电路分析疑难总结知识点笔记

合集下载

电路知识点总结

电路知识点总结

第一章:电路模型和电路定理一.电流、电压、功率概念1.电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i〈0。

电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u〈0。

2.功率平衡一个实际的电路中,电源发出的功率总是等于负载消耗的功率.3.欧姆定律:,,运用欧姆定理的时候要先判断电压与电流方向是否关联,如果不关联需要加负号4.电路的断路与短路电路的断路处:I=0,U≠0电路的短路处:U=0,I≠0三.基尔霍夫定律1.几个概念:支路:是电路的一个分支。

结点:三条(或三条以上)支路的联接点称为结点。

回路:由支路构成的闭合路径称为回路。

网孔:电路中无其他支路穿过的回路称为网孔.2.基尔霍夫电流定律:(1)定义:任一时刻,流入一个结点的电流的代数和为零。

或者说:流入的电流等于流出的电流。

(2)表达式:i进总和=0 或: i进=i出(3)可以推广到一个闭合面.3.基尔霍夫电压定律(1)定义:经过任何一个闭合的路径,电压的升等于电压的降。

或者说:在一个闭合的回路中,电压的代数和为零。

或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和. (2)基尔霍夫电压定律可以推广到一个非闭合回路第二章电阻电路的等效变换1。

等效概念:两个两端电路,端口具有相同的电压、电流关系,则称它们是等效的电路。

对外等效,对内不等效2.串联电路的总电阻等于各分电阻之和,各电阻顺序连接,流过同一电流,串联电阻具有分压作用,3。

电阻并联等效电导等于并联的各电导之和,并联电阻具有分流作用4。

电阻的Y形连接和形连接的等效变换,.若三个电阻相等(对称),则有5.理想电压源(1) 不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。

理想电压源的输出功率可达无穷大。

(2)理想电压源不允许短路.6.理想电流源(1)不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。

电路分析疑难总结知识点笔记

电路分析疑难总结知识点笔记

电路笔记1.(1)电压源a.理想电压源:输出电压恒定的二端元件称为理想电压源。

其输出电压与外电路无关,内阻为零。

b.实际电压源:输出的电压随流过它的电流变化而变化的二端元件。

常见的电压源有干电池,蓄电池,发电机等等.(2)电流源a.理想电流源:输出电流恒定的二端元件称为理想电流源。

其输出电流与外电路无关,内阻无穷大。

b.实际电流源:输出电压随其两端电压变化而变化的二端元件。

由于内阻等多方面的原因,理想电流源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。

注意:电压源不允许短路,电流源不允许开路!2.首先,什么是三相电路?三相电路实际上是一种特殊的交流电路。

三条相线的电路就是三相电路,相线俗称就是火线。

三相电路是由3个频率相同、振幅相同、相位互差120°的正弦电压源所构成的电源称为三相电源。

由三相电源供电的电路。

所谓对称三相电路,就是电路中的三相电源为频率相同、振幅相同、相位互差120°的正弦电压源,且三相上负载的阻抗完全相同,各相电流彼此独立,各相线路参数完全一致的电路3.集总参数电路(模型)由电路元件连接而成,电路中各支路电流受到KCL约束,各支路电压受到KVL约束,这两种约束只与电路元件的连接方式有关,与元件特性无关,称为拓扑约束.集总参数电路(模型)的电压和电流还要受到元件特性(例如欧姆定律u=Ri)的约束,这类约束只与元件的VCR有关,与元件连接方式无关,称为元件约束.4.若电路中只有一个激励,则响应与激励成正比比例系数取决于电路的结构和参数,与激励源无关5.绝缘体是指在通常情况下不传导电流的物质。

又称电介质。

绝缘体的特点是分子中正负电荷束缚得很紧,可以自由移动的带电粒子极少,其电阻率很大,约为10~10欧姆·米,所以一般情况下可以忽略在外电场作用下自由电荷移动所形成的宏观电流,而认为是不导电的物质。

