2015高考数学(理)一轮课程案例:10-4圆锥曲线热点问题

合集下载

2015年高考数学真题解析之圆锥真题(理科)

2015年高考数学真题解析之圆锥真题(理科)

2015高考圆锥曲线真题汇总(理科)1.(14分)(2015•广东)已知过原点的动直线l 与圆C 1:x 2+y 2﹣6x+5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数 k ,使得直线L :y=k (x ﹣4)与曲线 C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.2.(本小题满分16分)如图,在平面直角坐标系xOy 中,F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程. 3.(本小题满分12分,(1)小问5分,(2)小问7分)的左、右焦点分别为12,,F F 过2F 的直线交椭圆于,P Q 两点,且1PQ PF ⊥(1 (2求椭圆的离心率.e4.(本题满分15分)上两个不同的点A ,B 关于直线对称.(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).5.(本小题满分12分)在直角坐标系xoy 中,曲线C :与直线y kx a =+(a >0)交与M,N 两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.6.(本小题满分14分)0)a b 的左焦点为(,0)F c -,离心率为点M 在椭圆上且位于第一象限,直线FM 被圆44b 截得的线段的长为c ,(Ⅰ)求直线FM 的斜率; (Ⅱ)求椭圆的方程;(Ⅲ)设动点P 在椭圆上,若直线FP 的斜率大于,求直线OP (O 为原点)的斜率的取值范围.7.如图,椭圆E 过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行与x 轴时,直线l 被椭圆E(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q 立?若存在,求出点Q 的坐标;若不存在,请说明理由.8.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,记得到的平行四边形CD AB 的面积为S .(1)设()11,x y A ,()22C ,x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明(2)设1l 与2l 的斜率之积为,求面积S 的值. 9.(本小题满分12(0a b >>)的半焦距为c ,原点O到经过两点(),0c ,()0,b 的直线的距离为 (Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆若椭圆E 经过A ,B 两点,求椭圆E 的方程.10.【2015高考山东,理20】平面直角坐标系xoy 中,,左、右焦点分别是12,F F ,以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ),P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i(Ⅱ)求ABQ ∆面积的最大值.11.已知抛物线21:4C x y =的焦点F 也是椭圆1C 与2C 的公共弦的长为(1)求2C 的方程;(2)过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且AC u u u r 与BDu u u r同向(ⅰ)若||||AC BD =,求直线l 的斜率(ⅱ)设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形12.(本小题满分14分)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:OQP ∆的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.13.(本小题满分13分)设椭圆E点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为 ()0b ,,点M 在线段ABOM(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵E 的方程.14.(本题满分12分)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与有两个交点A ,B ,线段AB 的中点为M . 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点,延长线段OM与C 交于点P ,四边形OAPB 能否为平行四边15.已知椭圆E 221(a 0)y b b 过点(Ⅰ)求椭圆E 的方程; (Ⅱ)设直线1xmy m R ,()交椭圆E 于A ,B 两点,判断点AB 为直径的圆的位置关系,并说明理由.16.(本小题14分)已知椭圆C :,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q,使得∠=∠?若存在,求点Q的坐标;若不存在,说明理由.OQM ONQ参考答案1.(1)(3,0);(2)(x﹣)2+y2=,其中<x≤3;(3)k的取值范围为(﹣,)∪{﹣,}.【来源】2015年全国普通高等学校招生统一考试理科数学(广东卷带解析)【解析】试题分析:(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k)x+16k2=0,令△=(3+8k)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L :y=k (x ﹣4)与曲线C 只有一个交点时, k 的取值范围为(﹣,)∪{﹣,}.点评:本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于中档题.2.(12)1y x =-或1y x =-+.【来源】2015年全国普通高等学校招生统一考试数学(江苏卷带解析)【解析】试题分析(1点F 到左准线l 的距离为3,解方程组即得(2)因为直线AB 过F ,所以求直线AB 的方程就是确定其斜率,本题关键就是根据PC=2AB 列出关于斜率的等量关系,这有一定运算量.首先利用直线方程与椭圆方程联立方程组,解出AB 两点坐标,利用两点间距离公式求出AB 长,再根据中点坐标公式求出C 点坐标,利用两直线交点求出P 点坐标,再根据两点间距离公式求出PC 长,利用PC=2AB 解出直线AB 斜率,写出直线AB 方程.试题解析:(1,1c =,则1b =,(2)当x AB ⊥轴时,,又C 3P =,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为()1y k x =-,()11,x y A ,()22,x y B ,将AB 的方程代入椭圆方程,得()()2222124210k x k x k +-+-=,,C 的坐标为若0k =,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意.从而0k ≠,故直线C P 的方程为则P 点的坐标为因为C 2P =AB ,所以,解得1k =±.此时直线AB 方程为1yx =-或1y x =-+. 考点:椭圆方程,直线与椭圆位置关系3.(1(2【来源】2015年全国普通高等学校招生统一考试理科数学(重庆卷带解析) 【解析】 试题解析:(1)本题中已知椭圆上的一点到两焦点的距离,因此由椭圆定义可得长轴长,即参数a 的值,而由1PQ PF ⊥,应用勾股定理可得焦距,即c 的值,因此方程易得;(2)要求椭圆的离心率,就是要找到关于,,a bc 的一个等式,题中涉及到焦点距离,因此我们仍然应用椭圆定义,设,则a m,样在1Rt PQF ∆中求得,在12Rt PF F ∆中可建立关于,a c 的等式,从而求得离心率.(112|PF ||PF |22224a a ,故=2.