学环节,通过这一实践教学环节的训练,使学生掌握化工设备设计的基本方法,熟悉查询和正确使用技术资料,能够在独立分析和解决实际问题的能力方面有较大提高,增强工程观念和实践能力。
已给设计条件:名称管程壳程物料名称循环水甲醇工作压力0.45 0.15操作温度40 70推荐刚才10,Q235-A,16MnR接管表:符号公称尺寸,mm 用途a 200 冷却水进口b 200 甲醇蒸汽进口c 20 放气口d 80 甲醇物料出口e 20 排净口f 200 冷却水出口管长,m换热面积,2m200 3二、由给定的换热面积确定换热器主要结构1、根据已知条件,确定换热管数目和管程数目:由由已知条件查表3-2换热管规格,取换热管为碳钢GB81635.225⨯φ的换热管换热管数目:8493025.024.32000=⨯⨯==ld A n pπ管程数:根据给定的任务固定管板式换热器,选择单管程 2、管子排列方式选择选择正三角形排列管板与换热管采取焊接,管心矩342536.136.10=⨯==d t查表3-6得:排管方式,正六角形对角线上管数b=33,弓形部分第一列排管6 得管子总数8533、壳体内径换热器的内径取决于传热管数、管心距和传热管的排列方式。
对于单程换热器,壳体内径由下式确定:mmd b t D 5.1150255.232345.2)1(0=⨯+⨯=+-=圆整后去壳体内径为1200 4、折流板和支持板列管式换热器壳程流体流通面积比管程流通面积大,为增大壳程流体的流速,加强其喘流程度,提高其表面传热系数,需设置折流板。
列管式换热器设计
列管式换热器的设计一、概述在化工、石化、石油炼制等工业生产中,换热器被广泛使用。
在一般化工的建设中,换热器约占总投资的11%。
在炼油厂的常、减压蒸馏装置中,换热器约占总投资的2 0%。
若按工艺设备重量统计,换热器在石油、化工装置中约占40%左右。
随着化工、石化、炼油工业的迅速发展,各种新型换热器不断出现,一些传统的换热器的结构也在不断改进、更新。
今后换热器的发展趋势将是不断增加紧凑性、互换性,不断降低材料消耗,提高传热效率和各种比特性,提高操作和维护的便捷性。
换热器的类型很多.特点各异,分类方法也不尽相同。
苦按其用途分,有加热器、冷却器、冷凝器、蒸发器和再沸器等。
技其结构类型分,有列管式、板式、螺旋板式、板翅式、板壳式利翅片管式等。
若按传热原理和热交换方式分,有直接混合式、蓄热式和间壁式三类,列管式换热器是间壁式换热器的主要类型,也是应用最普遍的一种换热设备。
列管式换热器发展较早,设计资料和技术数据较完整.目前在许多国家中都已有系列化标准产品。
虽然在换热效率、紧凑件、材料消耗等方面还不及一些新型换热器,但它具有结构简单、牢固、耐用,适应性强,操作弹性较大,成本较低等优点,因而仍是化工、石化、石油炼制等工业中应用最广泛的换热设备,也是各类换热器的主要类型。
二、列管式换热器的结构、固定及各种性能参数 1.列管式换热器的结构列管式换热器主要由壳体、换热管束、管板(又称花板)、封头(又称端盖)等部件组成,图1—1为它的基本构型,此式为卧式换热器,除此之外还有立式的。
在圆筒形的完体内装有换热管束,管束安装固定在壳体内两端的管板上。
封头用螺钉与壳体两端的法兰连接,如需检修或清洗,可将封头盖拆除。
图1—1 列管式换热器的基本结构冷、热流体在列管式换热器内进行换热时,一种流体在管束与壳体间的环隙内流动,其行程称为壳程;另一种流体在换热管内流动,其行程称为管程。
管内流体每通过一次管束称为一个管程。
如需要换热器较大传热面积时,则应排列较多的换热管束。
列管式换热器课程设计
列管式换热器 课程设计一、课程目标知识目标:1. 让学生掌握列管式换热器的基本结构和工作原理,理解换热过程中的热量传递机制。
2. 使学生了解列管式换热器的类型、特点及应用场景,能够区分不同类型的换热器。
3. 引导学生掌握换热器设计的基本原则和步骤,学会运用相关公式计算换热器的传热系数和换热面积。
技能目标:1. 培养学生运用所学知识分析实际换热问题,具备解决换热器设计问题的能力。
2. 提高学生运用计算工具(如Excel、计算器等)进行换热器相关计算的速度和准确性。
3. 培养学生团队合作意识,提高沟通与协作能力,通过小组讨论、汇报等形式,共同完成换热器设计任务。
情感态度价值观目标:1. 培养学生对换热器设计及工程应用的兴趣,激发创新意识和探索精神。
2. 引导学生关注换热器在能源、环保等领域的重要性,培养节能环保意识和社会责任感。
3. 培养学生严谨、踏实的科学态度,养成认真负责的工作作风。
本课程针对高年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果。
课程注重理论与实践相结合,以实际工程案例为载体,引导学生通过自主学习、小组合作等方式,掌握换热器设计的基本知识和技能。
