(北师大版)七年级数学上丰富的图形世界培优讲义(可编辑修改word版)
北师大版初一(上)第一章:丰富的图形世界讲义(三)

第一章:丰富的图形世界(三)1.3截一个几何体1.截面定义:用一个平面去截一个几何体,截出的面叫做截面.如图所示,阴影部分就是截面.截面的理解①由前面的知识我们知道“面与面相交得到线”,而用平面去截几何体,所得的截面就是这个平面与几何体每个面相交的线所围成的图形.②截面的形状与所截几何体有关,也与所截角度和方向有关.③对于同一个几何体,截面的方向不同,得到的截面形状一般也不相同.同一个几何体可能有多种不同形状的截面.【例1】下列关于截面的说法正确的是( ).A.截面是一个平面图形B.截面的形状与所截几何体无关C.同一个几何体,截面只有一个D.同一个几何体,截面的形状都相同2.正方体的截面正方体截面的形状:如图所示,正方体的截面的形状可以是:(1)三角形(包括等腰三角形、等边三角形和一般三角形),如图①.(2)四边形(包括正方形、长方形、梯形等),如图②③④.(3)五边形,如图⑤.(4)六边形,如图⑥.正方体中不同形状的截面的截法:(1)沿竖直或水平方向截正方体,截面为正方形.(2)图①中的截面是等边三角形,与该平面平行,能截正方体三条棱的平面,都能截出等边三角形.(3)过正方体同一个面上不相邻的两个顶点和一条棱上的一点,可截出等腰三角形(如图),且与该面平行的能截正方体三条棱的平面,都能截出等腰三角形.(4)分别过正方体的上、下底面,且与任何棱都不平行的截面,可截出梯形.(5)只要截面与五个面相交或与六个面相交,即可截出五边形或六边形.【例2】下列说法正确的是( ).①正方体的截面可以是等边三角形②正方体不可能截出七边形③用一个平面截正方体,当这个平面与四个平面相交时,所得的截面一定是正方形④正方体的截面中边数最多的是六边形A.①②③④B.①②③C.①③④D.①②④3.圆柱、圆锥、球的截面(1)圆柱的截面用一个平面去截一个圆柱,可得到的截面形状是长方形、圆、椭圆、椭圆的一部分.(2)圆锥的截面用一个平面去截圆锥,可得到的截面形状是三角形、圆、椭圆及椭圆的一部分.(3)球体的截面用一个平面去截球体,可得到的截面形状是圆.【例3】下列几何体的截面分别是__________、________、________、________.4.根据截面判断几何体(1)常见几何体截面的比较常见几何体主要是棱柱、圆柱、圆锥和球体.棱柱包括正方体、长方体、三棱柱、五棱柱、六棱柱……其中以正方体为代表.各种几何体的截面如下表:①正方体的截面有:三角形,等腰三角形,等边三角形;正方形,长方形,平行四边形,菱形,梯形五边形,六边形②圆柱的截面:圆,椭圆,长方形,不规则图形;③圆锥的截面:圆,椭圆,等腰三角形,不规则图形(2)根据截面判断原几何体的方法:①截面中有曲线,则原几何体一定有曲面.例如截面形状是圆的几何体可能是圆柱、圆锥、球或圆台.②若一个几何体的各面都是平面,则所得截面一定是多边形;若几何体有曲面,则所得截面可能是多边形,也可能是由直线和曲线组成的图形,还可能是由曲线组成的图形.【例4】一个几何体的一个截面是三角形,则原几何体一定不是下列图形中的( ).A.圆柱和圆锥B.球体和圆锥C.球体和圆柱D.正方体和圆锥【例5】一个几何体,用水平的面去截,所得截面都是圆,用竖直的面去截,所得截面是长方形,判断这个几何体的名称(写出一种几何体的名称即可).5.判断截后剩余几何体的顶点数、棱数和面数一个棱柱,截去一部分后,剩余几何体的顶点数、棱数和面数与该图形的形状有关.【例6】如图所示,过长方体的一个顶点,截掉长方体的一个角,则剩余部分的顶点有__________个.【例7】如图,用一个平面截掉正方体的一条棱,剩下的几何体有________个顶点,有________条棱,有________个面.6.截面的应用把一个长方体木块锯成几段,可以看成用几个平面去截长方体,其截面的面积等于与截面平行的底面的面积.如图所示.【例8】如图所示,一根长2米的长方体木料锯成4段,这根木料的表面积比原来增加了72平方厘米,则这根木料原来的体积是多少?针对训练1.用平面截一个几何体得到的截面是长方形,则原来的几何体不可能是()A.正方体B.棱柱体C.圆柱D.圆锥2.用平面去截一个正方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形3.下列说法上正确的是()A.长方体的截面一定是长方形;B.正方体的截面一定是正方形;C.圆锥的截面一定是三角形;D.球体的截面一定是圆4.左图中的几何体的截面形状是( )A B C D5.用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A.正方体B.棱柱体C.圆柱D.圆锥6.用一个平面去截五棱柱,边数最多的截面是_______形。
北师大版七年级上册数学第一章丰富的图形世界讲义 第1讲 几何图形、棱柱及有关概念、截一个正

【本节知识框架】知识点一:几何图形知识点二:棱柱及其有关概念知识点三:截一个正方体【知识点讲解】知识点一:几何图形1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱(圆柱的侧面是曲面,底面是圆)柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(棱柱的侧面是若干个小长方形构成,底面是多边形)(按名称分) 锥圆锥(圆锥的侧面是曲面,底面的圆)棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)例题1 填空。
1、圆锥是由________个面围成,其中________个平面,________个曲面。
2、面与面相交成______,线与线相交得到_______,点动成______,线动成_________,面动成_______ 。