设椭圆的半焦距为c ,由已知12PF PF ⊥,因此22221212|FF ||PF ||PF |222223c ,即22b1a c(2)解法一:如图(21)图,设点P 00(,y )x 在椭圆上,且12PF PF ⊥,则2220y c由12|P F |=|||P F |PQ ,得0>0x ,从而由椭圆的定义,1212|P F||P F |2,|Q F ||Q Fa a,从而由122|PF |=|PQ |=|PF |+|QF |,有11|QF |42|PF |a又由12PF PF ⊥,1|PF |=|PQ |知1|2|PF |222224.aa b a解法二:如图由椭圆的定义,1212|P F ||P F |2,|Q F ||Q F |2a a ,从而由122|PF |=|PQ |=|PF |+|QF |,有11|QF |42|PF |a又由12PF PF ⊥,1|PF |=|PQ |知1|2|PF |112|PF |2|PF |a ,|2(2-2)2(21)a a a由12PF PF ⊥,知22222122|PF ||P F ||PF |(2)4c c ,因此21222|PF ||P F |(22)(21)962632ceaa考点:考查椭圆的标准方程,椭圆的几何性质.,直线和椭圆相交问题,考查运算求解能力. 4.(1(2【来源】2015年全国普通高等学校招生统一考试理科数学(浙江卷带解析)【解析】(1)可设直线AB的解,再由AB 中点也在直线上,即可得到关于m 的不等式,从而求解;(2将AOB ∆表示为t 的函数,从而将问题等价转化为在给定范围上求函数的最值,从而求解.试题解析:(1)由题意知0m ≠,可设直线AB消去y ,得AB(2)令O 到直线AB,设AOB ∆的面积为()S t ,等号成立,故AOB ∆考点:1.直线与椭圆的位置关系;2.点到直线距离公式;3.求函数的最值. 5.【来源】2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析) 【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.试题解析:在x =C在x =-C(Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-.当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力6.(Ⅰ)(Ⅱ);(Ⅲ)【来源】2015年全国普通高等学校招生统一考试理科数学(天津卷带解析)【解析】(Ⅰ) ,又由222a b c =+,可得223a c =,222b c =,设直线FM 的斜率为(0)k k >,则直线FM 的方程为()y k x c =+,由已知有,直线FM 的方程为()y k x c =+,两个方程联立,消去y ,整理得在第一象限,可得M的坐标为,解得1c =,所以椭圆方程为(Ⅲ)设点P 的坐标为(,)x y ,直线FP 的斜率为t ,即(1)y t x =+(1)x ≠-,y,整理得22223(1)6x t x ++=,又由已知,得或10x -<<, 设直线OP 的斜率为m(0)y mx x =≠,与椭圆方程联立,整理可得①当,有(1)0y t x =+<,因此0m >,于,得②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是,得综上,直线OP 的斜率的取值范围是考点:1.椭圆的标准方程和几何性质;2.直线和圆的位置关系;3.一元二次不等式.7.(1(2)存在,Q 点的坐标为(0,2)Q . 【来源】2015年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【解析】(1E 上.(2)当直线l 与x 轴平行时,设直线l 与椭圆相交于C 、D 两点. 如果存在定点Q ,即||||QC QD =. 所以Q 点在y 轴上,可设Q 点的坐标为0(0,)y .当直线l 与x 轴垂直时,设直线l 与椭圆相交于M 、N 两点.,解得01y =或02y =.所以,若存在不同于点P 的定点Q 满足条件,则Q 点的坐标只可能为(0,2)Q . 下面证明:对任意的直线l ,均有当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为1y kx =+,A 、B 的坐标分别为1122(,),(,)x y x y .得22(21)420k x kx ++-=. 其判别式22168(21)0k k ∆=++>,易知,点B 关于y 轴对称的点的坐标为22(,)B x y '-.所以QA QB k k '=,即,,Q A B '三点共线. 故存在与P 不同的定点(0,2)Q ,使得. 考点:本题考查椭圆的标准方程与几何性质、直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想.8.(1)详见解析(2【来源】2015年全国普通高等学校招生统一考试理科数学(上海卷带解析) 【解析】证明:(1)直线1:l 110y x x y -=,点C 到1l 的距离解:(2)设1:l y kx =,则设()11,x y A ,()22C ,x y .由2221y kxx y =⎧⎨+=⎩,得由(1)考点:直线与椭圆位置关系9.【来源】2015年全国普通高等学校招生统一考试理科数学(陕西卷带解析)【解析】试题分析:(Ⅰ)先写过点(),0c ,()0,b 的直线方程,再计算原点O 到该直线的距离,进而可得椭圆E 的离心率;(Ⅱ)先由(Ⅰ)知椭圆E 的方程,设AB 的方程,联立()2222144y k x x y b⎧=++⎪⎨+=⎪⎩,消去y ,可得12x x +和12x x 的值,进而可得k ,再利用可得2b 的值,进而可得椭圆E 的方程.试题解析:(Ⅰ)过点(),0c ,()0,b 的直线方程为0bx cy bc ,则原点O 到直线的距离 12c ,得2222a b a c ,解得离心率32. (Ⅱ)解法一:由(Ⅰ)知,椭圆E 的方程为22244xy b . (1)依题意,圆心()2,1M -是线段AB 的中点,且AB |10.易知,AB 不与x 轴垂直,设其直线方程为(2)1yk x ,代入(1)得2222(14)8(21)4(21)40k x k k x k b设1122(,y ),B(,y ),A x x 则221212228(21)4(21)4,.1414k k k b x x x k k由124x x ,得28(21)4,14k k k 解得12. 从而21282x x b .|10,得22)10,解得23b .故椭圆E 的方程为21123y .解法二:由(Ⅰ)知,椭圆E 的方程为22244xy b . (2)依题意,点A ,B 关于圆心()2,1M -对称,且|10. 设1122(,y ),B(,y ),A x x 则2221144x y b ,2222244x y b ,两式相减并结合12124,y 2,x x y 得1212-4()80x x y y .易知,AB 不与x 轴垂直,则12x x ≠,所以AB 的斜率12121.2y y x x 因此AB 直线方程为1(2)12y x ,代入(2)得224820.x x b所以124x x ,21282x x b .|10,得22)10,解得23b .故椭圆E的方程为21123y .考点:1、直线方程;2、点到直线的距离公式;3、椭圆的简单几何性质;4、椭圆的方程;5、圆的方程;6、直线与圆的位置关系;7、直线与圆锥曲线的位置.10.(Ⅱ)(i )2; 【来源】2015年全国普通高等学校招生统一考试理科数学(山东卷带解析)【解析】试题分析:(Ⅰ)根据椭圆的定义与几何性质列方程组确定,a b 的值,从而得到椭圆的方程;(Ⅱ)(Ⅰ)设()00,P x y ,,由题意知()00,Q x y λλ--,然后利用这两点分别在两上椭圆上确定λ 的值; (Ⅱ)设()()1122,,,A x y B x y ,结合韦达定理求出弦长,选将O A B ∆的面积表示成关于,k m 的表达式,然后,令利用一元二次方程根的判别式确定的范围,从而求出OAB ∆的面积的最大值,并结合(Ⅰ)的结果求出△面积的最大值.试题解析:(Ⅰ)由题意知24a = ,则2a = ,可得1b = , 所以椭圆C(Ⅱ)由(Ⅰ)知椭圆E(Ⅰ)设()00,P x y ,,由题意知()00,Q x y λλ--所以2λ=(Ⅱ)设()()1122,,,A x y B x y 将y kx m =+代入椭圆E 的方程, 可得()2221484160k x kmx m +++-= 由0∆> ,可得22416m k <+ ①因为直线y kx m =+与轴交点的坐标为()0,m所以OAB ∆的面积将y kx m =+ 代入椭圆C 的方程可得()222148440k x kmx m +++-= 由0∆≥ ,可得2214m k ≤+ ② 由①②可知01t <≤当且仅当1t = ,即2214m k =+由(Ⅰ)知,ABQ ∆ 面积为3S ,所以ABQ ∆面积的最大值为考点:1、椭圆的标准方程与几何性质;2、直线与椭圆位置关系综合问题;3、函数的最值问题.11.