在教学过程中,关注学生的个体差异,鼓励提问和讨论,以提高学生的思维能力和解决问题的能力。
通过本课程的学习,使学生能够具备独立设计换热器的能力,为未来从事相关工作打下坚实基础。
二、教学内容1. 列管式换热器的基本概念:介绍换热器的作用、分类及其在工业中的应用。
教材章节:第二章 换热器的基本概念与分类2. 列管式换热器的工作原理:讲解列管式换热器中的热量传递过程,包括对流传热和导热。
教材章节:第三章 列管式换热器的工作原理与热量传递3. 列管式换热器的设计原则与步骤:阐述换热器设计的基本原则,介绍设计步骤及注意事项。
教材章节:第四章 列管式换热器的设计原则与步骤4. 列管式换热器传热系数的计算:分析影响换热器传热系数的因素,介绍相关计算公式。
列管式换热器的设计(化工原理课程设计)
目录§一.任务书1.1.化工原理课程设计的重要性1.2.课程设计的基本内容和程序1.3.列管式换热器设计内容1.4.设计任务和操作条件1.5.主要设备结构图§二.概述及设计要求2.1.换热器概述2.2.固定管板式换热器2.3.设计要求§三.设计条件及主要物理参数3.1.初选换热器的类型3.2.确定物性参数3.3.计算热流量及平均温差3.4.管程安排(流动空间的选择)及流速确定3.5.计算传热系数k3.6.计算传热面积§四.设计结果汇总§五.设计评述§六.工艺流程图§七.符号说明§八.参考资料§一化工原理课程设计任务书1.1.化工原理课程设计的重要性化工原理课程设计是学生学完基础课程以及化工原理课程以后,进一步学习工程设计的基础知识,培养学生工程设计能力的重要教学环节,也是学生综合运用化工原理和相关选修课程的知识,联系生产实际,完成以单元操作为主的一次工程设计的实践。
通过这一环节,使学生掌握单元操作设计的基本程序和方法,熟悉查阅技术资料、国家技术标准,正确选用公式和数据,运用简洁文字和工程语言正确表述设计思想和结果;并在此过程中使学生养成尊重实际问题向实践学习,实事求是的科学态度,逐步树立正确的设计思想、经济观点和严谨、认真的工作作风,提高学生综合运用所学的知识,独立解决实际问题的能力。
1.2.课程设计的基本内容和程序化工原理课程设计的基本内容有:1、设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。
2、主要设备的工艺计算:物料衡算、能量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算。
3、辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备规格型号的选定。
4、工艺流程图:以单线图的形式描绘,标出主体设备与辅助设备的物料方向、物流量、主要测量点。
5、主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。
化工原理课程设计列管式换热器
可用旳场合:
1)管程走清洁流体;
2)管程压力尤其高;
3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法 满足要求旳场合.
2、流动空间旳选择
3、流速旳拟定
4、流动方式旳选择
除逆流和并流之外,在列管式换热器中冷、 热流体还能够作多种多管程多壳程旳复杂 流动。当流量一定时,管程或壳程越多, 表面传热系数越大,对传热过程越有利。 但是,采用多管程或多壳程必造成流体阻 力损失,即输送流体旳动力费用增长。所 以,在决定换热器旳程数时,需权衡传热 和流体输送两方面旳损失。
5、流体出口温度旳拟定
若换热器中冷、热流体旳温度都由工艺条件所要求,则不存在 拟定流体两端温度旳问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来拟定。例如用冷水冷却一热流体,冷水 旳进口温度可根据本地旳气温条件作出估计,而其出口温度则 可根据经济核实来拟定:为了节省冷水量,可使出口温度提升 某些,但是传热面积就需要增长;为了减小传热面积,则需要 增长冷水量。两者是相互矛盾旳。一般来说,水源丰富旳地域 选用较小旳温差,缺水地域选用较大旳温差。但是,工业冷却 用水旳出口温度一般不宜高于45℃,因为工业用水中所含旳部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)旳溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差旳污垢,而使传热过程恶化。假如是用加热介质加热 冷流体,可按一样旳原则选择加热介质旳出口温度。