6.结点(节点):电路中,三个或更多的相会合处,称为结点;也可表述为:两个以上支路的连接点。

大学电路知识点总结笔记

大学电路知识点总结笔记

大学电路知识点总结笔记第一部分:基本电路理论电路是由电子元件(如电阻、电容、电感等)连接在一起,构成电流的路径,以完成某一特定功能的系统。

在电路中,一般有两种基本的电压源,即电源和电池。

电源可以提供恒定的电压,而电池则是一种化学能转化为电能并供给电路的装置。

电压一般用符号“V”表示,而电流则用符号“I”表示。

电流流过电阻时会产生电阻的压降,即“IR”,其中“R”表示电阻的阻值。

在电路中,典型的电路元件有电阻、电容和电感。

1. 电阻电阻是指材料对电流通过的阻碍。

电阻的单位是欧姆(Ω),在电路中用来限制电流的大小。

根据欧姆定律,电压与电流之比等于电阻值,即V=IR,其中V为电压,I为电流,R 为电阻值。

2. 电容电容是一种用来存储电荷的器件,其单位是法拉德(F)。

在电路中,电容可以用来存储和释放电能,同时可以对电流进行滤波和干扰消除。

电容器的电压-电荷关系式为Q=CV,其中Q表示存储的电荷,C表示电容大小,V表示电压。

3. 电感电感是利用磁场感应产生电压的元件,其单位是亨利(H)。

电感元件可以用来存储能量或者产生一个时间变化的电压。

而电感的电压-电流关系式为V=L(di/dt),其中V表示电压,L表示电感大小,di/dt表示电流的变化率。

第二部分:基本电路分析方法1. 基尔霍夫定律基尔霍夫定律是电路分析中基本的方法之一,主要包括基尔霍夫电流定律和基尔霍夫电压定律。

基尔霍夫电流定律是指在电路中,任意节电路中的电流代数和为零。

即ΣI=0。

而基尔霍夫电压定律是指沿着闭合回路,电压代数和为零。

即ΣV=0。

2. 罗尔定理罗尔定理是指任何一个线性电路都可以用一个等效电源和一个等效电阻来代替。

而等效电源可以是恒定电压源或者恒定电流源。

3. 节点分析法节点分析法是一种常用的电路分析方法,其基本步骤是选择一个参考节点,然后利用基尔霍夫电流定律来对节点进行分析。

通过节点分析法可以得到电路中各节点的电压。

4. 网络分析法网络分析法是一种综合利用基尔霍夫定律和罗尔定理的分析方法,其主要目的是找到电路中各支路的电压和电流关系。

电路分析知识点

电路分析知识点

1、当流过一个线圈中的电流发生变化时,在线圈本身所引起的电磁感应现象称 自感 现象,若本线圈电流变化在相邻线圈中引起感应电压,则称为 互感 现象。

2、当端口电压、电流为 关联 参考方向时,自感电压取正;若端口电压、电流的参考方向 非关联时 ,则自感电压为负。

3、互感电压的正负与电流的 方向 及 同名 端有关。

4、两个具有互感的线圈顺向串联时,其等效电感为 L=L 1+L 2+2M ;它们反向串联时,其等效电感为 L=L 1+L 2-2M 。

5、两个具有互感的线圈同侧相并时,其等效电感为 )2/()(21221M L L M L L -+- ;它们异侧相并时,其等效电感为 )2/()(21221M L L M L L ++- 。

6、理想变压器的理想条件是:①变压器中无 损耗 ,②耦合系数K = 1 ,③线圈的 自感 量和 互感 量均为无穷大。

理想变压器具有变换 电压 特性、变换 电流 特性和变换 阻抗 特性。

7、理想变压器的变压比n= U 1/U 2 ,全耦合变压器的变压比n=21/L L 。

8、当实际变压器的 损耗 很小可以忽略时,且耦合系数K = 1 时,称为 全耦合 变压器。

这种变压器的 电感 量和 互感 量均为有限值。

9、空芯变压器与信号源相连的电路称为 初级 回路,与负载相连接的称为 次级 回路。

空芯变压器次级对初级的反射阻抗Z 1r = ω2M 2/Z 22 。

10、理想变压器次级负载阻抗折合到初级回路的反射阻抗Z 1n = n 2Z L1、电流所经过的路径叫做 电路 ,通常由 电源 、 负载 和 中间环节 三部分组成。