(1(2)(i (ii )详见解析.【来源】2015年全国普通高等学校招生统一考试理科数学(湖南卷带解析)【解析】试题分析:(1)根据已知条件可求得2C 的焦点坐标为)1,0(,再利用公共弦长为求解;(2)(i )设直线l 的斜率为k ,则l 的方程为1+=kx y ,由214y k x x y=+⎧⎨=⎩得216640x kx +-=,根据条件可知AC =u u u v BD u u u v,从而可以建立关于k 的方程,即可求解;(ii )根据条件可说因此AFM ∠是锐角,从而180MFD AFM ∠=-∠o 是钝角,即可得证试题解析:(1)由1C :24x y =知其焦点F 的坐标为(0,1),∵F 也是椭圆2C 的一焦点, ∴ 221a b -=①,又1C 与2C 的公共弦的长为,1C 与2C 都关于y 轴对称,且1C 的方程为24x y =,由此易知1C 与2C 的公共点的坐标为联立①,②,得29a =,28b =,故2C 的方程为(2)如图f ,11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,(i )∵AC u u u v 与BD u u u v 同向,且||||BD AC =,∴AC u u u v BD =u u u v,从而31x x -=42x x -,即12x x -=34x x -,于是()2124x x +-12x x =()2344x x +-34x x ③,设直线l 的斜率为k ,则l 的方程为1+=kx y ,由214y kx x y=+⎧⎨=⎩得216640x kx +-=,而1x ,2x 是这个方程的两根,∴124x x k +=,124x x =-④,由得22(98)16640k x kx ++-=,而3x ,4x 是,将④⑤带入③,得∴()2298k+=169⨯,解得,即直线l 的斜率为(ii )由24x y =得,∴1C 在点A 处的切线方程为令0=y ,而11(,1)FA x y =-u u u r ,于是因此AFM ∠是锐角,从而180MFD AFM ∠=-∠o 是钝角.,故直线l 绕点F 旋转时,MFD ∆总是钝角三角形.考点:1.椭圆的标准方程及其性质;2.直线与椭圆位置关系. 【名师点睛】本题主要考查了椭圆的标准方程及其性质以及直线与椭圆的位置关系,属于较难题,解决此类问题的关键:(1)结合椭圆的几何性质,如焦点坐标,对称轴,222c b a +=等;(2)当看到题目中出现 直线与圆锥曲线时,不需要特殊技巧,只要联立直线与圆锥曲线的方程,借助根与系数关系,找准题设条件中突显的或隐含的等量关系,把这种关系“翻译”出来,有时不一定要把结果及时求出来,可能需要整体代换到后面的计算中去,从而减少计算量.12.(Ⅱ)存在最小值8.【来源】2015年全国普通高等学校招生统一考试理科数学(湖北卷带解析) 【解析】(Ⅰ)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =u u u u r u u u r ,且||||1DN ON ==u u u r u u u r,所以00(,)2(,)t x y x t y --=-,且2200220()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -=由于当点D 不动时,点N 也不动,所以t 不恒等于0,于是02t x =,故,代入22001x y +=,可得 (Ⅱ)(1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有 (2)当直线l 的斜率存在时,设直线由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ①又由,20,y kx m x y =+⎧⎨-=⎩由原点O 到直线PQ 的距离为②当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,OPQ ∆的面积取得最小值8. 考点:椭圆的标准方程、几何性质,直线与圆、椭圆的位置关系,最值.13. 【来源】2015年全国普通高等学校招生统一考试理科数学(安徽卷带解析)【解析】试题分析:(Ⅰ)由题设条件,可得点M 的坐标为(Ⅱ)由题设条件和(Ⅰ)的计算结果知,直线AB 的方程为,得出点N 的坐标为,设点N关于直线AB的对称点S 的坐标为则线段NS的中点T 的坐标为利用点T在直线AB上,以及1NS ABk k⋅=-,解得3b=,所以,从而得到椭圆E试题解析:(Ⅰ)由题设条件知,点M 的坐标为(Ⅱ)由题设条件和(Ⅰ)的计算结果可得,直线AB 的方程为,点N的坐标设点N关于直线AB的对称点S 的坐标为则线段NS的中点T的坐标为.又点T在直线AB上,且1NS ABk k⋅=-,从而有解得3b=,所以,故椭圆E 的方程为考点:1.椭圆的离心率;2.椭圆的标准方程;3.点点关于直线对称的应用.14.(Ⅰ)详见解析;【来源】2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ带解析)【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y . 将y kx b =+代入229x y m+=得2222(9)20k x kbx b m+++-=,故.于是直线OM 的斜率,即9OM k k ⋅=-.所以直线OM 的斜率与因为直线l 过点,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OMP 的横坐标为P x的坐标代入直线l 的方程得四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =.于是.因为0,3i i k k >≠,1i =,2,所以当l 的斜率为时,四边形OAPB 为平行四边形.考点:1、弦的中点问题;2、直线和椭圆的位置关系.15.212y ;(Ⅱ)AB 为直径的圆外. 【来源】2015年全国普通高等学校招生统一考试理科数学(福建卷带解析) 【解析】解法一:(Ⅰ)由已知得2222,2,2,b c a a b c 解得222a b c所以椭圆E 212y .(Ⅱ)设点1122(y ),B(,y ),A x x AB 中点为00H(,y )x .由22221(m 2)y 230,142x my my x y 得1222y +y =,y y =2m 2,从而22m 2.2222220000095()y (my )y (m +1)y +44x2222121212()(y )(m +1)(y )44x x y y22221212012(m +1)[(y )4y ](m +1)(y y )4y y y ,故222222012222|AB|52553(m +1)25172my (m +1)y 042162(m 2)m 21616(m 2)m m yAB 为直径的圆外. 解法二:(Ⅰ)同解法一.(Ⅱ)设点1122(y ),B(,y ),A x x ,则112299GA (,),GB (,).44x y x y u u u r由22221(m 2)y 230,142x my my x y得所以1222,y y =2m 2, 121212129955GA GB ()()(my )(my )4444x x y y y y u u u r u u u r 22212122252553(m +1)25(m +1)y (y )4162(m 2)m 216m y m y22172016(m 2)m 所以cos GA,GB0,GA GB u u u r uu u ru u u r u u u r又,不共线,所以AGB 为锐角.故点AB 为直径的圆外.考点:1、椭圆的标准方程;2、直线和椭圆的位置关系;3、点和圆的位置关系. 16.【来源】2015年全国普通高等学校招生统一考试理科数学(北京卷带解析)【解析】(Ⅰ)由于椭圆C点()01P,且离心率22a=,椭圆C的方程为(0,1),(,)P Am nQ,直线PA(Ⅱ)(0,1),(,)P B m n-Q,直线PB的方程为:PB与x轴交于点N设0(0,)Q y,tan tanOQM ONQ OQM ONQ∠=∠∴∠=∠Q,(注:点()A m n,()0m≠在椭圆C上,,使得OQM ONQ∠=∠.考点:1.求椭圆方程;2.求直线方程及与坐标轴的交点;3.存在性问题.。