【变式练习】图中按左侧三个图形阴影部分的特点,将右侧的图形补充完整.例题 2 已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是____和_____。
【变式练习】将左边的正方体展开能得到的图形是()能力提升:探索规律:用棋子按下面的方式摆出正方形。
①按图示规律填写下表:图形编号(1)(2)(3)(4)(5)(6)棋子个数②按照这种方式摆下去,摆第n个正方形需要多少个棋子?③按照这种方式摆下去,第第20个正方形需要多少个棋子?知识点二:棱柱及其有关概念1、棱柱及其有关概念:3—3型2—2—2型AC棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
(完整版)北师大数学七年级上册第一章丰富的图形世界(提高)

丰富的图形世界(提高)知识讲解【学习目标】1.认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类,并能从组合图形中分离出基本几何体;2.认识点、线、面、体的基本含义,了解点、线、面、体之间的关系;3.能辨认和画出从不同方向观察立方体及其简单组合体得到的形状图;4.了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型.【要点梳理】要点一、立体图形1.定义:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体、圆柱、圆锥、球等.棱柱、棱锥也是常见的立体图形. 要点诠释:常见的立体图形有两种分类方法:2.棱柱的相关概念:在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱. 通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(如下图)要点诠释:(1)棱柱所有侧棱长都相等.棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.(2)长方体、正方体都是四棱柱.(3)棱柱可分为直棱柱和斜棱柱.直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形.3.点、线、面、体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系. 此外,从运动的观点看:点动成线,线动成面,面动成体.要点二、展开与折叠有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.要点三、截一个几何体用一个平面去截一个几何体,截出的面叫做截面.截面的形状可能是三角形、四边形、五边形、六边形或圆等等.要点四、从三个方向看物体的形状一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.(如下图)【典型例题】类型一、立体图形1.将图中的几何体进行分类,并说明理由.【思路点拨】首先要确定分类标准,可以按组成几何体的面的平或曲来划分,也可以按柱、锥、球来划分.【答案与解析】解:若按形状划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面.若按构成划分:(1)(2)(4)(7)是一类,是柱体;(5)(6)是一类,即锥体;(3)是球体. 【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).类型二、点、线、面、体2. 18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______ _;(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是________;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x 个,八边形的个数为y 个,求x+y 的值.【思路点拨】根据四面体、长方体、正八面体,正十二面体的顶点数、面数和棱数,总结出顶点数(v )、面数(F )、棱数(E )之间存在的关系式,再用这个关系式解答后面的问题.【答案与解析】解:(1)6, 6, V+F-E =2;(2)20;(3)这个多面体的面数为x+y ,棱数为条,243362⨯=根据V+F-E =2可得24+(x+y)-36=2,∴ x+y =14.【总结升华】欧拉公式:V (顶点数)+F (面数)-E (棱数)=2【变式】(2014•宁波)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是( )be i ng ar e五棱柱B. 六棱柱C. 七棱柱D. 八棱柱【答案】B解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A 、五棱柱共15条棱,故A 误;B 、六棱柱共18条棱,故B 正确;C 、七棱柱共21条棱,故C 错误;D 、八棱柱共24条棱,故D 错误;3.将如右图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是( )A .从正面看相同B .从左面看相同C .从上面看相同D .三个方向都不相同【答案】D【解析】首先考虑三角形和长方形旋转后所得几何体的形状,然后再根据两种几何体从不同方向看所得到的图形做出判断.【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状. 举一反三:【变式】如图把一个圆绕虚线旋转一周,得到的立体图形是( ) A .B .C .D .