2、实际电路按功能可分为电力系统的电路和电子技术的电路两大类,其中电力系统的电路其主要功能是对发电厂发出的电能进行 传输 、 分配 和 转换 ;电子技术的电路主要功能则是对电信号进行 传递 、 变换 、 存储 和 处理 。

3、实际电路元件的电特性 单一 而 确切 ,理想电路元件的电特性则 多元 和 复杂 。

电路分析知识点总结

电路分析知识点总结

电路分析知识点总结
电路分析知识点总结
电路由电源、电键、用电器、导线等元件组成。

要使电路中有持续电流,电路中必须有电源,且电路应闭合的。

以下是电路分析知识点总结,欢迎阅读。

一、电流的规律:
(1)串联电路:i=i1+i2;
(2)并联电路:i=i1+i2
二、电路的状态:通路、开路、短路
1.定义:(1)通路:处处接通的电路;(2)开路:断开的.电路;(3)短路:将导线直接连接在用电器或电源两端的电路。

2.正确理解通路、开路和短路
三、电路的基本连接方式:串联电路、并联电路
四、电路图(统一符号、横平竖直、简洁美观)
五、电工材料:导体、绝缘体
1. 导体
(1) 定义:容易导电的物体;(2)导体导电的原因:导体中有自由移动的电荷;
2. 绝缘体
(1)定义:不容易导电的物体;(2)原因:缺少自由移动的电荷
六、电流的形成
1.电流是电荷定向移动形成的;
2.形成电流的电荷有:正电荷、负电荷。

酸碱盐的水溶液中是正负离子,金属导体中是自由电子。

七.电流的方向
1.规定:正电荷定向移动的方向为电流的方向;
2.电流的方向跟负电荷定向移动的方向相反;
3.在电源外部,电流的方向是从电源的正极流向负极。

八、电流的效应:热效应、化学效应、磁效应
九、电流的大小:i=q/t
十、电流的测量
1.单位及其换算:主单位安(a),常用单位毫安(ma)、微安(μa)
2.测量工具及其使用方法:(1)电流表;(2)量程;(3)读数方法(4)电流表的使用规则。

(完整版)电路分析基础知识归纳

(完整版)电路分析基础知识归纳

《电路分析基础》知识归纳一、基本概念1.电路:若干电气设备或器件按照一定方式组合起来,构成电流的通路。

2.电路功能:一是实现电能的传输、分配和转换;二是实现信号的传递与处理。

3.集总参数电路近似实际电路需满足的条件:实际电路的几何尺寸l(长度)远小于电路正常工作频率所对应的电磁波的波长λ,即l 。

4.电流的方向:正电荷运动的方向。

5.关联参考方向:电流的参考方向与电压降的参考方向一致。

6.支路:由一个电路元件或多个电路元件串联构成电路的一个分支。

7.节点:电路中三条或三条以上支路连接点。

8.回路:电路中由若干支路构成的任一闭合路径。

9.网孔:对于平面电路而言,其内部不包含支路的回路。

10.拓扑约束:电路中所有连接在同一节点的各支路电流之间要受到基尔霍夫电流定律的约束,任一回路的各支路(元件)电压之间要受到基尔霍夫电压定律约束,这种约束关系与电路元件的特性无关,只取决于元件的互联方式。