2015年全国各省市高考理数——圆锥曲线(选择+填空+答案)

2015年全国各省市高考理数——圆锥曲线(选择+填空+答案)

2015年全国各省市高考理数——圆锥曲线1.2015安徽理数4、下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -=2.2015福建理数3、若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于A.11B.9C.5D.33.2015广东理数5.平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x C. 052=+-y x 或052=--y x D. 052=++y x 或052=-+y x4.2015广东理数7.已知双曲线C :12222=-by a x 的离心率e =45,且其右焦点F 2( 5 , 0 ),则双曲线C 的方程为A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14322=-y x 5.2015浙江理数5. 如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是A. 11BF AF --B. 2211BF AF -- C. 11BF AF ++ D. 2211BF AF ++6.2015四川理数5. 过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(A)3(B )(C )6 (D )7.2015四川理数10.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )(A )()13, (B )()14, (C )()23, (D )()24,8.2015天津理数(6)已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点( ,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为(A )2212128x y -= (B )2212821x y -= (C )22134x y -= (D )22143x y -= 9.2015新课标Ⅰ理数(5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF <,则0y 的取值范围是(A )(-3,3) (B )(-6,6)(C )(3-,3) (D )()10.2015重庆理数8、已知直线:10()l x ay a R +-=∈是圆22:4210C x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则||AB =A 、2B 、、6 D 、11.2015重庆理数10、设双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C 分别作AC ,AB 的垂线交于点D.若D 到直线BC 的距离小于aA 、(1,0)(0,1)-B 、(,1)(1,)-∞-+∞C 、(D 、(,)-∞+∞12.2015山东理数(9)一条光线从点(-2,-3)射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )(A )53-或35- (B )32-或23- (C )54-或45-(D )43-或34-13.2015新课标II 理数(11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为(A (B )2 (C (D 14..2015湖北理数8.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >15.2015山东理数(15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B 。