【答案】Bngsinthe类型三、展开与折叠4.(2015•广安)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是( )A. 全B. 明C. 城D. 国【答案】C【解析】由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”.【总结升华】培养空间想想能力的方法有两种,一是通过动手操作来解决;二是通过想象进行确定.举一反三:【变式】说出下列四个图形(如图所示)分别是由哪个立体图形展开得到的?【答案】 (1)正方体;(2)圆柱;(3)三棱柱;(4)四棱锥.类型四、截一个几何体5.用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,请回答下列问题:(1)截面一定是什么图形?(2)剩下的几何体可能有几个顶点?【思路点拨】当截面截取由三个顶点组成的面时可以得到三角形,剩下的几何体有7个点,当截面截取一棱的一点和两底点组成的面时可剩下几何体有8个点,当截面截取由2条棱中点和一顶点组成的面时剩下几何体有9个顶点.当截面截取由三棱中点组成的面时,剩余几何体有10个顶点.【答案与解析】(1)如果截去的几何体是一个三棱锥,那么截面一定是一个三角形;(2)剩下的几何体可能有7个顶点、或8个顶点、或9个顶点、或10个顶点,如图所示.【总结升华】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.类型五、从三个方向看物体的形状6.(2016春•潮南区月考)如图所示的是某个几何体的三视图.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积.【思路点拨】(1)从三视图的主视图看这是一个矩形,而左视图是一个扁平的矩形,俯视图为一个三角形,故可知道这是一个直三棱柱;(2)根据直三棱柱的表面积公式计算即可.【答案与解析】解:(1)这个立体图形是直三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.【总结升华】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,考查学生的空间想象能力.举一反三:【变式】用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?主视图俯视图【答案】几何体的形状不唯一,最少需要小方块的个数: ,3222110++++=最多需要小方块的个数: .3323116⨯+⨯+=丰富的图形世界(提高)巩固练习【巩固练习】(资料联系QQ :1061139820)一、选择题1.(2015•新乐市一模)下面四个图形是多面体的展开图,其中不是棱柱的展开图的是( )A.B.C. D.2.用一个平面去截一个圆柱体,截面的形状不可能是( ).A .长方形B .圆C .椭圆D .等腰梯形 3.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体是如图中的( ).4.如图是由几个相同的小正方体搭成的几何体从正面、左面、上面观察所得到的图形,则搭成这个几何体的小正方体的个数是( ).A .5 B .6 C .7 D .85.(2016•福建龙岩市)如图所示正三棱柱的主视图是( )eAl l th i n ggA .B .C .D .6.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是( ).A .B .C .D .二、填空题7.(2016•宁夏)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是__________个.8.一个正方体的每个面分别标有数字1,2,3,4,5,6,根据图中该正方体A ,B ,C 三种状态所显示的数字,可推出“?”处的数字是________.9.(2015•青岛)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要 个小立方体,王亮所搭几何体的表面积为 .10.如图所示,是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成.11.用一个平面去截三棱柱,截面的边数最多是_______,用一个平面去截四棱柱,截面的边数最多是_______,用一个平面去截五棱柱,截面的边数最多是_______,12. (1)一张纸对折后,纸上会留下一道折痕,用数学知识可解释为________,与之原理相同的例子还有_______ _(尽量多举出几种来);(2)黑板擦在黑板上擦出一片干净的区域,用数学知识可解释为________,与之原理相同的例子还有_______ _(尽量多举出几种来);(3)数学课本绕它的一边旋转,形成了一个圆柱体,用数学知识可解释为________,与之原13.如图所示,一长方体的长、宽、高分别是10 cm 、8 cm 、6 cm ,有一只蚂蚁从A 点出发沿棱爬行,每条棱不允许重复,则蚂蚁回到A 点时,最多爬行多少厘米?并把蚂蚁所爬行的路线用字母按顺序表示出来.14.(1)一个梯形ABCD ,如图所示,画出绕AB 所在直线旋转一周所形成的几何体从正面看,从上面看,从左面看所得到的图形.(2)梯形绕BC 所在直线旋转一周形成什么图形?(3)梯形绕DC 所在直线旋转一周形成什么图形? 15.(2014秋•扶沟县期末)将图中的几何体进行分类,并说明理由.【答案与解析】一、选择题1.【答案】D【解析】A 、6个正方形能围成一个正方体,所以,这是正方体的展开图;故本选项错误;B 、6个长方形可以围成长方体.所以,这是长方体的展开图;故本选项错误;C 、三个长方形和两个三角形能围成一个三棱柱,所以,这是三棱柱的展开图;故本选项错误.D 、一个四边形和四个三角形能围成四棱锥,所以,这是四棱锥的展开图;故本选项正确.2.【答案】D 3.【答案】D【解析】选项A 中圆柱是以长方形绕其一边所在直线旋转得到的,选项B 中圆锥是以直角三角形绕其直角边所在直线旋转得到的,选项C 中几何体是以直角梯形绕其下底所在的直线旋转得到的,选项D 中几何体是两个圆锥倒放在一起的,以直角三角形绕其斜边所在直线旋转得到的,故选D .4.【答案】B【解析】如图,其中正方形中的数字表示该位置上的小正方体的个数. 5.【答案】B【解析】解:正三棱柱的主视图中前面正对的一条棱是可以看到的,要用实线标出,所以其主视图平行排列的两个矩形.故选B .6.【答案】C【解析】由原正方体知,带图案的三个面相交于一点,而通过折叠后A 、B 都不符合,且D 折叠后图案的位置正好相反,所以能得到的图形是C .二、填空题7.【答案】5【解析】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.8.【答案】6【解析】与l 相邻的四个面分别为4、5、2、3,则1的对面为6,再由B 可知3的对面为4,由A 可知5的对面为2,可推出“?”处的数字为6.9.【答案】19,48.【解析】∵亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×32=36个,∵张明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×(9+7+8)=48.10.【答案】4 【解析】如右图,其中长方形中的数字表示该位置上的小长方体的个数.11.【答案】5、6、7【解析】截面能经过几个面,得到的形状就是几边形.12.【答案】(1)面与面相交得到线,相邻的墙面相交所成的线;长方体的六个面相交所成的线;圆柱的侧面与底面相交所成的曲线等.(2)线动成面,汽车的雨刷在挡风玻璃上刷出一片干净的区域;刷漆时刷子刷出的漆面.(3)面动成体,半圆绕它的直径旋转形成一个球面.三、解答题13.【解析】解:10×4+8×2+6×2=68(cm),所以最多爬行68cm.路线:A→B→C→D→H→G→F→E→A.14.【解析】如图所示.解:(1)(2)梯形ABCD绕BC所在直线旋转一周形成是的圆台.(3)梯形ABCD绕DC所在直线旋转一周形成的是圆柱和一段圆柱挖去同底的一个圆锥的复合体.15.【解析】解:分类首先要确定标准,可以按组成几何体的面的平或曲来划分,也可以按柱、锥、球来划分.(1)长方体是由平面组成的,属于柱体.(2)三棱柱是由平面组成的,属于柱体.(3)球体是由曲面组成的,属于球体.(4)圆柱是由平面和曲面组成的,属于柱体.(5)圆锥是由曲面与平面组成的,属于锥体.(6)四棱锥是由平面组成的,属于锥体.(7)六棱柱是由平面组成的,属于柱体.若按组成几何体的面的平或曲来划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面,若按柱、锥、球来划分:(1)(2)(4)(7)是一类,即柱体;(5)(6)是一类,即锥体;(3)是球体.。
北师大七年级(上)第一章 丰富的图形世界讲义学生版

第一章丰富的图形世界考点1:点、线、面、体1. 如图,直角三角形绕直线l旋转一周,得到的立体图形是()A、B、C、D、2. 下列几何图形中,属于圆锥的是()A、B、C、D、3. 下列图形中,属于立体图形的是()A、B、C、D、4. 一些立体图形可由一些平面图形绕一条直线旋转而得到,这样的几何体叫旋转体,试思考:(1)以长方形的一边为轴把长方形绕轴旋转﹣周得到的立体图形是什么?你能画出示意图吗?(2)把直角三角形以直角边为旋转轴旋转一周得到的几何体又是什么?以斜边呢?你能画出示意图吗?(3)知果把图绕虚线旋转一周所得的图形是怎样的呢?你能画出示意图吗?5. 现有一个长为4cm,宽为3cm的长方形,绕它的一边旋转一周,得到的几何体的体积是.6. 一个棱锥的棱数是24,则这个棱锥的面数是.7. 如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.8. (2014秋•莲湖区校级期末)一个直角三角尺的两条直角边长是6和8,它的斜边长是10,将这个三角尺绕着它的一边所在的直线旋转一周.(温馨提示:①结果用π表示;②你可能用到其中的一个公式,V圆柱=πr2h,V球体=43πR3,V圆锥=13πr2h).(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是.(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?考点2:几何体的展开图1. 一个几何体的展开图如图所示,则该几何体的顶点有()A、10个B、8个C、6个D、4个2. 如图,若要把一个正方体纸盒沿棱剪开,平铺在桌面上,则至少需要剪开的棱的条数是( ).A、5条B、6条C、7条D、8条3. (2015•宜昌)下列图形中可以作为一个三棱柱的展开图的是()A、B、C、D、4. 明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()A、B、C、D、5. (2016•微山县校级一模)如图是一枚六面体骰子的展开图,则掷一枚这样的骰子,朝上一面的数字是朝下一面的数字的3倍的概率是()A、12B、13C、14D、166. 小林同学在一个正方形盒子的每个面都写有一个字,分别是:每、天、进、步、一、点,其平面展开图如图所示,那么在该正方体盒子中,和“每”相对的面所写的字是()A、进B、步C、一D、点7. “仁义礼智信孝”是我们中华民族的传统美德,小明同学将这六个字分别写在一个正方体六个表面上,这个正方体的表面展开图如图所示,那么与“孝”所在面相对的面上的字是.8. 如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的体积是 cm39. 如图是一个正方体的展开图,折叠成正方体后与“中”字相对的一面上的字是10. 如图,平面展开图折叠成正方体后,相对面上的两个代数式值相等,则x+y= .11. 如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)、如果1点在上面,3点在左面,几点在前面?(2)、如果5点在下面,几点在上面?12. 小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm,长方形的长为8cm,请计算修正后所折叠而成的长方形的表面积.13. 如图所示是长方体的表面展开图,折叠成一个长方体后.(1)和数字1所在的面相对的面是哪个数字所在的面?(2)若FG=3cm,LK=8cm,EJ=18cm,则该长方体的表面积和体积分别是多少?考点3:截取一个几何体1. 用一个平面截圆柱,则截面形状不可能是()A、圆B、正方形C、长方形D、梯形2. 用平面去截下列几何体,截面的形状不可能是圆的几何体是()A、球B、正方体C、圆锥D、圆柱3. 一个几何体被一个平面所截后,得到一个七边形截面,则原几何体可能是()A、圆锥B、长方体C、八棱柱D、正方体4. 如下左图,用水平的平面截几何体,所得几何体的截面图形标号是()A、B、C、D、5. 如图是将正方体切去一个角后的几何体,则该几何体有()A、7个面,14条棱B、6个面,12条棱C、7个面,12条棱D、8个面,13条棱6. 如图所示几何体的截面是()A、四边形B、五边形C、六边形D、五棱柱7. 用平面去截如图所示的三棱柱,截面形状不可能是()A、三角形B、四边形C、五边形D、六边形8. (2015秋•深圳校级期末)用一个平面去截一个正方体,截面的形状不可能是()A、梯形B、五边形C、六边形D、七边形9. 如图中几何体的截面分别是.10. 用一个平面去截一个几何体,若截面是长方形,则该几何体可能是(写三个).11. 用一个平面去截长方体、三棱柱、圆柱和圆锥,其中截面不能截成三角形的是,不能截出圆形的几何体是12. 如图1至图3是将正方体截去一部分后得到的多面体.根据要求填写表格:13. 用一个平面去截几何体,截面是三角形,则原几何体可能是(填出一种几何体即可).14. 如果用一个平面去截一个几何体,如果截面是圆,那么原来的几何体可能是什么?15. 如图所示的正方体被竖直截取了一部分,求被截取的那一部分的体积.(棱柱的体积等于底面积乘高)考点4:几何体的三视图1. 如右图所示,一个几何体恰好能通过两个小孔,这个几何体可能是( )A、圆锥B、三棱锥C、四棱柱D、三棱柱2. 如图是一个立体图形的三视图,则这个立体图形是()A、圆锥B、球C、圆柱D、三棱锥3. 若一个几何体的三种视图如图所示,则该几何体是()A、正方体B、圆柱体C、圆锥体D、球体4. 如图,下列选项中不是正六棱柱三视图的是()A、B、C、D、5. 图所示,该几何体的主视图是()A、B、C、D、6. (2016•锦江区模拟)如图所示某几何体的三视图,则这个几何体是()A、三棱锥B、圆柱C、球D、圆锥7. (2016•合肥一模)某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A、B、C、D、8. 如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是()A、B、C、D、9. 已知图为一几何体从不同方向看的图形:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.10. (2013秋•昆山市期末)如图①所示的组合几何体,它的下面是一个长方体,上面是一个圆柱.(1)图②和图③是它的两个视图,在横线上分别填写两种视图的名称(填“主”、“左”或“俯”);(2)根据两个视图中的尺寸,计算这个组合几何体的体积.(结果保留π)11. 如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).12. 任意放置以下几何体:正方体、圆柱、圆锥,则三视图都完全相同的几何体是.13. (2015•江西校级模拟)已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为.14. (2015秋•埇桥区期末)苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是.15. (2016春•潮南区月考)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是.。
北师大版七年级数学上丰富地图形世界培优讲义

文档一对一辅导教学课题丰富的图形世界培优七年级性别三视图3、多边形及其相关知识。
1、截一个几何体2、几何体的知识点:点:考 1、会画几何体的三视图。
教学目标 2、会判断常见几何体的截图。
3、多边形及其相关知识。
讲解和练习方法:重点:常见几何体的截图、三视图。
重点难点常见几何体的截图、三视图。
难点:课前__________________________________________建议中□差□作业完成情况:优□良□检查知识点回顾:、几何图形1 从实物中抽象出来的各种图形,包括立体图形和平面图形。
:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
立体图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
平面图形、点、线、面、体2 )几何图形的组成:点、线、面、体(1 (2)点动成线,线动成面,面动成体。
点、线、面、体都是几何图形。
3、平面展开图正方体的展开图教(2)圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱的展开图: 4、几何体的截面学形角能是三,体或正方体截面可截个1()用一截面去长方内四边形三角形),也可能是、但不可能是(、等,最多可截得),还可能是五边形,(,容边形。
5、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
典型例题讲练:考点一:几何图形的分类:、你能否将下列几何体进行分类?并请说出1文档分类的依据。
.是棱下列图形中是柱体的_____填代码即);_____是圆,______(a) (b) (c) (d)考点二:运动的观点看几何图形的形成(点、线、面、体)生活中我们见到的自行车的辐条运动形成的几何图形可解释为(1. )面动成体 D.以上答案都不对 C .A.点动成线 B.线动成面车轨快速旋转时看 2、雨点从高空落下形成的轨迹说明了;一枚硬币在光滑的桌面上快速旋起来象个圆面,这说明了; .转形成一个球,这说明了l旋转一周,可以得到右边立体图形的是( 3、将下面的直角梯形绕直线).4.如图绕虚线旋转得到的几何体是A()D())B()C(、如图所示的图形绕虚线旋转一周,所形成的几何体是()5文档边上的高是BCBC长3厘米,2、如图,三角形ABC的底边厘米的速度沿高的方向向上移动厘米,将三角形以每秒32 秒,这时,三角形扫过的面积是_______平方厘米。
北师大七年级上培优第1讲:丰富的图形世界

几何初步培优知识点:展开图【例1】如图,已知MN是圆柱底面的直径,NP是圆柱的高,在圆柱的侧面上,过点M,P嵌有一幅路径最短的金属丝,现将圆柱侧面沿NP剪开,所得的侧面展开图是( )A .B . C. D .【例2】如图,把下边的图形折起来,它会变成的正方体是( )A. B. C. D.【例3】图2为正方体图1的展开图。
图1中M、N分别是FG、GH的中点,CM、CN、MN是三条线段,试在图2中画出这些线段。
1知识点:三视图【例1】由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,画出这个几何体的主视图。
【例4】用小立方体搭一个几何题,使得它的主视图和俯视图如图所示,它至少要【例5】一些完全相同的小正方体搭成一个几何体,这个几何体从正面和左面看所得的平面图形均如图所示,小正方体的块数可能有( )个知【例2】如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为。
【例3】如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图。
(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方形的块数为n,请你写出n的所有可能值。
识点:截面形状【例1】用一个平面去截一个圆柱,截面的形状不可能是( )A. B. C. D.【例2】一个正方体,用刀截去一个角后,所得的几何体有个顶点。
知识点:表面积【例1】如图所示的立体图形由9个棱长为1的正方体木块搭成,这个立体图形的表面积为。
【例2】如图,这个几何体是由16块棱长为1cm的正方体木块堆积而成的,如果在其表面涂上油漆,求所涂油漆部分的面积.【例3】如图都是边长为1的正方体叠成的几何体,例如第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位。
依此规律,则第20个几何体的表面积是个平方单位第n个几何体的表面积是个平方单位。
【教辅】北师大七年级数学上册丰富的图形世界讲义

个性化辅导教案个性化辅导教案学生学校年级科目教师日期时段次数课题丰富的图形世界教学重点难点1.体会点、线、面之间的关系,会用语言描述几何体的特征及组成部分;2.对于立体图形的构成,展开折叠的理解想象。
教学步骤及教学内容1.几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。
2.立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
3.平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
※常见的几何体分类及其特点:<动动手,我最棒>长方体:有顶点,条棱,个面,且各面都是(正方形是特殊的长方形)正方体是特殊的。
棱柱:上下两个面称为棱柱的,其它各面称为,长方体是。
圆柱:有上下两个底面和一个侧面,两个底面是的圆。
圆锥:有一个和一个,且侧面展开图是。
球:由围成的几何体。
例1:下列说法不正确的是()A.圆柱和圆锥的底部都是圆B.n棱柱有n个顶点C.棱柱的上、下底面是形状、大小相同的平面图形D.面最少的几何体是只有一个曲面的球例2:下列说法错误的是()A.长方体和正方体都是四棱柱B.棱柱的侧面都是四边形C.柱体的上下底面形状相同D.圆柱是只有底面为圆的两个面例3:下列立体图形中,侧面展开图是扇形的是()A. B. C. D.例4:如图中的几何体中,由4个面围成的几何体是()A. B. C.D.例5:如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱2.点、线、面、体(1)几何图形的组成:点、线、面、体(2)点动成线,线动成面,面动成体。
点、线、面、体都是几何图形。
<动动手,我最棒>图形是由、、、构成;点动成,线动成,面动成;面与面相交得到,线与线相交得到。
面动成体可以通过平移和旋转实现。
例如:五棱柱、圆柱分别可以看作是由五边形或圆沿着竖直方向平移形成。
北师大版七年级上册数学第一章丰富的图形世界讲义(学生、家长、教师必备)

第一章丰富的图形世界■通关口诀:平面立体要分清;直曲分为两线型。
平面直线和曲线;三角四边多边形。
圆与抛物和双曲;立体图形柱锥球。
展开折叠十一型;主要针对正方体。
平面去截几何体;截面边数不超面。
■数学学堂第一讲:生活中的立体图形【知识点一】生活中常见几何图形的基本特征及分类。
1.常见的几何体的基本特征(顶点、面、棱):⑴正方体、长方体−−−→推广棱柱。
⑵圆柱。
⑶棱锥、圆锥−−−→推广锥体。
⑷球体。
2.生活中常见几何图形的分类。
简单的几何体柱体锥体球体圆柱圆锥〖母题示例〗1.试一试在括号里写出它们的名称.2.将下列几何体分类,柱体有:,锥体有,球体有。
(填序号)【知识点二】棱柱及其特征。
1.特征:所有侧棱长都相等;棱柱的上下底面是相同的多边形;侧面都是平行四边形。
2.按棱分类、命名:三、四、五---棱柱。
正方体和长方体都是四棱柱。
3.棱柱可分为直棱柱和斜棱柱:直棱柱的侧面是长方形。
初中只学习和讨论直棱柱。
4.数量特征:一个n棱柱有2n个顶点,3n条棱,n条侧棱,(n+2)个面,n个侧面。
〖母题示例〗1.下列说法中,正确的是()(A)正方体不是棱柱。
(B)圆锥是由3个面围成。
(C)正方体的各条棱都相等。
(D)棱柱的各条棱都相等。
2.五棱柱有个顶点,条棱,条侧棱,个面,个侧面。
【知识点三】组合几何体。
1.生活中的物体→抽象→分解为基本几何体。
体会和认识数学的抽象性。
2.简单的几何体:构成了复杂的、形形色色、丰富多彩的生活空间。
〖母题示例〗以下建筑中,那些由基本几何体组合而成。
由哪些几何体组成?(选三个)。
ABCD【知识点四】图形的构成元素及其关系。
1.图形的构成:⑴图形是由点、线面构成的。
⑵线有直线和曲线;面有平面和曲面。
⑶线与线相交得点;面与面相交得线。
2.用运动的观点看几何体:几何体曲面曲线平面直线点动动动动−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧−→−−→−−→−〖母题示例〗观察图形,回答问题:⑴图中的几何体各由几个面围成?围成这些面的几何体有什么特点?⑵图中的几何体的“交线”各有什么特点? ⑶图中的几何体有无顶点?有几个顶点?【知识点五】平面图形旋转成几何体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一对一辅导
( 1)用一个截面去截长方体或正方体,截面可能是三角形(、、但不可能是三角形),也可能是四边形(,,),还可能是五边形等,最多可截得边形。
5、三视图
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
典型例题讲练:
考点一:几何图形的分类:
1、你能否将下列几何体进行分类?并请说出
分类的依据。
2、下列图形中是柱体的是(填代码即可);是圆柱,是棱柱.
(a) (b) (c) (d)
考点二:运动的观点看几何图形的形成(点、线、面、体)
1.生活中我们见到的自行车的辐条运动形成的几何图形可解释为()
A.点动成线
B.线动成面 C .面动成体 D.以上答案都不对
2、雨点从高空落下形成的轨迹说明了;车轨快速旋转时看起来象个圆面,这说明了;一枚硬币在光滑的桌面上快速旋
转形成一个球,这说明了.
3、将下面的直角梯形绕直线l 旋转一周,可以得到右边立体图形的是()
4.如图绕虚线旋转得到的几何体是.
(A)(B)(C)(D)
5、如图所示的图形绕虚线旋转一周,所形成的几何体是()
2、如图,三角形ABC 的底边BC 长3 厘米,B C边上的高是2 厘米,将三
角形以每秒3 厘米的速度沿高的方向向上移动2 秒,这时,三角形扫过的
面积是平方厘米。
(A)21 (B)19 (C)17 (D)15
考点三;展开与折叠
1、图中有一个正方体的纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪成一个平面图形,则展开图应当是( ).
2、如图,将标号为 A、B、C、D 的正方形沿图中的虚线剪开后得到标号为 P、Q、M、N 的 4 组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系,填空.
A 与对应;
B 与对应;
C 与对应;
D 与对应.
3、.图①是一个正方体形状的纸盒,把它沿某些棱剪开并摊平在桌面上,可得到图
②的图形,如果把图②的纸片重新恢复成图①的纸盒,那么与点G 重合的点是.
4、你可以依次剪6 张正方形纸片拼成如图示意的图形.如果你所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③的面积相等,那么正方形⑤的面积为.
1
5 6
5.如图所示,把图中的硬纸片沿虚线折起来,便可成为一个
正方体,这个正方体的2 号平面的对面是( )
A、3 号面
B、号面
C、5 号面
D、6 号面
6.图(a)是图(b)中立方体的平面展开图,图(a)与图(b)中的箭头位置和方向是一致的,那么图(a)中的线段 AB 与图(b)中对应的线段是( ).
A.e B.h C.k D.d
7、在下图形中,每个图形全由6 个边长为1 的小正方形组成,如果把每个图形沿外轮廓线用剪刀剪下来,能够按照小正方形的边线折叠成棱长为 1 的正方体的图形共有个.
3
2
4
8、如图是一个正方体纸盒,在其中的三个面上各画一条线
段构成△ABC,且 A 、B 、C
分别是各棱上的中点.现将纸盒剪开展成平面,则不可能的展开图是
P
L Q K
J
A I
B H C
D G
E
F
9、这时一个正方体的展开图,用它合成原来的正方体时,边 P 与哪条边重合?
10.如图,这是一个正方开体的展开图,则“喜”代表的面所相对的面的号码是
.
A B C D 1 2 3 E H 4 F G
11、.如图所示,用 1、2、3、4 标出的四块正方形,以及由字母标出的八块正方形中任意一块,一共要用 5 块连在一起的正方形折成一个无盖方盒,共有几种不同的方法?请选择合适的方法。
12、请问右图是一个什么几何体的展开图?
欢 喜
我 课
学 数
A
B
C
13.已知O 为圆锥的顶点, M 为圆锥底面上一点,点 P 在OM 上.一只蜗牛从 P 点出发,绕圆锥侧面爬行,回到 P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是 (
)
O O
P M
P
M '
M
A .
O
P
M
M ' B .
O
P
M
M ' C .
O
P
M
M ' D .
14、(1)把一个正三角形剖分为 3 个完全相同的图形,至少给出 3 个不同的分割方法;
(2)把一个正方形分割为 4 个完全相同的图形,尽量多地给出你的设计;
15、把图示的木板切成三块,再拼成一个正方形,在原图上画出示意图.
D C
2
1
F
E
2 1
1 A
3
B
16、棱长为 a 的正方体,摆放成如图所示的形状.
(1)如果这一物体摆放三层,试求该物体的表面积;
(2)依图中摆放方法类推,如果该物体摆放了上下 20 层,求该物体的表面积.
17 、用橡皮泥做一个棱长为 4cm 的正方体.
(1)如图①,在顶面中心位置处从上到下打一个边长为1cm 的正方形通孔,打孔后的橡皮泥块的表面积为cm;
(2)如果在第(1)题打孔后,再在正面中心位置处(按图②中的虚线)从前到后打一个边长为 lcm 的正方形通孔,那么打孔后的橡皮泥的表
面积为cm2;
(3)如果把第(2)题中从前到后所打的正方形通孔扩成
一个长 xcm、宽lcm 的长方形通孔,能不能使所得橡皮泥块的表面积为 130cm2?如果能,请求出 x;如果不能,请说明理由.
18.图①是一个水平放置的小正方体木块,图②、③是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形时,小正方体木块总数应是 ( ).
A.25 D.66 C.91 D.120
(第 2 题)
19.把两个长3cm、宽2cm、高lcm 的小长方体先粘合成一个大长方体,再把它切成两个大小相同的小长方体,最后一个小长方体的表面积最多可比起初一个小长方体的表面积大cm2.
20、如图, 这是一个由三个大小不同的正方体所组成的装饰物, 现在要对它的表面涂油漆. 假设三个正方体的边长分别为a,b,c, 其中a<b<c. 那么该装饰物涂漆面积最少是
(A) 5(a2+b2+c2) (B) 5a2+4b2+5c2
(C) 5a2+4b2+4c2 .(D) 4a2+4b2+5c2
21.如图是正方体分割后的一部分,它的另一部分是下列图形中的( ).
考点四:截一个几何体
1、用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码。
A B C D E
5
1 3 4 6
2
如A(1、5、6);则B();C();D();E()。
2.如图所示的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是().
A B C D (第17 题图)
3、通过切割正方体,我们可以得到不同形状的截面,下图就是一个三角形截面示意图。
在右边的正方体中依次画出需要的截面。
等腰三角形长方形梯形
平行四边形五边形六边形
4、过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其展开
图正确的为
5.一个正方体截出一角后,剩下的几何体有多少条棱?多少个面?多少个顶点?
6、.(1)我们知道,如图①的正方体木块有 8 个顶点,12 条棱,6 个面.
①②③④⑤
请你将图中其他木块的顶点数,棱数,面数填入下表:
.
. . . ④
⑤
(2) 观察上表,请你归纳上述各木块的顶点数,棱数,面数之间的关系, 这
种数量关系是: .
(3) 下图是用虚线画出的正方体木块,请你想象一种与(1)题图不同的切法,
把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为 ,
棱数为
,面数为 ,这与你在(2)中所归纳的关系是否相符?
考点五:几何体的三视图
1、下列几何体,主视图和俯视图都为矩形的是(
)
2、用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是( ) A
B C D
3. 如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该
位置小正方体的个数,则这个几何体的左视图是(
)
1 2 1 3
1
A .
B .
C .
D .
(第18 题图)
4、如图是由大小一样的小正方块摆成的立体图形的三视图,它共用()个小正方块摆成。
A.5 B.8 C.7 D.6
左视图主视图俯视图
5.如图所示的立体图形,画出它的主视图、左视图和俯视图.
6.如图是由几个小立方块所搭成几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体的主视图和左视图。
老师课后赏识家庭作业:
1. 如图所示是由几个小立方体所组成几何体的俯视图,小正方形中的数字表示
在该位置的小立方体的个数,请画出这个几何体的主视图、左视图。
2、如图,某同学在制作正方体模型的时候,在方格纸
上画出几个小正方形(图中阴影部分),但是由于疏忽少画了一个,
请你给他补上一个,使之可以组合成正方体,你有几种画法,
在图上用阴影注明.
2 3
4 2 1
1。