U(直流电压源)或是一定的时间11.理想电压源:是一个二端元件,其端电压为一恒定值Su t,与流过它的电流(端电流)无关。

函数()S12.理想电流源是一个二端元件,其输出电流为一恒定值I(直流电流源)或是一定的时间Si t,与端电压无关。

函数()S13.激励:以电压或电流形式向电路输入的能量或信号称为激励信号,简称为激励。

14.响应:经过电路传输处理后的输出信号叫做响应信号,简称响应。

15.受控源:在电子电路中,电源的电压或电流不由其自身决定,而是受到同一电路中其它支路的电压或电流的控制。

16.受控源的四种类型:电压控制电压源、电压控制电流源、电流控制电压源、电流控制电流源。

17.电位:单位正电荷处在一定位置上所具有的电场能量之值。

在电力工程中,通常选大地为参考点,认为大地的电位为零。

电路中某点的电位就是该点对参考点的电压。

18.单口电路:对外只有两个端钮的电路,进出这两个端钮的电流为同一电流。

19.单口电路等效:如果一个单口电路N1和另一个单口电路N2端口的伏安关系完全相同,则这两个单口电路对端口以外的电路而言是等效的,可进行互换。

电路知识点总结8篇

电路知识点总结8篇

电路知识点总结8篇第1篇示例:电路知识点总结电路是指由电子元件(如电阻、电容、电感等)连接而成的一种具有特定功能的电子装置。

在现代科技领域中,电路扮演着至关重要的角色,无论是通信设备、计算机、家用电器还是工业生产设备,都离不开电路的应用。

掌握电路知识对于我们理解现代科技发展趋势、提高工程技能都至关重要。

下面将对电路知识点进行总结,帮助大家更好地理解电路的基本原理和应用。

一、电路基本概念1. 电路的定义:电路是由电子元件通过导线相互连接而成的电气系统,用于实现电流、电压等电学量的控制和变换。

2. 电路的分类:电路按功能可分为模拟电路和数字电路;按连接方式可分为串联电路和并联电路;按组成元件可分为被动电路和主动电路等。

3. 电路的符号:在电路图中,电子元件用具体的图形符号表示,如电阻用Ω表示,电容用F表示,电感用H表示等。

二、电路的基本元件1. 电阻:电路中的电子元件,用于限制电流的流动,单位是欧姆(Ω)。

4. 电源:电路中的电子元件,提供电流和电压,是电路正常运行的必要条件。

5. 开关:电路中的电子元件,用于实现电路的开关控制。

6. 源波纹:电路中由于电源频率或者负载不稳定引起的波动电压或电流。

7. 电路板:电子元件连接的载体,通常是一块绝缘基板,也称为PCB。

1. 欧姆定律:描述电阻、电流、电压之间的关系,即电流等于电压与电阻的比值。

2. 基尔霍夫定律:描述电路中各个节点的电流平衡关系,即电路中的节点电流代数和为零。

4. 电流分流定律:描述电路中分流电路的原理,即电流与电阻成反比。

5. 超前相位:电压超过电流的现象,通常出现在电容、电感等元件中。

四、电路的搭建与调试1. 搭建电路:根据电路图纸和电子元件的连接符号,按照一定的连接方式将电子元件连接到电路板上。

2. 调试电路:通过万用表、示波器等仪器检测电路中的电流、电压等参数,找到问题并解决。

3. 仿真电路:利用电路仿真软件模拟电路的工作状态,帮助分析电路的性能和稳定性。

电路分析知识点总结大全

电路分析知识点总结大全

电路分析知识点总结大全一、电路分析的基础知识1. 电路基本元件在电路分析中,最基本的电路元件包括电阻、电容和电感。

这些元件分别用来阻碍电流、储存电荷和储存能量。

此外,还有理想电源、电压源、电流源等理想元件。

2. 电路参数在电路分析中,常用的电路参数包括电压、电流、电阻、电导、电容、电感、功率等。

3. 电路定理在电路分析中,常用的电路定理包括欧姆定律、基尔霍夫定律、戴维南-诺顿定理、叠加原理等。

4. 电路图在电路分析中,常用的电路图包括电路的标准符号、线路图和接线图。

二、直流电路的分析1. 基本电路的分析方法直流电路的分析主要包括基尔霍夫定律、欧姆定律、戴维南-诺顿定理和叠加定理等。

通过这些方法可以求得电流、电压、功率等参数。

2. 串并联电路的分析串联电路的分析主要是利用欧姆定律和基尔霍夫定律,计算总电阻、电流分布和电压分布等;并联电路的分析也是利用欧姆定律和基尔霍夫定律,计算总电阻、电流分布和电压分布等。