2015年高考真题(理数)圆锥曲线真题剖析

2015年高考真题(理数)圆锥曲线真题剖析

2015年高考试题(理数)圆锥曲线试题剖析鹤壁高中 蔡凤敏 2015.10.19 一、选择题2015年的全国高考卷15套试卷中,选择题考察圆锥曲线的共11套,其中有8道只考察双曲线,两道只考察抛物线,一道是双曲线与抛物线的综合题,没有与椭圆有关的选择题。

对双曲线的考察,集中在如下知识点: 【1】考察双曲线定义:2015高考福建,理3 【2】求双曲线的标准方程:(1)2015高考广东,理7, 已知离心率和焦点坐标;(2)2015高考天津,理6, 已知渐近线过某点且一个焦点在已知抛物线的准线上; 【3】考察双曲线的渐近线:(1)2015高考安徽,理4,已知焦点在y 轴上和渐近线方程,找适合条件的双曲线方程; (2)2015高考四川,理5,求过双曲线的右焦点且与x 轴垂直的直线交两条渐近线所得弦长;【4】考察双曲线的离心率(1)2015高考新课标2,理11,通过求双曲线上一点的坐标代入双曲线方程建立等式求离心率;(2)2015高考湖北,理8,考察222222221ab a b a ac e +=+== 【5】考察范围(1)2015高考新课标1,理5,通过向量数量积坐标表示求纵坐标的范围; (2)2015高考重庆,理10,求满足条件的渐近线的斜率范围;对抛物线的考察,集中在如下知识点: 【1】抛物线的准线方程:2015高考天津,理6 【2】抛物线的定义:2015高考浙江,理5【3】直线与抛物线的位置关系和点差法:2015高考四川,理10 二、填空题2015年的全国高考卷15套试卷中,选择题考察圆锥曲线的共7套,1道只考察椭圆,4道只考察双曲线,2道是双曲线与抛物线的综合题。

由此可知,填空题对双曲线的考察更多。

考察椭圆知识的是2015高考新课标1,理14,主要考察椭圆的几何性质的顶点坐标。

对双曲线的考察,集中在如下知识点: 【1】双曲线的渐近线:(1)2015高考北京,理10,(2)2015高考山东,理15,考察渐近线方程,渐近线斜率等; (3)2015高考浙江,理9(求渐近线,焦距);(4)2015江苏高考,12,考察渐近线斜率(与已知直线平行) 【2】考察双曲线的离心率:(1)2015高考湖南,理13,通过求出双曲线上一点的坐标建立等式来求离心率; (2)2015高考山东,理15,与抛物线综合考察; 【3】考察双曲线的焦点坐标:2015高考陕西,理14对抛物线的考察,集中在如下知识点:【1】抛物线的焦点坐标:2015高考山东,理15,【2】抛物线的准线方程:2015高考陕西,理14三、选择填空分析与总结1.从曲线类型角度分析,选择填空题全国大部分城市都侧重于对双曲线的考察,只有极少数城市考察了椭圆和抛物线:椭圆双曲线抛物线双曲线与抛物线综合1道填空8道选择,4道填空2道选择1道选择,2道填空2.从考察知识点分析标准方程和定义双曲线定义1道选择抛物线的定义1道填空几何性质椭圆:顶点坐标1道填空双曲线:焦点坐标、渐近线、离心率11道选择填空抛物线:焦点坐标、准线方程、直线与抛物线的位置关系3道选择填空3教学建议要侧重对圆锥曲线几何性质的讲解,要多练习与双曲线渐近线和离心率的相关题型。

2015高考数学一轮课件:10-5圆锥曲线的综合问题

2015高考数学一轮课件:10-5圆锥曲线的综合问题

b2 a2.
又yx11- -yx22=0-3--11=21,∴ba22=21,a2=2b2,又a2-b2=9,∴a2 =18,b2=9.所求方程为1x82 +y92=1,故选D.
答案:D
第十四页,编辑于星期五:十三点 八分。
5.(2013·课标全国Ⅱ)设抛物线C:y2=2px(p>0)的焦点为
F,点M在C上,|MF|=5.若以MF为直径的圆过点(0,2),则C的
整理得(3+2k2)x2+4k(y0-kx0)x+2(kx0-y0)2-6=0, ∵l0与椭圆E相切, ∴Δ=[4k(y0-kx0)]2-4(3+2k2)[2(kx0-y0)2-6]=0, 整理得(2-x20)k2+2x0y0k-(y20-3)=0, 设满足题意的椭圆E的两条切线的斜率分别为k1,k2, 则k1k2=-y202--x320. ∵点P在圆O上,∴x20+y20=5, ∴k1k2=-5-2-x02- x20 3=-1. ∴两条切线斜率之积为常数-1.
第七页,编辑于星期五:十三点 八分。
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为 Δ,则Δ>0⇔直线与圆锥曲线C 相交 ;
Δ=0⇔直线与圆锥曲线C 相切 ; Δ<0⇔直线与圆锥曲线C 相离 . (2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥 曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与 双曲线的渐近线的位置关系是 平行 ;若C为抛物线,则直线l与 抛物线的对称轴的位置关系是 平行或重合 .
第五节 圆锥曲线的综合问题
第一页,编辑于星期五:十三点 八分。
第二页,编辑于星期五:十三点 八分。
考点 综合问题
考纲要求
了解解析几何的基本思 想和用坐标研究几何问 题的基本方法;将几何 问题化归为代数问题; 用方程的观点实现几何 与代数问题的转化

