红外探测器

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外探测器

红外探测器(Infrared Detector)是将入射的红外辐射信号转变成电信号输出的器件。红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,必须把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。现代红外探测器所利用的主要是红外热效应和光电效应。这些效应的输出大都是电量,或者可用适当的方法转变成电量。

产品构成

一个红外探测器至少有一个对红外辐射产生敏感效应的物体,称为响

应元。此外,还包括响应元的支架、密封外壳和透红外辐射的窗口。有时还包括致冷部件、光学部件和电子部件等。

发展简史

1800年,F.W.赫歇耳在太阳光谱中发现了红外辐射的存在。当时,他使用的是水银温度计,即最原始的热敏型红外探测器。1830年,L.诺比利利用当时新发现的温差电效应(也称塞贝克效应),制成了一种以半金属铋和锑为温差电偶的热敏型探测器。称作温差电型红外探测器(也称真空温差电偶)。其后,又从单个温差电偶发展成多

个电偶串联的温差电堆。1880年,S.P.兰利利用金属细丝的电阻随温度变化的特性制成另一种热敏型红外探测器,称为测辐射热计。1947年,M.J.E.高莱发明一种利用气体热膨胀制成的气动型红外探测器(又称高莱管)。在40年代,又用半导体材料制作温差电型红外探测器和测辐射热计,使这两种探测器的性能比原来使用半金属或金属时得到很大的改进。半导体的测辐射热计又称热敏电阻型红外探测器。

60年代中期,出现了热释电型探测器。它也是一种热敏型探测器,但其工作原理与前三种热敏型红外探测器有根本的区别。最早的光电型红外探测器是利用光电子发射效应即外光电效应制成的。以 Cs-O-Ag为阴极材料的光电管(1943年出现)可以探测到 1.3微米。外光电效应的响应波长难以延伸,因此,它的发展主要是近红外成像器件,如变像管。

利用半导体的内光电效应制成的红外探测器,对红外技术的发展起了重要的作用。内光电效应分光电导和光生伏打两种效应。利用这些效应制成的探测器分别称为光导型红外探测器和光伏型红外探测器(见光子型探测器)。

在半导体中引起电导改变或产生电动势是一个激活过程,需要有一定的能量墹E。因此,入射辐射的光子能量必须大于墹E。也就是光电型探测器有一个最长的响应波长,称为长波限λ,即

(1)

1917年,T.W.卡斯发明Tl2S光电型红外探测器,但长波限仅到1.1微米。30年代末期,德国人研究PbS光导型探测器,室温工作时长波限为3微米,液氮温度时可到5微米。第二次世界大战之后,相继研制成PbTe和PbSe光电型探测器,响应波长延伸到7微米。50年代起,由于半导体物理学的发展,光电型探测器所能探测的波长不断延伸。对于有重要技术用途的 1~13微米波段和限于实验室应用的13~1000微米波段,都有适当的光电型探测

器可供使用。60年代起,又研究成Hg1-x Cd x Te三元半导体红外探测器,配制不同组分x的材料,可以制得不同响应波长的红外探测器。

整流型红外探测器也是60年代开始问世的。由于激光的出现,就有可能利用外差技术进行接收。因此,把微波波段用的结型检波器推广应用到更高的频率范围,即短毫米波和亚毫米波。

红外探测器原理

不同种类的物体发射出的红外光波段是有其特定波段的,该波段的红外光处在可见光波段之外。因此人们可以利用这种特定波段的红外光来实现对物体目标的探测与跟踪。将不可见的红外辐射光探测出并将其转换为可测量的信号的技术就是红外探测技术。从目前应用的情况来看,红外探测

红外探测器

有如下几个优点:环境适应性优于可见光,尤其是在夜间和恶劣天候下的工作能力;隐蔽性好,一般都是被动接收目标的信号,比雷达和激光探测安全且保密性强,不易被干扰;由于是*目标和背景之间的温差和发射率差形成的红外辐射特性进行探测,因而识别伪装目标的能力优于可见光;与雷达系统相比,红外系统的体积小,重量轻,功耗低;探测器的光谱响应从短波扩展到长波;探测器从单元发展到多元、从多元发展到焦平面;发展了种类繁多的探测器和系统;从单波段探测向多波段探测发展;从制冷型探测器发展到室温探测器;由于红外探测技术有其独特的优点从而使其

在军事国防和民用领域得到了广泛的研究和应用,尤其是在军事需求的牵引和相关技术发展的推动下,作为高新技术的红外探测技术在未来的应用将更加广泛,地位更加重要。红外探测器是将不可见的红外辐射能转变成其它易于测量的能量形式的能量转化器,作为红外整机系统的核心关键部件,红外探测器的研究始终是红外物理与技术发展的中心。自1800年Herschel发现太阳光谱中的红外线时所用的涂黑水

银温度计为最早的红外探测器以来,随着红外实验和理论的发展,新器件不断涌现。红外探测器制备涉及物理、材料、化学、机械、微电子、计算机等多学科,是一门综合科学。

1.2.1热探测器热探测器吸收红外辐射后,温度升高,可以使探测材料产生温差电动势、电阻率变化,自发极化强度变化,或者气体体积与压强变化等,测量这些物理性能的变化就可以测定被吸收的红外辐射能量或功率。分别利用上述不同性能可制成多种热探测器:

(1) 液态的水银温度计及气动的高莱池(Golay cell):利用了材料的热胀冷缩效应。

(2) 热电偶和热电堆:利用了温度梯度可使不同材料间产生温差电动势的温差电效应。

(3) 石英共振器非制冷红外成像列阵:利用共振频率对温度敏感的原理来实现红外探测。

(4)测辐射热计:利用材料的电阻或介电常数的热敏效应—辐射引起温升改变

材料电阻—用以探测热辐射。因半导体电阻有高的温度系数而应用最多,测温辐射热计常称“热敏电阻”。另外,由于高温超导材料出现,利用转变温度附近电阻陡变的超导探测器引起重视。如果室温超导成为现实,将是21世纪最引人注目的一类探测器;

(5) 热释电

探测器:有些晶体,如硫酸三甘酞、铌酸锶钡等,当受到红外辐射照射温度升高时,引起自发极化强度变化,结果在垂直于自发极化方向的晶体两个外表面之间产生微小电压,由此能测量红外辐射的功率。

1.2.2光子探测器光子探测器吸收光子后,本身发生电子状态的改变,从而引起内光电效应和外光电效应等光子效应,从光子效应的大小可以测定被吸收的光子数。

(1)光电导探测器:又称光敏电阻。半导体吸收能量足够大的光子后,体内一些载流子从束缚态转变为自由态,从而使半导体电导率增大,这种现象称为光电导效应。利用光电导效应制成的光电导探测器分为多晶薄膜型和单晶型两种。

(2)光伏探测器:主要利用p-n结的光生伏特效应。能量大于禁带宽度的红外光子在结区及其附近激发电子空穴对。存在的结电场使空穴进入p 区,电子进入n区,两部分出现电位差,外电路就有电压或电流信号。与光电导探测器比较,光伏探测器背景限探测率大40%,不需要外加偏置电场和负载电阻

,不消耗功率,有高的阻抗。

相关文档
最新文档