3. 戴维南-诺顿定理的应用戴维南-诺顿定理可以将复杂电路转化为简单的等效电路,从而方便计算电路的各项参数。

4. 叠加定理的应用叠加定理通过将电路分解为多个独立的部分,分别计算每个部分对电压、电流的贡献,最后叠加得到最终结果。

三、交流电路的分析1. 交流电路的基本知识交流电路的基本知识包括交流电源、交流电压、交流电流、交流电阻、交流电抗等。

2. 交流电路的复数表示法在交流电路分析中,常使用复数表示法来分析电压、电流和阻抗等参数。

3. 交流电路的频率响应交流电路的频率响应表征了电路对不同频率信号的响应情况,通过频率响应可以分析电路的频率特性。

4. 交流电路的功率分析在交流电路中,功率的计算可以通过功率因数、有功功率和视在功率来分析电路的功率特性。

四、数字电路的分析1. 逻辑门的分析逻辑门是数字电路的基本元件,常见的逻辑门有与门、或门、非门、异或门等,通过逻辑门的组合可以实现各种逻辑运算。

2. 数字电路的布尔代数分析布尔代数是对逻辑门进行分析的基本方法,通过布尔代数可以推导出逻辑门的真值表和逻辑表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路笔记1.(1)电压源a.理想电压源:输出电压恒定的二端元件称为理想电压源。

其输出电压与外电路无关,内阻为零。

b.实际电压源:输出的电压随流过它的电流变化而变化的二端元件。

常见的电压源有干电池,蓄电池,发电机等等.(2)电流源a.理想电流源:输出电流恒定的二端元件称为理想电流源。

其输出电流与外电路无关,内阻无穷大。

b.实际电流源:输出电压随其两端电压变化而变化的二端元件。

由于内阻等多方面的原因,理想电流源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。

注意:电压源不允许短路,电流源不允许开路!2.首先,什么是三相电路?三相电路实际上是一种特殊的交流电路。

三条相线的电路就是三相电路,相线俗称就是火线。

三相电路是由3个频率相同、振幅相同、相位互差120°的正弦电压源所构成的电源称为三相电源。

由三相电源供电的电路。

所谓对称三相电路,就是电路中的三相电源为频率相同、振幅相同、相位互差120°的正弦电压源,且三相上负载的阻抗完全相同,各相电流彼此独立,各相线路参数完全一致的电路3.集总参数电路(模型)由电路元件连接而成,电路中各支路电流受到KCL约束,各支路电压受到KVL约束,这两种约束只与电路元件的连接方式有关,与元件特性无关,称为拓扑约束.集总参数电路(模型)的电压和电流还要受到元件特性(例如欧姆定律u=Ri)的约束,这类约束只与元件的VCR有关,与元件连接方式无关,称为元件约束.4.若电路中只有一个激励,则响应与激励成正比比例系数取决于电路的结构和参数,与激励源无关5.绝缘体是指在通常情况下不传导电流的物质。

又称电介质。

绝缘体的特点是分子中正负电荷束缚得很紧,可以自由移动的带电粒子极少,其电阻率很大,约为10~10欧姆·米,所以一般情况下可以忽略在外电场作用下自由电荷移动所形成的宏观电流,而认为是不导电的物质。