2015年高考数学考纲解读热点考点难点专题10圆锥曲线

2015年高考数学考纲解读热点考点难点专题10圆锥曲线

直线 l 的倾斜角为 60°, A→F = 2F→B.
(1) 求椭圆 C的离心率;
15 (2) 如果 | AB| = 4 ,求椭圆 C的方程.
难点二、定点、定值问题
【 例 2】 如图,在平面直角坐标系
x2 y2
3
xOy 中,椭圆 C∶ a2+ b2= 1( a> b> 0) 的离心率为
,以原点为圆 2
x2 y2 m+ n = 1( m>0, n> 0) ;
这样可以避免讨论和繁琐的计算.
5.求轨迹方程的常用方法
(1) 直接法:将几何关系直接转化成代数方程;
(2) 定义法:满足的条件恰适合某已知曲线的定义,用待定系数法求方程;
(3) 代入法:把所求动点的坐标 与已知动点的坐标建立联系;
注意:①建系要符合最优化原则;②求轨迹与“求轨迹方程”不同,轨迹通常指的是图形,而轨迹方
或 | P1P2| =
1 1+ k2| y2- y1|.
(2) 弦的中点问题
有关弦的中点问题,应灵活运用“点差法”来简化运算.
7.圆锥曲线中的最值
(1) 椭圆中的最值 x2 y2
F1, F2 为椭圆 a2+ b2= 1( a> b> 0) 的左、右焦点, P 为椭圆上的任意一点, B 为短轴的一个端点, O 为坐 标原点,则有
物线
y2= 2px( p>0) 经过
b C, F 两点,则 a= ________.
【感悟提升】
1.圆锥曲线的离心率
[来源:Z §xx§]
椭圆和双曲线的离心率是反映椭圆的扁平程度和双曲线开口大小的一个量,其取值范围分别是
0<e<1
和 e>1. 在求解有关离心率的问题时,一般并不是直接求出

2015年高考数学理真题圆锥曲线大题

2015年高考数学理真题圆锥曲线大题

2015年高考数学理圆锥曲线部分解答题1.【2015高考山东,理20】平面直角坐标系xoy 中,已知椭圆()2222:10x y C a b a b+=>>,左、右焦点分别是12,F F ,以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .( i )求OQOP的值;(ii )求ABQ ∆面积的最大值. 【考点定位】1、椭圆的标准方程与几何性质;2、直线与椭圆位置关系综合问题;3、函数的最值问题。

意在考查学生综合利用所学知识解决问题能力和较强的运算求解能力,把ABQ ∆ 面积转化为三角形OAB 的面积,在得到三角形的面积的表达式后,能否利用换元的方法,观察出其中的函数背景成了完全解决问题的关键.2.【2015高考四川,理20】如图,椭圆E :2222+1(0)x y a b a b =>>,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行与x 轴时,直线l 被椭圆E 截得的线段长为求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PAQB PB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.【考点定位】本题考查椭圆的标准方程与几何性质、直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想。

高考中解几题一般都属于难题的范畴,考生应立足于拿稳第(1)题的分和第(2)小题的步骤分.解决直线与圆锥曲线相交的问题,一般是将直线方程与圆锥曲线的方程联立,再根据根与系数的关系解答.本题是一个探索性问题,对这类问题一般是根据特殊情况找出结果,然后再证明其普遍性.解决本题的关键是通过作B 的对称点将问题转化.3.【2015高考湖南,理20】已知抛物线21:4C x y =的焦点F 也是椭圆22222:1(0)y x C a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为.(1)求2C 的方程;(2)过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且AC 与BD 同向(ⅰ)若||||AC BD =,求直线l 的斜率;(ⅱ)设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形。

2015年高考圆锥曲线分析

2015年高考圆锥曲线分析

2015年全国高考《圆锥曲线》试题分析解答题部分关系,分别是斜率互为负倒数和线段AB的中点在直线上.(2)利用弦长公式和点到直线的距离公式,代入:S=12AB×d。

再运用二次函直线总与曲线有且只有一个公共点,试探究:△OPQ的面积是否存l C在最小值?若存在,求出该最小值;若不存在,说明理由.22ba=,求直线l和椭圆C的方程。

PR3RQl时,直线被椭圆E截得的线段长为(1)求椭圆E的方程;22 x y(3)等腰三角形【例9】已知椭圆=1(a>b>0)上的点P到左、右两焦点F1,F2的距离之和为2,离心率为.(1)求椭圆的方程;(2)过右焦点F2的直线l交椭圆于A、B两点.①若y轴上一点满足|MA|=|MB|,求直线l斜率k的值;②是否存在这样的直线l,使S△ABO的最大值为(其中O为坐标原点)?若存在,求直线l方程;若不存在,说明理由.由。

✓(7)圆(i)若AC BD=,求直线l的斜率;(ii)设1C在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,MFD∆总是钝角三角形.【例14】设椭圆C:+=1(a>b>0),F1、F2为左右焦点,B为短轴端点,且SD BF1F2=4,离心率为,O为坐标原点.(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由。

【例16】设1F 是椭圆22 2 2x y +=的左焦点,线段MN 为椭圆的长轴.若点()2,0P -,椭圆上两点A 、B 满足.(1)若 3λ=,求的值; (2)证明:11AFM BF N ∠=∠四、 其它非韦达定理单动点113||||AF BF +BPM A ONy xF 12015年湖北卷,北京卷,广东卷,安徽卷,重庆卷,天津卷,四川卷都未涉及(II )若1,PF PQ =求椭圆的离心率.e【例21】(2015四川卷第20题).如图,椭圆E :的离心率2222+1(0)x y a b a b=>>l l x,过点P(0,1)的动直线与椭圆相交于A,B两点,当直线平行与轴。

2015高考数学一轮课件:热点专题突破系列(五)

2015高考数学一轮课件:热点专题突破系列(五)

1 2
)
x2 y2 1,
4
P(
8k 2 4k 2
2 1
,
4k 4k2
). 1
第十五页,编辑于星期五:十三点 三十二分。
直线AD的方程为: y 1②x.1
2
联立①②解得 M( 4k 2 , 4k ).
由D(0,1),
8k2 22Nk (x1,04)2k三k 点1共线可知
P(
4k 2
1
,
4k 2
(3)解不等式一般是转化为解一元一次、一元二次 不等式
第三页,编辑于星期五:十三点 三十二分。
考点1 圆锥曲线中的定点问题 【典例1】(2013·陕西高考)已知动圆过定点A(4,0),且在y轴上截得的 弦MN的长为8. (1)求动圆圆心的轨迹C的方程.
(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点 P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.
第二页,编辑于星期五:十三点 三十二分。
考点
考情分析
圆锥曲线 中的最值 与取值范
围问题
常涉及不等式恒成立、求函数的值域问题和解不等 式问题,是高考热点:
(1)恒成立问题一般考查整式不等式、分式、绝对 值不等式在某个区间上恒成立,求参数取值范围;
(2)求函数的值域,一般是利用二次函数、基本不等 式或求导的方法求解,有时也利用数形结合思想求 解;
1 4
9 4b2
1,
所以椭圆C的方程为
所以
x2 y2 1, 43
所以椭c圆C的a2离 心b2率 1, e c 1. a2
第二十五页,编辑于星期五:十三点 三十二分。
(2)因为M,N是椭圆上关于原点对称的点,设M(x0,y0), 则N(-x0,-y0y02 1,x2 y2 1, 4 3 43
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合①②,解得k= 22, 或k=- 22,
m= 2
m=- 2.
所以直线 l 的方程为 y= 22x+ 2或 y=- 22x- 2. 规律方法 将直线与圆锥曲线的两个方程联立成方程组,然后判 断方程组是否有解,有几个解,这是直线与圆锥曲线位置关系 的判断方法中最常用的方法,注意:在没有给出直线方程时, 要对是否有斜率不存在的直线的情况进行讨论,避免漏解.
所以直线 AB 的方程为 12x-2y-9=0,弦 AB 的长为 2 37.
考点三 圆锥曲线中的定点、定值问题 【例 3】(2013·江西卷)椭圆 C:ax22+by22=1(a>b>0)的离心率 e= 23,
a+b=3. (1)求椭圆 C 的方程; (2)如图,A、B、D 是椭圆 C 的顶点,P 是椭圆 C 上除顶点外 的任意一点,直线 DP 交 x 轴于点 N,直线 AD 交 BP 于点 M, 设 BP 的斜率为 k,MN 的斜率为 m.证明:2m-k 为定值.
解得 k=- 42,由(1)知 k2>12,与此相矛盾, 所以不存在常数 k 使O→P+O→Q与A→B垂直.
考点二 圆锥曲线中的弦长问题 【例 2】 (2012·北京卷)已知椭圆 C:ax22+by22=1(a>b>0)的一个顶
点为 A(2,0),离心率为 22.直线 y=k(x-1)与椭圆 C 交于不同 的两点 M,N. (1)求椭圆 C 的方程; (2)当△AMN 的面积为 310时,求 k 的值.
于 x 轴的直线交 C 于 A,B 两点,且|AB|=3,则 C 的方程为x42
+y32=1.
(√)
(5)已知点(2,1)是直线 l 被椭圆x42+y22=1 所截得线段的中点,
则 l 的方程为 x+4y-6=0.
(×)
(6)(2014·潍坊一模改编)直线 4kx-4y-k=0 与抛物线 y2=x
交于 A,B 两点,若|AB|=4,则弦 AB 的中点到直线 x+12=0
所以|MN|= x2-x12+y2-y12
= 1+k2[x1+x22-4x1x2]
=2
1+k24+6k2
1+2k2
.
又因为点 A(2,0)到直线 y=k(x-1)的距离 d= 1|+k| k2,
所以△AMN 的面积为 S=12|MN|·d=|k|1+4+2k62k2.
由|k|1+4+2k62k2= 310,解得 k=±1.
1+k12·|y1-y2|(抛物线的焦点弦长|AB|=x1+x2+p=si2np2θ,θ 为 弦 AB 所在直线的倾斜角).
3.圆锥曲线的中点弦问题 遇到中点弦问题常用“根与系数的关系”或“点差法”求 解.在椭圆ax22+by22=1 中,以 P(x0,y0)为中点的弦所在直线的 斜率 k=-ba22xy00;在双曲线ax22-by22=1 中,以 P(x0,y0)为中点的 弦所在直线的斜率 k=ba22xy00;在抛物线 y2=2px(p>0)中,以 P(x0,y0)为中点的弦所在直线的斜率 k=yp0.
第4讲 圆锥曲线的热点问题
知识梳理 1.直线与圆锥曲线的位置关系
判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax +By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y) =0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一 元方程.
即AFxx+,Byy+=C0,=0, 消去 y 后得 ax2+bx+c=0.
审题路线 (2)写出直线BP的方程⇒与椭圆方程联立解得P点坐
标⇒写出直线AD的方程⇒由直线BP与直线AD的方程联立解得M
点坐标⇒由D、P、N三点共线解得N点坐标⇒求直线MN的斜率
m⇒作差:2m-k为定值.
(1)解
因为
e=
23=ac,所以
a=
23c,b=
1 3c.
代入 a+b=3 得,c= 3,a=2,b=1. 故椭圆 C 的方程为x42+y2=1.
联立yy=+26x=2,kx-1, 消去 y, 得 2x2-kx+k+6=0,Δ=k2-8k-48.
由于直线与抛物线 C2 相切,故 Δ=0,解得 k=-4 或 12. 由yy2+=63=6x-,4x-1, 得 A14,-3;
由yy2+=63=6x1,2x-1, 得 B94,9.
|AB|=
14-942+-3-92=2 37,
的距离等于94.
(√)
[感悟·提升] 两个防范 一是在解决直线与抛物线的位置关系时,要特别 注意直线与抛物线的对称轴平行的特殊情况,如(2); 二是中点弦问题,可以利用“点差法”,但不要忘记验证Δ >0或说明中点在曲线内部,如(5).
考点一 直线与圆锥曲线位置关系 【例 1】 在平面直角坐标系 xOy 中,已知椭圆 C1:ax22+by22=
联立x42+y32=1, 得(3+4k2)x2+8mkx+4(m2-3)=0, 则 x=-4mk±23+124kk22-3m2+9.
Δ=64m2k2-163+4k2m2-3>0,
x1+x2=-3+8m4kk2,

x1·x2=43m+24-k23.
又 y1y2=(kx1+m)(kx2+m) =k2x1x2+mk(x1+x2)+m2=3m3+2-4k42k2. ∵椭圆的右顶点为 A2(2,0),AA2⊥BA2, ∴(x1-2)(x2-2)+y1y2=0, ∴y1y2+x1x2-2(x1+x2)+4=0, ∴3m3+2-4k42k2+43m+2-4k32 +31+6m4kk2+4=0, ∴7m2+16mk+4k2=0, 解得 m1=-2k,m2=-27k,
规律方法 直线与圆锥曲线的弦长问题,较少单独考查弦长的求 解,一般是已知弦长的信息求参数或直线的方程.解此类题的 关键是设出交点的坐标,利用求根公式得到弦长,将已知弦长 的信息代入求解.
【训练2】 已知点Q(1,-6)是抛物线C1:y2=2px(p>0)上异于 坐标原点O的点,过点Q与抛物线C2:y=2x2相切的两条直线 分别交抛物线C1于点A,B. 求直线AB的方程及弦AB的长. 解 由 Q(1,-6)在抛物线 y2=2px 上,可得 p=18,所以抛 物线 C1 的方程为 y2=36x. 设抛物线 C2 的切线方程为 y+6=k(x-1).
辨析感悟
1.对直线与圆锥曲线交点个数的理解 (1)直线 y=kx+1 与椭圆x52+y92=1 恒有两个公共点. (√)
(2)经过抛物线上一点有且只有一条直线与抛物线有一个公共
点.
(×)
(3)过抛物线内一点只有一条直线与抛物线有且只有一个公共
点.
(√)
2.对圆锥曲线中有关弦的问题的理解
(4)已知 F1(-1,0),F2(1,0)是椭圆 C 的两个焦点,过 F2 且垂直
【训练 3】 椭圆 C 的中心在坐标原点,焦点在 x 轴上,该椭圆 经过点 P1,32且离心率为12. (1)求椭圆 C 的标准方程; (2)若直线 l:y=kx+m 与椭圆 C 相交于 A,B 两点(A,B 不是 左,右顶点,且以 AB 为直径的圆过椭圆 C 的右顶点,求证: 直线 l 过定点,并求出该定点的坐标.
(1)解 设椭圆方程为ax22+by22=1(a>b>0), 由 e=ac=12,得 a=2c, ∵a2=b2+c2,∴b2=3c2, 则椭圆方程变为4xc22+3yc22=1. 又椭圆过点 P1,32,将其代入求得 c2=1, 故 a2=4,b2=3, 即得椭圆的标准方程为x42+y32=1.
(2)证明 设 A(x1,y1),B(x2,y2), y=kx+m,
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则 Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 无公共点 . (2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线 C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲 线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物 线的对称轴的位置关系是平行.
【训练 1】 在平面直角坐标系 xOy 中,经过点(0, 2)且斜率为 k 的直线 l 与椭圆x22+y2=1 有两个不同的交点 P 和 Q. (1)求 k 的取值范围; (2)设椭圆与 x 轴正半轴、y 轴正半轴的交点分别为 A、B,是 否存在常数 k,使得向量O→P+O→Q与A→B垂直?如果存在,求 k 值;如果不存在,请说明理由.
-844kk22k- +42+k211--01=0x--01, 解得 N42kk- +21,0. 所以 MN 的斜率为 m=24kk-+2k4-12k-1-42kk- +0 21 =22k+41k22-k+212k-12=2k+4 1, 则 2m-k=2k+2 1-k=12(定值).
规律方法 求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关. (2)直接推理、计算,并在计算推理的过程中消去变量,从而得 到定值.
(2)证明 因为 B(2,0),P 不为椭圆顶点,则直线 BP 的方程为 y =k(x-2)(k≠0,k≠±12),① ①代入x42+y2=1,解得 P84kk22- +21,-4k42+k 1. 直线 AD 的方程为 y=12x+1.② ①与②联立解得 M42kk+-21,2k4-k 1. 由 D(0,1),P84kk22- +21,-4k42+k 1,N(x,0)三点共线知
y=kx+m, (1+2k2)x2+4kmx+2m2-2=0.
因为直线 l 与椭圆 C1 相切, 所以 Δ1=16k2m2-4(1+2k2)(2m2-2)=0, 整理得 2k2-m2+1=0.① 联立yy2==k4xx+,m, 消去 y 并整理得 k2x2+(2km-4)x+m2=0. 因为直线 l 与抛物线 C2 相切, 所以 Δ2=(2km-4)2-4k2m2=0. 整理得 km=1.②
2.圆锥曲线的弦长 (1)圆锥曲线的弦长 直线与圆锥曲线相交有两个交点时,这条直线上以这两个交 点为端点的线段叫做圆锥曲线的弦(就是连接圆锥曲线上任 意两点所得的线段),线段的长就是弦长.
相关文档
最新文档