取管长应根据出厂旳钢管长度合理截用。 我国生产系列原则中管长有1.5m,2m, 3m,4.5m,6m和9m六种,其中以3m和 6m更为普遍。同步,管子旳长度又应与管 径相适应,一般管长与管径之比,即L/D约 为4~6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计时从中选用。
四、传热面积 A 的确定
工程上常将列管式换热器中管束所有管子的外表面积之和视为传热面积, 由 式( 2-4)和式( 2- 5)进行计算。
Q A 0=
K tm
(2-4)
A o nd o L
(2-5)
式中: K - 基于外表面 Ao 的传热系数, W/m2.℃
d o -管子外径,m;
L-每根管子的有效长度,m; A o nd o L
管束最外层管子中心距壳体内表面距离不小于
1 d0
2
10 mm
。
5、壳体的计算。
列管式换热器壳体的内径应等于或稍大于 (对于浮头式换热器) 管板的直径,
可由式( 2- 9)进行计算。
Di= a( b- 1)+ 2L
(2-9)
式中 Di-壳体内径, mm; a-管间距, mm; b-最外层六边形对角线上的管子数; L-最外层管子中心到壳体内壁的距离,一般取 L=(1~1.5) d o , mm;若对
7500,9000,12000mm。 n=A/( dmL),其中
A—换热面积 (m2);
L—换热管长度 mm;
dm— 管子的平均直径 mm。
由于在列管式换热器中要安装 4 根或 6 根拉杆。所以实际换热管子数为
{n-4(6)} 根。
(2)管子排列方式,管间距确定。
管子排列方式一般在程内采用正三角形排列, 而在程与程之间采用正方形排
列。管间距根据最小管间距选择。
最小管间距
管子外径( mm)
14 19
25 32 38 45 57
最小管间距( mm) 16 25
32 40 48 57 70
(3)换热器壳体直径的确定 壳体直径计算公式:当采用正三角形排列时为 Di=a(b-1)+2L 式中 Di— 换热器内径;
a—管间距; b—正三角形对角线上的管子数; L—最外层管子的中心到壳壁边缘的距离。 若对管子进行分程则 Di=f+2L 式中 f—壳体同一内直径两端管子中心距 mm; Di、 L 同上。 计算出 Di 后还要圆整到公称直径系列中。 (4)换热器壳体壁厚的计算 计算壁厚为 S=PDi/(2[σ ]tΦ -P) 式中 P— 设计压力, MPa;当 P﹤ 0.6 MPa 时,取 P=0.6 MPa; Di —壳体内径, mm; Φ—焊缝系数,根据焊缝情况选取 Φ =0.85-1.0; [σ] t—壳体材质在设计温度时的许用应力, MPa。 材质选取原则同管子的选取原则一样。 计算出 S 后还要根据钢板厚度负偏差表选取钢板厚度负偏差 C1;根据腐蚀 情况选取腐蚀裕量 C2,C2=KaB 其中 Ka 为腐蚀速度 (mm/a),B 为容器的设计寿 命。
列管式换热器主要有固定管板式换热器、 浮头式换热器、 填函式换热器和 U 型管式换热器, 而其中固定管板式换热器由于结构简单, 造价低, 因此应用最普 遍。
列管式换热器机械设计包括: 1、壳体直径的决定和壳体壁厚的计算。 2、换热器封头选择。 3、压力容器法兰选择。 4、管板尺寸确定。 5、管子拉脱力的计算。 6、折流板的选择与计算。 7、温差应力的计算。 8、接管、接管法兰选择及开孔补强等。 9 绘制主要零部件图和装配图。 下面分述如下: 一、壳体直径的决定和壳体壁厚的计算 。 1、已知条件:由工艺设计知管程和壳程介质种类、温度、压力、壳与壁温 差、以及换热面积。 2、计算 (1)管子数 n:
一般经验,对于液体,在压力降控制在 0.01~0.1MPa 之间,对于气体,控 制在 0.001~ 0.01MPa 之间。
表 2- 2 列出了换热器不同操作条件压力下合理压降的经验数据,供设计参 考。
表 2-2 列管式换热器合理压降的选取
换热器 负压运行
操作情况
低压运行
P<0.17
P>0.17
中压运行 (包括用泵输送 液体)
管子分程则 Di= f+2L f 值的确定方法:可查表求取,也可用作图法。当已知管子数 n 和管间距 a
后开始按正三角形排列,直至排好n根为止,再统计对角线上的管数。 计算出的壳径 Di 要圆整到容器的标准尺寸系列内。
第三节 列管式换热器机械设计
在化工企业中列管式换热器的类型很多, 如板式,套管式, 蜗壳式,列管式。 其中列管式换热器虽在热效率、紧凑性、金属消耗量等方面均不如板式换热器, 但它却具有结构坚固、 可靠程度高、 适应性强、 材料范围广等特点, 因此成为石 油、化工生产中,尤其是高温、高压和大型换热器的主要结构形式。
列管式换热器常用无缝钢管,规格如下:
碳钢 不锈钢
19×2 19×2
25× 2.5 25× 2
32× 3 32× 2
38× 3 38× 2.5