6.结点(节点):电路中,三个或更多的相会合处,称为结点;也可表述为:两个以上支路的连接点。

7.简单地讲就是需能(电)源的器件叫有源器件,无需能(电)源的器件就是无源器件。

有源器件一般用来信号放大、变换等,无源器件用来进行信号传输,或者通过方向性进行“信号放大”。

容、阻、感都是无源器件,IC、模块等都是有源器件。

(通俗的说就是需要电源才能显示其特性的就是有源元件,如三极管。

而不用电源就能显示其特性的就叫无源元件)1. 无源器件的简单定义如果电子元器件工作时,其内部没有任何形式的电源,则这种器件叫做无源器件。

从电路性质上看,无源器件有两个基本特点:(1)自身或消耗电能,或把电能转变为不同形式的其他能量。

(2)只需输入信号,不需要外加电源就能正常工作。

2.有源器件的基本定义如果电子元器件工作时,其内部有电源存在,则这种器件叫做有源器件。

从电路性质上看,有源器件有两个基本特点:(1)自身也消耗电能。

(2)除了输入信号外,还必须要有外加电源才可以正常工作。

由此可知,有源器件和无源器件对电路的工作条件要求、工作方式完全不同,这在电子技术的学习过程中必须十分注意8.总功率是一个概念,就是所有电器功率相加。

比如总的有功就是有功功率相加,总的无功就是所有无功相加。

复功率是有功+j无功:实部表示有功,虚部表示无功9.主流科学认为,电子运动是电。

电子为何叫电子,因为电子就是电。

电子运动产生电场,那电子为何运动,主流科学认为是,电子带负电,质子带正电。

电子为何带负电,质子为何带正电,主流科学没告诉我们。

10.在电源未接通时,由于电源内部的非静电力的作用,两极上积累的电荷在空间建立起电场(实线所示,虚线是等势面与纸面交线)。

11.有源器件你可以理解成需要单独电源供电才能正常工作的器件。

电阻电容电感都是无源器件,它们在电路里面工作不需要额外的电源供电运算放大器是有源器件,它工作的时候需要一定的电源给它单独地供电。

有源滤波是指滤波器需要额外的电源供电,无缘滤波就是没有,很简单。

无缘滤波通常的电容滤波、阻容滤波、π型滤波之类的都是有源滤波一般要用上运算放大器,巴特沃斯滤波器就是一个典型12.由于视在功率等于网络端钮处电流、电压有效值的乘积,而有效值能客观地反映正弦量的大小和他的做功能力,因此这两个量的乘积反映了为确保网络能正常工作,外电路需传给网络的能量或该网络的容量。

由于网络中既存在电阻这样的耗能元件,又存在电感、电容这样的储能元件,所以,外电路必须提供其正常工作所需的功率,即平均功率或有功功率,同时应有一部分能量被贮存在电感、电容等元件中。

这就是视在功率大于平均功率的原因。

只有这样网络或设备才能正常工作。

若按平均功率给网络提供电能是不能保证其正常工作的。

因此,在实际中,通常是用额定电压和额定电流来设计和使用用电设备的,用视在功率来标示它的容量。

另外,由于电感、电容等元件在一段时间之内储存的能量将分别在其它时间段内释放掉,这部分能量可能会被电阻所吸收,也可能会提供给外电路。

所以,我们看到单口网络的瞬时功率有时为正有时为负。

在交流电路中,我们将正弦交流电电路中电压有效值与电流有效值的乘积称为视在功率,即S=UI视在功率不表示交流电路实际消耗的功率,只表示电路可能提供的最大功率或电路可能消耗的最大有功功率。

13.一个电源可以用两种不同的电路模型来表示,一种是用电压的形式来表示,称为电压源,一种是用电流的形式来表示称为电流源。

1.电压源电源电压U恒等于电动势E,是一定值,而其中的电流I是任意的,由负载电阻RL及电源电压U本身确定,这样的电源称为理想电压源或者是恒压源。

2.电流源电源电流I恒等于电流Is是一定值,而其两端的电压U则是任意的,由负载电阻RL以及电流Is本身确定。

这样的电源称为理想电流源或者是恒流源。

14.受控源有两种4类第一种是受控电压源第二种是受控电流源然后第一种分无伴(不含串联电阻)和有伴(含有串联电阻),第二种也分无伴(不含并列电阻)和有伴(含并列电阻).方法:分析含有受控源的电路时要根据不同分析方法而采用不同的处理方式电阻电路的一般分析方法有支路电流法、网孔电流法、回路电流法、结点电压法然后多数情况下我们会采用回路电流法和接点电压法.回路电流法分析含受控源的解题思路:1、当电路中存在无伴受控电流源时,将无伴电流源两端的电压(U)作为一个求解变量列入方程.这样多了个变量U, 但是无伴电流源所在支路电流为已知,故增加了一个回路电流的附加方程.2、当电路中存在有伴受控电流源时,则需将其等效为受控电压源就可以做啦.3、当电路中含有无伴受控电压源时,则把它当成独立电压源就行.4、当电路中含有有伴受控电压源时,受控电压源也当做一般电压源列回路方程即可.结点电压法无伴受控电压源:在无伴电压源支路中添加变量电流i .有伴受控电压源:当做独立电压源算受控电流源:暂时当成独立电流源列入结点电压方程中,然后把用结点电压表示的受控电流源电流移到方程的左边.遵循的一个原则如果多添加了一个变量,则要多增加一个方程(方程在电路中容易得出),以此类推15.受控源的分析方法:1.受控电压源的端电压或受控电流源的输出电流只随其控制量的变化而变化,若控制量不变,受控电压源的端电压或受控电流源的输出电流将不会随外电路变化而变化。

即受控源在控制量不变的情况下,其特性与独立源相同。

2.对于独立源推导得出的结论,基本也适用于受控源。

3.在对含受控源电路的分析过程中,受控源的控制量所在支路必须保留,不允许有任何改变。

16.两条规律:⑴对任何一个节点,流入的电流之和与流出的电流之和相等(依据是电荷量守恒);⑵任何两点间的电势差等于沿任何路径从一点到另一点的电势差之和,经一闭合回路的电势差为零。

16.举个例子:对电容突加电压,瞬间电容产生最大的电流,而电压要等到电容两段电荷积累产生,因此电容使电压滞后于电流。

同样给电感突加电压,电感电流要慢慢才能增大,故电感电流相位会滞后于电压17.接线端子是为了方便导线的连接而应用的,它其实就是一段封在绝缘塑料里面的金属片,两端都有孔可以插入导线,有螺丝用于紧固或者松开,比如两根导线,有时需要连接,有时又需要断开,这时就可以用端子把它们连接起来,并且可以随时断开,而不必把它们焊接起来或者缠绕在一起,很方便快捷。

而且适合大量的导线互联18.复数直角坐标加减极坐标乘除用有效值算出也是有效值每一个电压电流都对应一个系数牵扯到交流电lc的时候不能直接代数算法,里面牵扯到相位19.对于三相对称负载,无论负载是星形接法还是三角形接法,三相有功功率、无功功率和视在功率的计算公式相同。

【U相电压I相电流U*线电压I*线电流cosΨ功率因数】三相有功功率:P=3UIcosΨ=√3U*I*cosΨ单位W三相无功功率:Q=3UIsinΨ=√3U*I*sinΨ单位Var三相视在功率:S=3UI=√3U*I* 单位VA20.叠加原理是针对线性电路的,二极管是非线性的,一般当然不适用。

但某些局部问题,如果能证明其工作区域没有超出某个线性范围,则可以使用叠加原理。

21.电阻两端的电压与通过它的电流成正比,其伏安特性曲线为直线这类电阻称为线性电阻,其电阻值为常数;反之,电阻两端的电压与通过它的电流不是线性关系称为非线性电阻,其电阻值不是常数。

一般常温下金属导体的电阻是线性电阻,在其额定功率内,其伏安特性曲线为直线。

象热敏电阻、光敏电阻等,在不同的电压、电流情况下,电阻值不同,伏安特性曲线为非线性。

22.电压正比于通过它的电流,电压特性曲线是这样的跨电阻称为线性电阻,电阻值是恒定的电阻的直线;相反,电阻两端的电压,并通过它不知道作为非线性关系的线性电阻的电流,电阻值不是恒定的。

一般的金属导体的室温电阻是线性的阻力,其额定功率内,电压特性曲线是一条直线。

像热敏电阻,光敏电阻等,以不同的电压,电流,电阻值都不同,电压特性曲线是非线性的。

23.电压源就是普通的电源,具有极低的内阻。

而负载的阻值在大范围变化时肯定都远大于电源内阻,因此电压源的端电压稳定,可以看作全部电动势都降在了负载上。

电流源在电子电路中常见,具有高的内阻,一般用电子元件的导通大小程度改变内阻,起到了限流的作用,在一定的范围内,当负载电阻变小,恒流源内阻变大,加在负载上的电压减小,维持电流不变;负载电阻变大,恒流源内阻变小,加在负载上的电压增大,维持负载电流不变;24.电流源,即理想电流源,是从实际电源抽象出来的一种模型,其端钮总能向外部提供一定的电流而不论其两端的电压为多少,电流源具有两个基本的性质:第一,它提供的电流是定值I或是一定的时间函数I(t)与两端的电压无关。

第二,电流源自身电流是确定的,而它两端的电压是任意的。

由于电流源的电流是固定的,所以电流源不能断路,电流源与电阻串联时其对外电路的效果与单个电流源的效果相同。

相关文档
最新文档