管子材质的选择依据是介质种类, 如果介质无腐蚀, 可选碳钢, 而介质有腐 蚀则选择不绣钢。管长规格有 1500, 2000, 2500, 3000,4500,5000,6000,
第二节 列管式换热器的工艺设计
一、换热终温的确定 换热终温对换热器的传热效率和传热强度有很大的影响。 在逆流换热时, 当 流体出口终温与热流体入口初温接近时, 热利用率高, 但传热强度最小, 需要的
传热面积最大。
为合理确定介质温度和换热终温,可参考以下数据:
1、热端温差(大温差)不小于 20℃。
2、冷端温差(小温差)不小于 5℃。
n-管子的总数
管子的有效长度是指管子的实际长度减去管板、 挡板所占据的部分。 管子总 数是指圆整后的管子数减去拉杆数。
五、主要工艺尺寸的确定
当确定了传热面积 Ao 后,设计工作进入换热器尺寸初步设计阶段,包括以
下内容:
1、管子的选用。
选用较小直径的管子, 可以提高流体的对流给热系数, 并使单位体积设备中 的传热面积增大, 设备较紧凑, 单位传热面积的金属耗量少, 但制造麻烦, 小管
( 2- 6)进行计算。
A0 n
d0L
(2-6)
式中 A o -传热面积, m2 ;
d o -管子外径, m;
L-每根管子的有效长度, m; 计算所得的管子 n 进行圆整
3、管程数 m 的确定。
根据管子数 n 可算出流体在管内的流速 u ' ,由式( 2- 7)计算。
'
u
vs
2
0.785 di n
较高压运行
操作压力 P=0~ 0.1 P=0.1~ 0.17 P= 0.17~ 1.1
( MPa 绝压)
P=1.1~ 3.1
P=3.1~ 8.2
合理压降 ( MPa)
P= P/10
P=p /2
P=0.035 △p =0.035 ~ 0.18 △p =0.07 ~ 0.25
2、管子总数 n 的确定。
对于已定的传热面积,当选定管径和管长后便可求所需管子数n,由式
见列管式换热器K值的大致范围。由表 2-1 选取大致K值,
表 2-1 冷流体
列管式换热器中的总传热系数 K 的经验值
热流体
总传热系数 W/m2. ℃
水
水
850-1700
水
气体
17-280
水
有机溶剂
280-850
水
轻油
340-910
水
重油
60-280
有机溶剂
有机溶剂
115-340
水
水蒸汽冷凝
1420-4250
见《化工原理》相关内容,一般要求在湍流下工作(高粘度流体除外),与此相 对应的 Re 值,对液体为 5×103,气体则为 10 4 - 10 5 。
分程时,应使每程的管子数大致相等,生产中常用的管程数为 1、 2、 4、 6、
四种。
4、管子的排列方式及管间距的确定。
管子在管板上排列的原则是: 管子在整个换热器的截面上均匀分布, 排列紧 凑,结构设计合理, 方便制造并适合流体的特性。 其排列方式通常为等边三角形
( 2— 1)
式中, t1 、 t 2 分别为大端温差与小端温差。当
t1
2
t2
时,可用算术平均值
tm
t1
t2
2。
2、对于错流或折流的换热过程, 若无相变化, 则要进行温差校正, 即用公式
( 2- 2)进行计算。
tm
t
t逆
(2-2)
式中 t逆 是按逆流计算的平均温差,校正系数
t 可根据换热器不同情况由化工
列管式换热器设计
第一节 推荐的设计程序
一、工艺设计 1、作出流程简图。 2、按生产任务计算换热器的换热量 Q。 3、选定载热体,求出载热体的流量。 4、确定冷、热流体的流动途径。 5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。 6、初算平均传热温度差。 7、按经验或现场数据选取或估算K值,初算出所需传热面积。 8、根据初算的换热面积进行换热器的尺寸初步设计。包括管径、管长、管 子数、管程数、管子排列方式、壳体内径(需进行圆整)等。 9、核算K。 10、校核平均温度差 T m 。 11、校核传热量,要求有 15- 25%的裕度。 12、管程和壳程压力降的计算。 二、机械设计 1、壳体直径的决定和壳体壁厚的计算。 2、换热器封头选择。 3、换热器法兰选择。 4、管板尺寸确定。 5、管子拉脱力计算。 6、折流板的选择与计算。 7、温差应力的计算。 8、接管、接管法兰选择及开孔补强等。 9、绘制主要零部件图。 三、编制计算结果汇总表 四、绘制换热器装配图 五、提出技术要求 六、编写设计说明书
3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于
含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下 5℃。
二、平均温差的计算
设计时初算平均温差 tm,均将换热过程先看做逆流过程计算。
1、对于逆流或并流换热过程,其平均温差可按式( 2-1)进行计算: