高中数学必修一综合测试题一
高中数学必修1习题步步高高中数学必修1习题步步高综合检测一

综合检测一一、选择题1.如果A={x|x>-1},那么()A.0?AB.{0}∈AC.?∈AD.{0}?A2.函数f(x)=12x-3的定义域是()A.0,32B.32,+∞C.-∞,32 D.32,+∞3.函数y=1x2+1的值域是()A.[1,+∞)B.(0,1]C.(-∞,1]D.(0,+∞)4.函数f(x)=x3+x的图象关于()A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称5.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)f(y)”的是()A.幂函数B.对数函数C.指数函数D.一次函数6.若0<m<n,则下列结论正确的是()A.2m>2nB.(12)m<(12)nC.log2m>log2nD.log 12m>log12n7.已知a=0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a8.函数y=|x2-1|与y=a的图象有4个交点,则实数a的取值范围是()A.(0,+∞)B.(-1,1)C.(0,1)D.(1,+∞)9.已知函数f(x)=a x+log a x(a>0且a≠1)在[1,2]上的最大值与最小值之和为log a2+6,则a的值为()A.12B.14C.2D.410.下列计算正确的是()A.(a 3)2=a9B.log 26-log 23=1C.a -12·a 12=0D.log 3(-4)2=2log 3(-4)11.设函数f(x)=21-x ,x ≤1,1-log 2x ,x>1,则满足f (x)≤2的x 的取值范围是()A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)12.若函数f(x)=lg(10x+1)+ax 是偶函数,g(x)=4x-b 2x 是奇函数,则a +b 的值是()A.12B.1C.-12D.-1二、填空题13.已知f(x)为奇函数,g(x)=f(x)+9,g(-2)=3,则f(2)=________. 14.已知f(x 5)=lg x,则f(2)=________. 15.计算lg 14-lg 25÷100-12=________. 16.不等式lg (x -1)<1的解集是________. 三、解答题17.(1)计算:(279)12+(lg 5)0+(2764)-13;(2)解方程:log 3(6x-9)=3. 18.某商品进货单价为40元,若销售价为50元,可卖出50个,如果销售价每涨1元,销售量就减少1个,为了获得最大利润,求此商品的最佳售价应为多少?19.已知函数f(x)=-3x 2+2x -m +1.(1)当m 为何值时,函数有两个零点、一个零点、无零点;(2)若函数恰有一个零点在原点处,求m 的值.20.已知f(x)=log a x(a>0,a ≠1),当0<x 1<x 2时,试比较f x 1+x 22与12[f(x 1)+f(x 2)]的大小.21.已知函数f(x)=log 2(x +1),当点(x,y)是函数y =f (x)图象上的点时,点x 3,y2是函数y =g(x)图象上的点.(1)写出函数y=g(x)的表达式;(2)当2g(x)-f(x)≥0时,求x的取值范围.22.已知函数f(x)=x-2xx>12x2+2x+a-1 x≤12.(1)若a=1,求函数f(x)的零点;(2)若函数f(x)在[-1,+∞)上为增函数,求a的取值范围.答案1.D 2.D 3.B 4.C 5.C 6.D7.A8.C9.C10.B11.D12.A13.6 14.15lg 2 15.-2016.(1,11)17.解(1)原式=(259)12+(lg 5)0+[(34)3]-13=53+1+43=4.(2)由方程log3(6x-9)=3得6x-9=33=27,∴6x=36=62,∴x=2.经检验,x=2是原方程的解.18.解设最佳售价为(50+x)元,最大利润为y元,y=(50+x)(50-x)-(50-x)×40=-x2+40x+500.当x=20时,y取得最大值,所以应定价为70元.故此商品的最佳售价应为70元.19.解(1)函数有两个零点,则对应方程-3x2+2x-m+1=0有两个根,易知Δ>0,即Δ=4+12(1-m)>0,可解得m<4 3;Δ=0,可解得m=4 3;Δ<0,可解得m>4 3 .故m<43时,函数有两个零点;m=43时,函数有一个零点;m>43时,函数无零点.(2)因为0是对应方程的根,有1-m=0,可解得m=1.20.解因为f x1+x22-12[f(x1)+f(x2)]=log a x1+x22-12[log a x1+log a x2]=log a x 1+x 22-log a x 1x 2,又0<x 1<x 2,∴x 1+x 2-2x 1x 2=(x 1-x 2)2>0,即x 1+x 2>2x 1x 2,即x 1+x 22>x 1x 2.于是当a>1时,f x 1+x 22>12[f (x 1)+f (x 2)];同理0<a<1时,f x 1+x 22<12[f (x 1)+f(x 2)].21.解(1)令x ′=x 3,y ′=y 2,把x =3x ′,y =2y ′代入y =log 2(x +1)得y ′=12log 2(3x ′+1),∴g(x)=12log 2(3x +1).(2)2g(x)-f(x)≥0,即log 2(3x +1)-log 2(x +1)≥0,∴3x +1>0x +1>03x +1≥x +1,解得x ≥0.22.解(1)当a =1时,由x -2x=0,x 2+2x =0,得零点为2,0,-2.(2)显然,函数g(x)=x -2x 在[12,+∞)上递增, 且g(12)=-72;函数h(x)=x 2+2x +a -1在[-1,12]上也递增,且h(12)=a +14.故若函数f(x)在[-1,+∞)上为增函数, 则a +14≤-72,∴a ≤-154. 故a 的取值范围为(-∞,-154].。
高中数学必修一前三章综合测试

(1)求
f
(x)
f
1 ( ) 的值;(2)计算:
f
(1)
f
(2)
f
(3)
f
(4)
f
(1)
f
(1)
f
(1).
x
234
x2 3x 0 22.已知函数 f x 1 x 0 ,求:
x 4 x 0
(1) f f f 4 ;
(2)若 f x 7 ,求 x 的值.
2 23.已知关于 x 的不等式 ax2 x 1 a 0 . (1)当 a 1 时,解关于 x 的不等式;
(1) A B ;(2) CU A B .
20.(1)设
x
3
,求函数
f
x
x
x
1
3
的最小值;
(2)设 0 x 5 ,求函数 f x x 30 2x 的最大值;
(3)已知 a,b 为正实数,且 a b 2 ,求 3 2 的最小值. ab
21.已知函数 f (x) x2 , x R . 1 x2
,则甲是乙的(
)条件
A.充分不必要条件
B.必要不充分条件 C.充要条件
D.既不充分也不必要条件
4.适合条件1 A 1, 2,3, 4,5, 6 的集合 A 的个数是( )
A.15
B.16
C.31
D.32
5.下列四组函数中,表示同一函数的是( )
A.f(x)=1 与 g(x)=x0
B. f x x2 1 与 g x x 1 x 1
高中数学必修一前三章综合测试
学校:___________姓名:___________班级:___________考号:___________
综合试卷一-【新教材】人教A版(2019)高中数学必修第一册

综合试卷一一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={(x,y)|2x﹣y=0},B={(x,y)|3x+y=0},则集合A∩B的子集个数为()A.0B.1C.2D.42.(5分)已知幂函数y=f(x)的图象过点,则下列结论正确的是()A.y=f(x)的定义域为[0,+∞)B.y=f(x)在其定义域上为减函数C.y=f(x)是偶函数D.y=f(x)是奇函数3.(5分)命题p:三角形是等边三角形;命题q:三角形是等腰三角形.则p是q()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)下列结论正确的是()A.若a>b>c>0,则B.若a>b>0,则b2<ab<a2C.若a>b>0,则ac2>bc2D.若a<b<0,则5.(5分)已知,则()A.b>a>c B.a>b>c C.b>c>a D.a>c>b6.(5分)设命题p:所有的矩形都是平行四边形,则¬p为()A.所有的矩形都不是平行四边形B.存在一个平行四边形不是矩形C.存在一个矩形不是平行四边形D.不是矩形的四边形不是平行四边形7.(5分)已知函数,若函数y=f(x)﹣k有三个零点,则实数k的取值范围为()A.(﹣2,﹣1]B.[﹣2,﹣1]C.[1,2]D.[1,2)8.(5分)已知函数f(x)的定义域为R,图象恒过(1,1)点,对任意x1<x2,都有则不等式的解集为()A.(0,+∞)B.(﹣∞,log23)C.(﹣∞,0)∪(0,log23)D.(0,log23)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(5分)下列结论正确的是()A.是第三象限角高一年级数学学科假期作业使用日期:寒假编辑:校对:审核:B .若圆心角为的扇形的弧长为π,则该扇形面积为C.若角α的终边过点P(﹣3,4),则D.若角α为锐角,则角2α为钝角10.(5分)已知函数其中a>0且a≠1,则下列结论正确的是()A.函数f(x)是奇函数B.函数f(x)在其定义域上有零点C.函数f(x)的图象过定点(0,1)D.当a>1时,函数f(x)在其定义域上为单调递增函数11.(5分)已知函数,则下列结论正确的是()A.函数f(x)的最小正周期为πB.函数f(x)在[0,π]上有三个零点C .当时,函数f(x)取得最大值D.为了得到函数f(x )的图象,只要把函数图象上所有点的横坐标变为原来的2倍(纵坐标不变)12.(5分)已知函数f(x)=x2﹣2x﹣3,则下列结论正确的是()A.函数f(x)的最小值为﹣4B.函数f(x)在(0,+∞)上单调递增C.函数f(|x|)为偶函数D.若方程f(|x﹣1|)=a在R上有4个不等实根x1,x2,x3,x4,则x1+x2+x3+x4=4三、填空题:本题共4小题,每小题5分,共20分.13.(5分)=.14.(5分)已知tan(α﹣)=2,则tanα=.15.(5分)已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x(x﹣1),则当x >0时,f(x)=.16.(5分)已知[x]表示不超过x的最大整数,如[﹣1.2]=﹣2,[1.5]=1,[3]=3.若f(x)=2x,g(x)=f(x﹣[x]),则=,函数g(x)的值域为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在①tanα=4,②7sin2α=2sinα,③cos这三个条件中任选一个,补充在下面问题中,并解决问题.已知,,cos(α+β)=﹣,,求cosβ.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知函数f(x)=x2+2(k﹣1)x+4.(1)若函数f(x)在区间[2,4]上具有单调性,求实数k的取值范围;(2)若f(x)>0对一切实数x都成立,求实数k的取值范围.19.(12分)已知函数f(x)=log a(3﹣x)+log a(x+3)(a>0,且a≠1).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由;(3)当a=3时,求函数f(x)的最大值.20.(12分)物联网(InternetofThings,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络.其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费y1(单位:万元),仓库到车站的距离x(单位:千米,x>0),其中y1与x+1成反比,每月库存货物费y2(单位:万元)与x成正比;若在距离车站9千米处建仓库,则y1和y2分别为2万元和7.2万元.这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?21.(12分)已知函数f(x)=a﹣(a∈R).(1)当a=时,求函数g(x)=的定义域;(2)判断函数f(x)的单调性,并用单调性的定义证明你的结论.22.(12分)已知函数f(x)=sin(x﹣)+cos(﹣x)+cos x+a的最大值为1.(1)求常数a的值;(2)求函数f(x)的单调递增区间;(3)求使f(x)<0成立的实数x的取值集合.期末综合一答案1.解:∵集合A={(x,y)|2x﹣y=0},B={(x,y)|3x+y=0},∴集合A∩B={(x,y)|}={(0,0)}.∴集合A∩B的子集个数为2.故选:C.2.解:设幂函数f(x)=xα,∵幂函数y=f(x )的图象过点,∴,∴,∴y=f(x)的定义域为(0,+∞),且在其定义域上是减函数,故选项A错误,选项B 正确,∵函数定义域为(0,+∞),不关于原点对称,所以不具有奇偶性,故选项C,D错误,故选:B.3.解:∵等边三角形一定是等腰三角形,反之不成立,∴p是q的充分不必要条件.故选:A.4.解:A.∵a>b>c>0,∴ab>0,∴,∴,∴,故A不正确;B.∵a>b>0,∴a(a﹣b)>0,b(a﹣b)>0,∴a2>ab>b2,故B正确;C.由a>b>0,取c=0,则ac2>bc2,故C错误;D.∵a<b<0,∴,故D错误.故选:B.5.解:∵a=tan=tan (+)==2+>2,b=cos=cos (+)=﹣sin<0,c=cos (﹣)=cos =<1,∴a>c>b.故选:D.6.解:因为全称命题的否定是特称命题,所以:命题p:所有的矩形都是平行四边形,则¬p为:存在一个矩形不是平行四边形.故选:C.7.选:A.8.解:由题意可得f(1)=1,对任意x1<x2,都有,则f(x1)﹣f(x2)<x2﹣x1即f(x1)+x1<f(x2)+x2,令g(x)=f(x)+x,则可得g(x)在R单调递增,且g(1)=2,由可得,g[log2(2x﹣1)]<g(1),故,解可得,0<x<log23.故选:D.9.解:对于A :是第而二象限角,所以A不正确;对于B :若圆心角为的扇形的弧长为π,则该扇形面积为:=.所以B正确;对于C:若角α的终边过点P(﹣3,4),则,所以C正确;对于D:若角α为锐角,则角2α为钝角,反例α=1°,则2α=2°是锐角,所以D不正确;故选:BC.10.解:函数其中a>0且a≠1,由于f(﹣x)=﹣f(x),且x∈R,所以函数为奇函数.当x =0时,f(0)=0,所以函数在其定义域上有零点,当当a>1时,函数中都为整函数,故在其定义域上为单调递增函数.故选:ABD.11.解:T ===π,故A正确;令f(x)=0,2x +=kπ,当x∈[0,π]时,x =,,故B不正确;当x =时,f(x )=取得最大值,故C正确;为了得到函数f(x )的图象,只要把函数图象上所有点的横坐标变为原来的倍(纵坐标不变),故D错误;故选:AC.12.解:二次函数f(x)在对称轴x=1处取得最小值,且最小值f(1)=﹣4,故选项A正确;二次函数f(x)的对称轴为x=1,其在(0,+∞)上有增有减,故选项B错误;由f(x)得,f(|x|)=|x|2﹣2|x|﹣3,显然f(|x|)为偶函数,故选项C正确;令h(x)=f(|x﹣1|)=|x﹣1|2﹣2|x﹣1|﹣3,方程f(|x﹣1|)=a 的零点转化为y=h(x)与y=a的交点,作出h(x)图象如右图所示:图象关于x=1 对称,当y=h(x)与y=a有四个交点时,两两分别关于x=1对称,所以x1+x2+x3+x4=4,故选项D正确.故选:ACD.13.解:原式=.故答案为:.14.解:∵tan(α﹣)=tan(α﹣)==2,则tanα=﹣3,故答案为:﹣3.15.解:∵f(x)是定义在R上的奇函数,且x≤0时,f(x)=x(x﹣1),设x>0,﹣x<0,则:f(﹣x)=﹣x(﹣x﹣1)=﹣f(x),∴f(x)=﹣x(x+1).故答案为:﹣x(x+1).16 .f(x)=2x,g(x)=f(x﹣[x]),g ()=f (﹣[])=f ()=f ()=2,由g(x)=2x﹣[x],[x]∈(x﹣1,x],x﹣[x]∈[0,1),所以g(x)∈[1,2),故答案为:;[1,2).四、解答题17.解:方案一:选条件①解法一:因为,所以.由平方关系sin2α+cos2α=1,解得或因为,所以.因为,由平方关系sin2(α+β)+cos2(α+β)=1,解得.因为,所以0<α+β<π,所以,所以cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα==.解法二:因为,所以点在角α的终边上,所以,.以下同解法一.方案二:选条件②因为7sin2α=2sinα,所以14sinαcosα=2sinα,因为,所以sinα≠0,所以.由平方关系sin2α+cos2α=1,解得.因为,所以.以下同方案一的解法一.方案三:选条件③因为,所以由平方关系sin2α+cos2α=1,得.因为,所以.以下同方案一的解法一.①18.解:(1)由函数f(x)=x2+2(k﹣1)x+4知,函数f(x)图象的对称轴为x=1﹣k.因为函数f(x)在区间[2,4]上具有单调性,所以1﹣k≤2或1﹣k≥4,解得k≤﹣3或k≥﹣1,所以实数k的取值范围为(﹣∞,﹣3]∪[﹣1,+∞).(2)解法一:若f(x)>0对一切实数x都成立,则△<0,所以4(k﹣1)2﹣16<0,化简得k2﹣2k﹣3<0,解得﹣1<k<3,所以实数k的取值范围为(﹣1,3).解法二:若f(x)>0对一切实数x都成立,则f(x)min >0,所以,化简得k2﹣2k﹣3<0,解得﹣1<k<3,所以实数k的为(﹣1,3).19.解:(1)要使函数有意义,则有,解得﹣3<x<3.所以函数f(x)的定义域为(﹣3,3).(2)函数f(x)为偶函数.理由如下:因为∀x∈(﹣3,3),都有﹣x∈(﹣3,3),且f(﹣x)=log a(3+x)+log a(﹣x+3)=log a(3﹣x)+log a(x+3)=f(x),所以f(x)为偶函数.(3)当a=3时,f(x)=log3(3﹣x)+log3(x+3)=log3[(3﹣x)(x+3)]=.令t=9﹣x2,且x∈(﹣3,3),易知,当x=0时t=9﹣x2取得最大值9,此时取得最大值log39=2,所以函数f(x)的最大值为2.20.解:设,其中x>0,当x=9时,,解得k=20,m=0.8,所以,y2=0.8x,设两项费用之和为z(单位:万元)则==7.2当且仅当,即x=4时,“=”成立,所以这家公司应该把仓库建在距离车站4千米处才能使两项费用之和最小,最小费用是7.2万元.21.解:(1)当时,函数,要使根式有意义,只需,所以,化简得3x≥3=31,解得x≥1,所以函数g(x)的定义域为[1,+∞);(2)函数f(x)在定义域R上为增函数.证明:在R上任取x1,x2,且x1<x2,则=,由x1<x2,可知,则,又因为,,所以f(x1)﹣f(x2)<0,即f (x1)<f(x2).所以f(x)在定义域R上为增函数.22.解:(1)∵====.(1)函数f(x)的最大值为2+a=1,所以a=﹣1.(2)对于函数f(x),由,解得,所以f(x)的单调递增区间为.(3)由(1)知.因为f(x)<0,即.∴,∴.所以,所以使f(x)<0成立的x的取值集合为.。
人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。
高中数学人教A版必修第一册综合检测试题

综合检测试题选题明细表一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|2x-1≥1},B={y|y=log3x,x∈A},则∁B A等于( B )A.(0,1)B.[0,1)C.(0,1]D.[0,1]解析:由题得A={x|2x-1≥20}={x|x≥1},B={y|y≥0},所以∁B A={x|0≤x<1}.故选B.2.若a=0.60.7,b=0.70.6,c=lg 3,则下列结论正确的是( D )A.b>c>aB.c>a>bC.a>b>cD.b>a>c解析:因为y=x0.6为增函数,y=0.6x为减函数,所以0.70.6>0.60.6>0.60.7>0.61,c=lg 3<lg √10=0.5, 所以b>a>c.故选D.3.已知正实数x ,y 满足x+2y=2xy ,则x+y 的最小值为( D ) A.4 B.√2 C.√3 D.√2+32解析:因为正实数x ,y 满足x+2y=2xy , 所以x+2y xy=2,即1y +2x =2,所以x+y=(x+y 2)·(1y +2x )=x 2y +1+12+y x ≥32+2√x 2y ·y x =32+√2,当且仅当x 2=2y 2时,等号成立. 故选D.4.已知函数f(x)为奇函数,当x>0时,f(x)=log 2(x+1)+ax ,且f(-3)=a ,则f(7)等于( B ) A.12B.-12C.log 23D.2解析:因为函数f(x)为奇函数,当x>0时,f(x)=log 2(x+1)+ax ,且f(-3)=-f(3)=a ,所以f(3)=-a ,即2+3a=-a ,所以a=-12,则f(7)=log 28+7a=3-72=-12.故选B.5.已知2sin 2α=1+cos 2α,则tan 2α等于( D ) A.-43 B.43C.-43或0 D.43或0解析:因为{2sin2α=1+cos2α,sin 22α+cos 22α=1,所以{sin2α=0,cos2α=-1或{sin2α=45,cos2α=35.所以tan 2α=0或tan 2α=43.故选D.6.将函数f(x)=sin(2x+π6)的图象分别向左、向右平移ϕ(ϕ>0)个单位长度后,所得的图象都关于y 轴对称,则ϕ的最小值分别为( A ) A.π6,π3B.π3,π6C.2π3,5π6D.π6,π12解析:函数f(x)的图象向左平移ϕ个单位长度得到函数g(x)= sin(2x+2ϕ+π6)的图象,因为g(x)图象关于y 轴对称,则2ϕ+π6=π2+k π,k ∈Z ,即ϕ=π6+kπ2,k∈Z ,而ϕ>0, 则ϕmin =π6;函数f(x)的图象向右平移ϕ个单位长度得函数h(x)=sin(2x-2ϕ+π6)的图象,因为函数h(x)关于y 轴对称,则有-2ϕ+π6=π2+k π,k ∈Z ,即ϕ=-π6-kπ2,k ∈Z ,而ϕ>0,则ϕmin =π3,所以ϕ的最小值分别为π6,π3.故选A.7.如图所示,其对应的函数解析式可能是( B )A.f(x)=1|x -1|B.f(x)=1||x |-1|C.f(x)=11-x2D.f(x)=11+x 2解析:函数的定义域为{x|x ≠±1},排除选项A 和D ,当x ∈(1,+∞)时,f(x)>0,可排除选项C.故选B. 8.已知函数f(x)=ln(1+x 2)-11+|x |,若实数a 满足f(log 3a)+f(lo g 13a)≤2f(1),则a 的取值范围是( D ) A.[1,3] B.(0,13)C.(0,3]D.[13,3]解析:函数f(x)=ln(1+x 2)-11+|x |,故函数f(x)在(0,+∞)上单调递增,且f(x)为偶函数,若实数a 满足f(log 3a)+f(lo g 13a)≤2f(1),即f(log 3a)+f(-log 3a)≤2f(1),f(log 3a)≤f(1),所以|log 3a|≤1,即-1≤log 3a ≤1,故13≤a ≤3.故选D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知f(x)={log 3x ,x >0,2x ,x ≤0,角α的终边经过点(1,2√2),则下列结论正确的是( AC )A.f(cos α)=-1B.f(sin α)=1C.f(f(cos α))=12D.f(f(sin α))=2解析:因为角α的终边经过点(1,2√2), 所以sin α=2√23,cos α=13, 所以f(cos α)=f(13)=log 313=-1, f(sin α)=f(2√23)=log 32√23<0, 所以f(f(cos α))=f(-1)=2-1=12, f(f(sin α))=2log 32√23.故选AC.10.下列命题正确的是( ABD ) A.函数f(x)=x+1x (x>0)的最小值为2B.函数y=2-x-4x(x>0)的最大值为-2C.函数f(x)=2x+1x的最小值为2√2D.函数f(x)=2√x 2+1的最小值为3解析:因为x>0,所以f(x)=x+1x≥2√1=2,当且仅当x=1x,即x=1时,取等号,所以函数的最小值为2,所以A 正确;因为x>0,所以f(x)=x+4x≥2√4=4,当且仅当x=4x,即x=2时,取等号,所以函数f(x)的最小值为4,所以函数y 的最大值为-2,所以B 正确;当x=-1时,f(-1)=-3,所以C 错误; 设√x 2+1=t(t ≥1),则x 2=t 2-1,则f(t)=2t 2+1t=2t+1t,在[1,+∞)上任取t 1,t 2.令t 1<t 2,则f(t 1)-f(t 2)=2(t 1-t 2)+(1t 1-1t 2)=(t 1-t 2)·(2-1t 1t 2).因为1≤t 1<t 2,所以t 1-t 2<0,2-1t 1t 2>0,所以f(t 1)<f(t 2).则f(t)=2t+1t在[1,+∞)上为增函数,所以当t=1时,f(t)的最小值为f(1)=3, 所以D 正确.故选ABD.11.已知直线x=π8是函数f(x)=sin(2x+ϕ)(0<ϕ<π)的一条对称轴,则( ACD ) A.f(x+π8)是偶函数B.x=3π8是f(x)的一条对称轴C.f(x)在[π8,π2]上单调递减D.y=f(x)与g(x)=sin(2x-π4)的图象关于直线x=π4对称解析:直线x=π8是函数f(x)=sin(2x+ϕ)(0<ϕ<π)的一条对称轴,所以2×π8+ϕ=k π+π2,k ∈Z ,所以ϕ=π4,所以f(x+π8)=sin(2x+π2)=cos 2x ,是偶函数,故A 正确;由2x+π4=k π+π2(k ∈Z),解得x=kπ2+π8(k ∈Z),所以f(x)的对称轴方程为x=kπ2+π8(k ∈Z),而x=3π8不能满足上式,故B 错误;当x ∈[π8,π2],2x+π4∈[π2,5π4],此时函数f(x)单调递减,故C 正确;显然,f(x)=sin(2x+π4)与g(x)=sin(2x-π4)的图象关于直线x=π4对称,故D 正确.故选ACD.12.高斯是德国著名的数学家,用其名字命名的“高斯函数”为设 x ∈R ,用[x]表示不超过x 的最大整数,则y=[x]称为高斯函数,例如:[-1.5]=-2,[2.1]=2.已知函数f(x)=2x -11+2x,则关于函数g(x)=[f(x)]的叙述正确的是( BCD ) A.g(x)是奇函数 B.f(x)是奇函数 C.f(x)在R 上是增函数 D.g(x)的值域是{-1,0}解析:因为函数g(x)=[f(x)],且f(x)=2x -11+2x ,所以g(1)=[f(1)]=0, g(-1)=[f(-1)]=-1, 所以g(-1)≠-g(1),则g(x)不是奇函数,故选项A 错误; 因为f(x)=2x -11+2x,则f(-x)=2-x -11+2-x =1-2x2x +1=-f(x),所以f(x)为奇函数,故选项B 正确; 因为f(x)=2x -11+2x=1+-22x +1,又y=2x +1在R 上为单调递增函数, 则y=-22x +1在R 上为单调递增函数,所以f(x)在R 上为单调递增函数,故选项C 正确; 因为2x >0,则-1<1+-22x +1<1,所以-1<f(x)<1,当-1<f(x)<0时,则g(x)=[f(x)]=-1;当0≤f(x)<1时,则g(x)=[f(x)]=0,所以g(x)∈{-1,0},则g(x)的值域为{-1,0},故选项D正确.故选BCD.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=(m2+m-1)x m+1是幂函数,且该函数在第一象限是增函数,则m的值是.解析:由函数f(x)=(m2+m-1)x m+1是幂函数,则m2+m-1=1,解得m=-2或m=1;当m=-2时,f(x)=x-1在第一象限内不是增函数,不符合题意;当m=1时,f(x)=x2在第一象限内是增函数,满足题意.所以m的值是1.答案:114.已知函数y=2x,当x>0时,函数值的取值范围构成集合A,函数y=x k,在x∈A时,函数值的取值范围构成集合B,则A∩B=∅的充要条件是.解析:已知函数y=2x,当x>0时,函数值的取值范围构成集合A=(1,+∞),当x∈(1,+∞)时,函数y=x k∈(0,+∞),由于A∩B=∅,故x k≤1=x0,故k≤0.故A ∩B= 的充要条件是k ≤0. 答案:k ≤015.已知函数y=f(x)满足f(2)>5,且以(1,1)点为对称中心,写出一个符合条件的函数y= . 解析:因为函数的对称中心为(1,1), 所以不妨设为分式函数f(x)=a x -1+1,因为f(2)>5,所以f(2)=a+1>5,解得a>4, 不妨取a=5,即y=5x -1+1.答案:y=5x -1+1(答案不唯一)16.已知f(x)=2sin(2x+π3),若∃x 1,x 2,x 3∈[0,3π2],且x 1<x 2<x 3,使得f(x 1)=f(x 2)=f(x 3),则x 1+x 2+x 3的最小值为 ,最大值为 .解析:作出f(x)图象如图所示,当f(x)图象与y=√3图象相交时,前三个交点横坐标依次为x 1,x 2,x 3,此时x 1+x 2+x 3最小;x 1+x 2=π12×2=π6,f(π)=2sin(2π+π3)=√3,x 3=π,所以最小值为π6+π=7π6;当f(x)图象与y=-√3图象相交时,交点横坐标依次为x 1,x 2,x 3,此时x 1+x 2+x 3最大,x 1+x 2=7π12×2=7π6,f(3π2)=2sin(3π+π3)=-√3,x 3=3π2,最大值为7π6+3π2=8π3.答案:7π68π3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)若函数y=lg(√3-2sin x)+√1-x 2的定义域为A. (1)求集合A;(2)当x ∈A 时,求函数y=cos 2x+sin x 的最大值. 解:(1)由题意可得{√3-2sinx >0,1-x 2≥0, 解得-1≤x ≤1, 即集合A=[-1,1].(2)y=cos 2x+sin x=-sin 2x+sin x+1,x ∈[-1,1], 令t=sin x ∈[-sin 1,sin 1], 则y=-t 2+t+1=-(t -12)2+54,故当t=12时,函数取得最大值为54.18.(本小题满分12分)某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知OA=10,OB= x(0<x<10),线段BA ,CD 与BC ⏜,AD ⏜的长度之和为30,圆心角为θ弧度.(1)求θ关于x 的函数表达式;(2)记铭牌的截面面积为y ,试问:x 取何值时,y 的值最大?并求出最 大值.解:根据题意,可得BC ⏜=x ·θ,AD ⏜=10θ. 又BA+CD+BC⏜+AD ⏜=30, 所以10-x+10-x+x ·θ+10θ=30, 所以θ=2x+10x+10(0<x<10).(2)y=S 扇形OAD -S 扇形OBC =12θ×102-12θx 2=12θ×(102-x 2)=12θ×(10+x) (10-x),化简得y=-x 2+5x+50=-(x -52)2+2254.于是,当x=52(满足条件0<x<10)时,y max =2254.所以当x=52时,铭牌的截面面积最大,且最大面积为2254.19.(本小题满分12分) 已知函数f(x)=log 3(3x+1)-12x.若不等式f(x)-12x-a ≥0对x ∈(-∞,0]恒成立,求实数a 的取值范围.解:因为不等式f(x)-12x-a ≥0在区间(-∞,0]上恒成立,即a ≤log 3(3x +1)-x 在区间(-∞,0]上恒成立, 令g(x)=log 3(3x +1)-x=log 3(1+13x ),因为x ∈(-∞,0],所以1+13x ≥2,所以g(x)=log 3(1+13x )≥log 32,所以a ≤log 32,所以a 的取值范围是(-∞,log 32]. 20.(本小题满分12分)已知α∈(0,π2),β∈(π2,π),cos β=-13,sin(α+β)=79.(1)求tan β2的值;(2)求sin α的值.解:(1)因为cos β=cos 2β2-sin 2β2=cos 2β2-sin 2β2cos 2β2+sin 2β2=1-tan 2β21+tan 2β2,且cos β=-13,所以1-tan 2β21+tan 2β2=-13,解得tan 2β2=2,因为β∈(π2,π),所以β2∈(π4,π2),所以tan β2>0,所以tan β2=√2.(2)因为β∈(π2,π),cos β=-13,所以sin β=√1-cos 2β=√1-(-13) 2=2√23, 又α∈(0,π2), 故α+β∈(π2,3π2),又sin(α+β)=79,所以cos(α+β)=-√1-sin 2(α+β)=-√1-(79)2=-4√29.所以sin α=sin[(α+β)-β] =sin(α+β)cos β-cos(α+β)sin β =79×(-13)-(-4√29)×2√23=13.21.(本小题满分12分)在①f(x)的图象关于直线x=5π6对称,②f(x)的图象关于点(5π18,0)对称,③f(x)在[-π4,π4]上单调递增,这三个条件中任选一个,补充在下面的问题中,若问题中的正实数a 存在,求出a 的值;若a 不存在,说明理由.已知函数f(x)=4sin(ωx+π6)+a(ω∈N *)的最小正周期不小于π3,且 ,是否存在正实数a ,使得函数f(x)在[0,π12]上有最大值3?解:由于函数f(x)的最小正周期不小于π3,所以2πω≥π3,所以1≤ω≤6,ω∈N *,若选择①,即f(x)的图象关于直线x=5π6对称,有5π6ω+π6=k π+π2(k ∈Z),解得ω=65k+25(k ∈Z),由于1≤ω≤6,ω∈N *,k ∈Z ,所以k=3,ω=4, 此时,f(x)=4sin(4x+π6)+a ,由x ∈[0,π12],得4x+π6∈[π6,π2],因此当4x+π6=π2,即x=π12时,f(x)取得最大值4+a ,令4+a=3,解得a=-1<0,不符合题意.故不存在正实数a ,使得函数f(x)在[0,π12]上有最大值3.若选择②,即f(x)的图象关于点(5π18,0)对称,则有5π18ω+π6=k π(k ∈Z),解得ω=185k-35(k ∈Z),由于1≤ω≤6,ω∈N *,k ∈Z ,所以k=1,ω=3. 此时,f(x)=4sin(3x+π6)+a.由x ∈[0,π12],得3x+π6∈[π6,5π12],因此当3x+π6=5π12,即x=π12时,f(x)取得最大值4sin 5π12+a=√6+√2+a ,令√6+√2+a=3,解得a=3-√6-√2<0,不符合题意. 故不存在正实数a ,使得函数f(x)在[0,π12]上有最大值3.若选择③,即f(x)在[-π4,π4]上单调递增,则有{-ωπ4+π6≥2kπ-π2,ωπ4+π6≤2kπ+π2(k ∈Z),解得{ω≤-8k +83,ω≤8k +43(k ∈Z), 由于1≤ω≤6,ω∈N *,k ∈Z ,所以k=0,ω=1. 此时,f(x)=4sin(x+π6)+a.由x ∈[0,π12],得x+π6∈[π6,π4],因此,当x+π6=π4,即x=π12时,f(x)取得最大值2√2+a ,令2√2+a=3,解得a=3-2√2,符合题意.故存在正实数a=3-2√2,使得函数f(x)在[0,π12]上有最大值3.22.(本小题满分12分)设函数f(x)=ka x -a -x (a>0,且a ≠1)是定义域为R 上的奇函数. (1)求k 的值;(2)若f(1)>0,试求不等式f(x 2+2x)+f(x-4)>0的解集;(3)若f(1)=32,且g(x)=a 2x +a -2x -2mf(x)在[1,+∞)上的最小值为-2,求m 的值.解:(1)因为f(x)是定义域为R 上的奇函数,所以f(0)=0,所以k-1=0,所以k=1,经检验k=1符合题意. (2)因为f(1)>0,所以a-1a >0,又a>0,且a ≠1,所以a>1, 易知f(x)在R 上单调递增, 原不等式化为f(x 2+2x)>f(4-x), 所以x 2+2x>4-x ,即x 2+3x-4>0, 所以x>1或x<-4,所以不等式的解集为{x|x>1或x<-4}. (3)因为f(1)=32,所以a-1a =32,即2a 2-3a-2=0,解得a=2或a=-12(舍去),所以g(x)=22x +2-2x -2m(2x -2-x )=(2x -2-x )2-2m(2x -2-x )+2.令t=f(x)=2x -2-x ,因为x ≥1,所以t ≥f(1)=32,所以g(t)=t 2-2mt+2=(t-m)2+2-m 2, 当m ≥32时,当t=m 时,g(t)min =2-m 2=-2,所以m=2,符合题意; 当m<32时,当t=32时,g(t)min =174-3m=-2,解得m=2512>32,舍去.综上可知,m=2.。
2025版新教材高中数学本册综合测试卷新人教B版选择性必修第一册

本册综合测试卷时间:120分钟 满分:150分一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知e 为直线l 的方向向量,m ,n 是平面α,β的法向量(α,β是不同平面),那么下列说法正确的个数为( )①e ·m =0⇔l ∥α;②m ⊥n ⇔α⊥β;③m ∥n ⇔α∥β;④e ∥m ⇔l ∥α. A .1B .2C .3D .42.已知等轴双曲线的中心在原点,它的一个焦点为F (0,22),则双曲线的方程是( ) A .y 28-x 28=1B .y 24-x 24=1C .x 28-y 28=1D .x 24-y 24=13.如图,在棱长均相等的四面体O ABC 中,点D 为AB 的中点,CE =12ED ,设OA →=a ,OB→=b ,OC →=c ,则OE →=( )A .16a +16b +13cB .13a +13b +13cC .16a +16b -13cD .16a +16b +23c 4.如图所示,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在其次、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .2B .3C .32D .625.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a ,b 应满意的关系式是( )A .a 2-2a -2b -3=0B .a 2+2a +2b +5=0C .a 2+2b 2+2a +2b +1=0D .3a 2+2b 2+2a +3b +1=06.直线x +y +2=0分别与x 轴、y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]7.已知抛物线y 2=4x ,F 为其焦点,抛物线上两点A ,B 满意|AF |+|BF |=8,则线段AB 的中点到y 轴的距离等于( )A .2B .3C .4D .68.设椭圆x 26+y 22=1和双曲线x 23-y 2=1的公共焦点为F 1,F 2,P 是两曲线的一个公共点,则cos∠F 1PF 2的值等于( )A .13B .14C .19D .35二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A .2,12B .-13,12C .-3,12D .-3,210.下列四个命题中真命题有( ) A .直线y =x -2在y 轴上的截距为-2B .经过定点A (0,2)的直线都可以用方程y =kx +2表示C .直线6x +my +14=0(m ∈R )必过定点(-73,0)D .已知直线3x +4y +9=0与直线6x +my +14=0平行,则平行线间的距离是111.已知圆M :(x -a )2+(y -a -1)2=1(a ∈R ),则( ) A .圆M 可能过原点B .圆心M 在直线x -y +1=0上C .圆M 与直线x -y -1=0相切D .圆M 被直线x -y =0截得的弦长等于 212.已知椭圆C :x 24+y 28=1内一点M (1,2),直线l 与椭圆C 交于A ,B 两点,且M 为线段AB 的中点,则下列结论正确的是( )A .椭圆的焦点坐标为(2,0),(-2,0)B .椭圆C 的长轴长为4 2 C .椭圆的离心率为e =22D .直线l 的方程为x +y -3=0 三、填空题:本题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上. 13.已知u =(3,a ,b )(a ,b ∈R )是直线l 的方向向量,n =(1,2,3)是平面α的法向量,假如l ⊥α,则a +b =________.14.已知曲线C :mx 2+ny 2=1(其中m ,n 为非零常数),若m +n =0,则曲线C 的离心率e 为________.15.若圆x 2+y 2-4x -2y +1=0上有且仅有三个点到直线ax -3y +3=0(a ∈R )的距离为1,则a =________.16.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1且垂直于x轴的直线与该双曲线的左支交于A ,B 两点,AF 2,BF 2分别交y 轴于P ,Q 两点,若△PQF 2的周长为16,则b 2a +1的最大值为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知圆C :x 2+y 2=r 2(r >0),若直线l 1:x -y +2=0与圆C 相交于A ,B 两点,且|AB |=2 2.(1)求圆C 的方程;(2)求过点P (2,-3)且与圆C 相切的直线l 2的方程.18.(12分)已知抛物线C :x 2=2py (0<p <2)的焦点为F ,M (2,y 0)是C 上的一点,且|MF |=52.(1)求C 的方程;(2)直线l 交C 于A ,B 两点,k OA ·k OB =-2且△OAB 的面积为16,求l 的方程.19.(12分)已知四棱锥S ABCD 的底面ABCD 是正方形,SA ⊥底面ABCD ,E 是SC 上的随意一点.(1)求证:平面EBD ⊥平面SAC ;(2)设SA =4,AB =2,求点A 到平面SBD 的距离; (3)当SA AB的值为多少时,二面角B SC D 的大小为120°?20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2分别为椭圆C 的左、右焦点,M 为椭圆C 上一点,△MF 1F 2的周长为4+2 3.(1)求椭圆C 的方程;(2)若∠F 1MF 2=60°,求△MF 1F 2的面积;(3)设P 为圆x 2+y 2=5上随意一点,过P 作椭圆C 的两条切线,切点分别为A ,B ,推断PA →·PB →是否为定值?若是,求出定值;若不是,说明理由.21.(12分)如图,AE ⊥平面ABCD ,CF ∥AE ,AD ∥BC ,AD ⊥AB ,AB =AD =1,AE =BC =2.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F 的余弦值为13,求线段CF 的长.22.(12分)在①离心率e =12,②椭圆C 过点(1,32),③△PF 1F 2面积的最大值为3,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1且斜率为k 的直线l 交椭圆于P ,Q 两点,已知椭圆C 的短轴长为23,________.(1)求椭圆C 的方程;(2)若线段PQ 的中垂线与x 轴交于点N ,求证:|PQ ||NF 1|为定值.本册综合测试卷1.答案:B 解析:因为e 为直线l 的方向向量,m ,n 是平面α,β的法向量(α,β是不同平面), 若e ·m =0,则e ⊥m ,由于不确定直线l 是否在平面α内,当直线l 不在平面α内,则l ∥α,故①错误;若m ⊥n ,则α⊥β,故②正确; 若m ∥n ,则α∥β,故③正确;若e ∥m ,即e 也是平面α的法向量,所以l ⊥α,故④错误.故选B. 2.答案:B解析:因为所求双曲线为等轴双曲线,且焦点在y 轴上,故设双曲线的方程为y 2-x2=λ>0,因为双曲线的一个焦点坐标为F (0,22),所以c =22,则2λ=c 2=8,即λ=4,所以双曲线的方程为y 24-x 24=1.故选B.3.答案:D解析:∵CE =12ED ,∴CE →=13CD →=13(CA →+AD →)=13⎝ ⎛⎭⎪⎫CA →+12AB →=13CA →+16AB →,∴OE →=OC →+CE →=OC →+13CA →+16AB →=OC →+13()OA →-OC →+16()OB →-OA → =16OA →+16OB →+23OC →=16a +16b +23c . 4.答案:D解析:由椭圆定义可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形,所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8,所以|AF 2|-|AF 1|=22,因此对于双曲线C 2有a =2,c =3,所以C 2的离心率e =c a =62.故选D.5.答案:B解析:由题意知,相交弦过已知圆圆心,相交弦所在直线方程为2(1+a )x +2(1+b )y -a 2-1=0,而点(-1,-1)在此直线上,故有a 2+2a +2b +5=0.故选B.6.答案:A解析:设圆心到直线AB 的距离d =|2+0+2|2=2 2.点P 到直线AB 的距离为d ′.易知d -r ≤d ′≤d +r ,即2≤d ′≤3 2.又AB =22,∴S △ABP =12·|AB |·d ′=2d ′,∴2≤S △ABP ≤6.故选A.7.答案:B解析:抛物线y 2=4x 的焦点F (1,0),准线方程x =-1,设A (x 1,y 1),B (x 2,y 2),∴|AF |+|BF |=x 1+1+x 2+1=8,解得x 1+x 2=6,∴线段AB 的中点横坐标为3,∴线段AB 的中点到y 轴的距离为3.故选B.8.答案:A解析:由题意知,F 1(-2,0),F 2(2,0),解方程组⎩⎪⎨⎪⎧x 26+y 22=1,x 23-y 2=1,得⎩⎪⎨⎪⎧x 2=92,y 2=12.取P 点坐标为(322,22),PF 1→=(-2-322,-22),PF 2→=(2-322,-22), cos∠F 1PF 2=PF 1→·PF 2→|PF 1→||PF 2→|=(-2-322)×(2-322)+12(-2-322)2+12(2-322)2+12=13.故选A.9.答案:AC解析:由a ∥b ,可设b =k a ,即(6,2μ-1,2λ)=k (λ+1,0,2),得⎩⎪⎨⎪⎧6=k (λ+1),2μ-1=0,2λ=2k ,解得μ=12,λ=-3或2.故选AC.10.答案:AC解析:对于直线方程y =x -2,令x =0解得y =-2,故该直线在y 轴上的截距为-2,故A 正确;经过点A (0,2)的直线若斜率存在,可用y =kx +2表示;若斜率不存在,则无法用y =kx +2表示,故B 错误;当m ≠0时,6x +my +14=0可整理为y =-6m (x +73),恒过定点(-73,0);当m =0时,6x +my +14=0即为x =-73,过点(-73,0).故直线6x +my +14=0(m ∈R )必过定点(-73,0),故C 正确;直线3x +4y +9=0与直线6x +my +14=0平行,则m =8,此时6x +my +14=0即6x +8y +14=0,也即3x +4y +7=0,则两平行线间的距离d =|9-7|32+42=25,故D 错误.故选AC. 11.答案:ABD解析:圆M :(x -a )2+(y -a -1)2=1(a ∈R ),圆心为(a ,a +1),半径为1,若圆M 过原点,则(0-a )2+(0-a -1)2=1,解得a =0或a =-1,故A 正确;因为a -(a +1)+1=0,所以圆心在直线x -y +1=0上,故B 正确;圆心到直线x -y -1=0的距离d =|a -(a +1)-1|2=2>1,故圆M 与直线x -y -1=0相离,故C 错误;圆心到直线x -y=0的距离d 1=|a -(a +1)|2=22,所以圆M 被直线x -y =0截得的弦长l =212-(22)2=2,故D 正确.故选ABD. 12.答案:BCD解析:由C :x 24+y 28=1,得椭圆焦点在y 轴上,且a 2=8,b 2=4,则a =22,b =2,c=a 2-b 2=2.∴椭圆的焦点坐标为(0,2),(0,-2),长轴长为2a =42,离心率e =c a=222=22,故A 错误,BC 正确;设A (x 1,y 1),B (x 2,y 2),则x 21 4+y 21 8=1,x 22 4+y 22 8=1,两式作差可得(x 1-x 2)(x 1+x 2)4=-(y 1-y 2)(y 1+y 2)8,∵M (1,2)为线段AB 的中点,∴x 1+x 2=2,y 1+y 2=4,则y 1-y 2x 1-x 2=-2(x 1+x 2)y 1+y 2=-2×24=-1,∴直线l 的方程为y -2=-1×(x -1),即x +y -3=0,故D 正确.故选BCD.13.答案:15解析:∵l ⊥α,∴n ∥u ,∴31=a 2=b3,解得a =6,b =9,∴a +b =15. 14.答案: 2解析:∵曲线C :mx 2+ny 2=1,m +n =0,∴曲线C :mx 2-my 2=1(其中m ,n 为非零常数),即曲线为等轴双曲线,∴e = 2. 15.答案:± 3解析:圆x 2+y 2-4x -2y +1=0化为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,因为圆上有且仅有三个点到直线ax -3y +3=0(a ∈R )的距离是1,所以圆心到直线ax -3y+3=0(a ∈R )的距离是圆的半径的一半,即|2a -3+3|a 2+9=1,解得a =± 3.16.答案:4 解析:由△PQF 2的周长为16,得△ABF 2的周长为32.因为AB 是双曲线的通径,所以|AB |=2b 2a .因为|AF 2|+|BF 2|+|AB |=32,|AF 2|+|BF 2|-|AB |=4a ,可得2|AB |=4b2a=32-4a ,所以b 2=a (8-a ),可得a ∈(0,8),则b2a +1=8a -a 2a +1=-(a +1+9a +1-10)≤4,当且仅当a +1=9a +1,即a =2时等号成立.即b2a +1的最大值为4.17.解析:(1)设圆心到直线l 1的距离为d ,则r 2-d 2=(|AB |2)2,即d 2=r 2-2,又d =21+1=2,所以r 2=4,故圆C 的方程为x 2+y 2=4.(2)当直线l 2斜率不存在时,l 2的方程为x =2,恰好与圆相切,满意题意; 当直线l 2斜率存在时,设l 2的方程为y +3=k (x -2),即kx -y -2k -3=0,则圆心到直线l 2的距离为|-2k -3|k 2+1=2,解得k =-512,此时直线l 2的方程为y +3=-512(x -2),即5x +12y +26=0, 综上,直线l 2的方程为5x +12y +26=0或x =2.18.解析:(1)将M (2,y 0)代入x 2=2py 得y 0=2p ,又|MF |=y 0-(-p 2)=2p +p 2=52,∴p=1或p =4(舍),∴抛物线的方程为x 2=2y .(2)直l 的斜率明显存在,设直线l :y =kx +b ,A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +b x 2=2y 得x 2-2kx -2b =0, ∴x 1+x 2=2k ,x 1x 2=-2b .由k OA k OB =y 1x 1·y 2x 2=x 1x 24=-b2=-2,∴b =4.∴直线方程为y =kx +4,所以直线恒过定点(0,4),原点O 到直线l 的距离d =41+k2,∴S △OAB =12×d |AB |=12×41+k2·1+k 2·(x 1+x 2)2-4x 1x 2=21+k21+k24k 2+32=24k 2+32=16,∴4k 2+32=64,解得k =±22, 所以直线方程为:y =±22x +4.19.解析:(1)证明:由ABCD 是正方形,故AC ⊥BD , 因为SA ⊥平面ABCD ,BD ⊂平面ABCD ,则SA ⊥BD , 又SA ∩AC =A ,SA ,AC ⊂平面SAC ,故BD ⊥平面SAC , 因为BD ⊂平面EBD ,所以平面EBD ⊥平面SAC .(2)由题设V S ABD =V A SBD ,而V S ABD =13×SA ×S △ABD =13×4×12×2×2=83,由AB ,AD ⊂平面ABCD ,易知:SA ⊥AB ,SA ⊥AD ,故SB =SD =25,又BD =22,所以S △SBD =12×BD ×SB 2-(BD2)2=6,若A 到平面SBD 的距离为h ,则13h ×6=83,可得h =43,即A 到平面SBD 的距离为43. (3)构建以A 为原点,AB →,AD →,AS →为x ,y ,z 轴正方向的空间直角坐标系,如图所示:若AB =a >0,SAAB=λ>0时,则B (a ,0,0),C (a ,a ,0),D (0,a ,0),S (0,0,λa ), 所以SC →=(a ,a ,-λa ),SB →=(a ,0,-λa ),SD →=(0,a ,-λa ), 令m =(x ,y ,z )为平面SBC 的一个法向量,则⎩⎪⎨⎪⎧m ·SC →=ax +ay -λaz =0m ·SB →=ax -λaz =0,令x =λ,即m =(λ,0,1),令n =(α,β,γ)为平面SDC 的一个法向量,则⎩⎪⎨⎪⎧n ·SC →=aα+aβ-λaγ=0n ·SD →=aβ-λaγ=0,令β=λ,即n =(0,λ,1),所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=11+λ2=|cos120°|=12,可得λ=±1.因为λ>0,所以λ=1,所以当SA AB=1时,二面角B SC D 的大小为120°.20.解析:(1)依题意⎩⎪⎨⎪⎧c a =322a +2c =4+23a 2=b 2+c2,解得a =2,b =1,c =3,所以椭圆C 的方程为x 24+y 2=1.(2)依据椭圆的定义可知|MF 1|+|MF 2|=2a =4,|MF 1|2+|MF 2|2+2|MF 1|·|MF 2|=16 ①,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1|·|MF 2|·cos60°,即12=|MF 1|2+|MF 2|2-|MF 1|·|MF 2| ②,由①②得|MF 1|·|MF 2|=43,所以=12·|MF 1|·|MF 2|·sin60°=12×43×32=33. (3)圆的方程为x 2+y 2=5,椭圆C 的方程为x 24+y 2=1,留意到(2,1),(2,-1),(-2,1),(-2,-1)是圆上的点,过上述四个点中的随意一个作椭圆C 的切线,则两条切线垂直,即PA →·PB →=0.当P (x 0,y 0)是圆x 2+y 2=5上除去上述四个点外的随意一点时, 切线PA 和切线PB 的斜率存在且不为零, 设切线方程为y -y 0=k (x -x 0), 由⎩⎪⎨⎪⎧y -y 0=k (x -x 0)x 24+y 2=1消去y 并化简得(1+4k 2)x 2+8k (y 0-kx 0)x +4[(y 0-kx 0)2-1]=0,令Δ=64k 2(y 0-kx 0)2-4×(1+4k 2)×4[(y 0-kx 0)2-1]=0,整理得(x 20 -4)k 2-2x 0y 0k +y 20 -1=0,所以k PA ·k PB =y 20 -1x 20 -4,由于x 20 +y 20 =5,所以k PA ·k PB =y 20 -1x 20 -4=-1,即PA →·PB →=0.综上所述,PA →·PB →是定值,且定值为0.21.解析:(1)证明:依题意,以A 为坐标原点,分别以AB →,AD →,AE →的方向为x 轴,y 轴,z 轴正方向建立如图所示的空间直角坐标系,可得A (0,0,0),B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2),设CF =h (h >0),则F (1,2,h ).依题意知,AB →=(1,0,0)是平面ADE 的法向量,又BF →=(0,2,h ),可得BF →·AB →=0, 因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧BD →·n =0,BE →·n =0,即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0,不妨令z =1,可得n =(2,2,1).因此有cos 〈CE →,n 〉=CE →·n |CE →||n |=-49,所以直线CE 与平面BDE 所成角的正弦值为49.(3)设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧BD →·m =0,BF →·m =0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0,不妨令y 1=1,可得m =(1,1,-2h).由题意得|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪4-2h 32+4h 2=13,解得h =87.经检验,符合题意,所以线段CF 的长为87.22.解析:(1)选①,由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,2b =23,c a =12,解得⎩⎨⎧a =2,,b =3,c =1,所以所求椭圆C 的方程为x 24+y 23=1.选②,由题意得⎩⎪⎨⎪⎧1a 2+94b 2=1,2b =23,解得⎩⎨⎧a =2,b =3,所以所求椭圆C 的方程为x 24+y 23=1.选③,由题意得⎩⎪⎨⎪⎧12×2c ×b =3,2b =23,解得⎩⎨⎧a =2,b =3,所以所求椭圆C 的方程为x 24+y 23=1. (2)证明:(ⅰ)当k =0时,|PQ |=2a =4,|NF 1|=c =1,所以|PQ ||NF 1|=2a c=4. (ⅱ)当k ≠0时,由题意可得,F 1(-1,0).设直线PF 1的方程为y =k (x +1),设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,整理得(3+4k 2)x 2+8k 2x +4k 2-12=0,明显Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2, 所以|PQ |=1+k 2(x 1+x 2)2-4x 1x 2=1+k 2·(-8k 23+4k 2)2-4·4k 2-123+4k 2=12+12k23+4k2, 所以y 1+y 2=k (x 1+1)+k (x 2+1)=k (x 1+x 2)+2k =-8k 33+4k 2+2k =6k 3+4k 2, 所以线段PQ 的中点M (-4k 23+4k 2,3k 3+4k2), 则线段PQ 的中垂线方程为y -3k 3+4k 2=-1k (x +4k 23+4k2). 令y =0,可得x =-k 23+4k 2,即N (-k 23+4k 2,0),又F 1(-1,0), 所以|NF 1|=-k 23+4k 2+1=3k 2+33+4k 2,所以|PQ ||NF 1|=12+12k23+4k 23k 2+33+4k 2=4,综上|PQ ||NF 1|=4.。
高一数学必修一期中备考综合测试01(A卷)(解析版).docx

班级 ________ 姓名___________ .学号__________ 分数《必修一期中备考综合测试卷(一)》(A卷)(测试时问:120分钟满分:150分)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列给出的命题正确的是()A.高中数学课本中的难题可以构成集合B.有理数集Q是最大的数集C.空集是任何非空集合的真子集D.自然数集N中最小的数是1【答案】C【解析】难题不具有确定性,不能构造集合,A错误;实数集R就比有理数集Q犬,疗错误;空集是任何非空集合的真子集,C正确;自然数集N中最小的数是0, D错误;故选C・2.若P={x|x<l),Q={x|x>-l},则()A. PcQB. QcpC. C(! P cQD. Qc Q, P【答案】C【解析】C v P={x|x^l},而Q二{x|x>T},故有C v PCQ故选C.3.已知集合N, P为全集U的子集,且满足McpcN,则下列结论不正确的是()A. [uNcQPB. C N P C GMC. (C U P) AM=0D. ((>M) AN=0【答案】D【解析】因为PUN,所以C V N C QP,故A正确;因为Mcp,所以C N P C C N M,故B正确;因为MCP,所以(CiP) AM=0,故C正确;因为MG N,所以(C U M)DNH0.故D不正确. 故选D.4.[2018届黑龙江省佳木斯市鸡东县第二中学高三第一次月考】若集合A = {l,2,4,8},B = {x|2x<5}, 则A c B =()A. {1}B. {2}C. {1,2}D. {1,2,3}【答案】C【解析】B = {x|2A <5} =(^o,log25)/.AnB = {l,2},选B.5.【2018届福建省数学基地校高三联考】下列函数屮,定义域是R且为增函数的是()A. y = e~xB. y = x^C. y = larD. y = x【答案】B【解析】分别画出四个函数的图象,如图:故选B.6.【2018届广西钦州市高三第一次检测】已知集合A = {1, 2, 3, 4},集合B = {3,4, 5, 6},集合C=AnB, 则集合C的子集的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】2, 3, 4}, B={3, 4, 5, 6},/.C=AnB={l, 2, 3, 410(3, 4, 5, 6} = {3, 4打•:集合C的子集为0, {3},⑷,{3, 4} f共4个.故选:D・7.集合A= {-1,0,1}, A的子集中含有元素0的子集共有()A. 2个B. 4个C. 6个D. 8个【答案】B【解析】含有元素0的子集有{0}, {0,-1}, {0,1}, {0,-1, 1},共4个.故选B.8.[2018届福建省数学基地校高三联考】函数/(对二 _ 的定义域为()71og2x-lA. (0,2)B.「(0,2]C. (2,4W)D. [2,-H X))【答案】C【解析】因为log 2x>l=>x>2,所以选C.X 2,XG [-1,0]9. 函数/(%) = { 1 ([的最值情况为()-,xe(O,ll x A.最小值0,最大值1 B.最小值0,无最大值 C.最小值0,最大值5 D.最小值1,最大值5【答案】B【解析1 xe [-1,0], f(x)的最大值为1,最小值为0; xe(o,l]时,f(x)e [1,+8)无最大值,有最小{Hl,所以f(x)有最小值0,无最大值.故选B.10. 若函数/(尢)的定义域为[—2,2],则函数/(x+l) + /(l-2x)的定义域为() 1 ~| [ 1 ~| 1~ 3~A. —, 1B. —, 2C. [—2,21rD. —3,—_ 2」 L 2」 L 」|_ 2_【答案】A【解析】因为函数/(x)的定义域为[-2=2],所以函数/(x+l)+/(l-2x)中有:-2<x+l<2 -2<l-2x<2故选A.( )A. 4B. —4C. 1 r 1 _D.―一 4 4【答案】 C【解析】 /(-2)= 2-2 =1 _ 4故选C.即函数/(x+l) + /(l-2x)的定义域为11.【2018届新疆呼图壁县第一屮学高三9月】设/(x) = {-J x + 22Xx>0 x<0,求f(-2)的值12. 【2018届甘肃省武威市第六屮学高三第一次】若a 满足a + lga = 4, b 满足b + 10b = 4,函数 f (x )=F + (a ;:)::2zO 则关于x 的方程f (x )=x 解的个数是() A. 1 B. 2 C. 3 D. 4【答案】C【解析】Ta 满足a + 1駅=4, b 满足b + 10b = 4,.・・a, b 分别为函数y = 4-泻函数y = lgx, y = 10週象 交点的横坐标,由于y = x^y = 4-X @象交点的横坐标为2,函数y = lgx, y = 10啲图象关于y = x 对称, y2 1 Ay -L 0 丈 V・・.a + b = 4, .I 函数f (x )=' 一 ,当XMO 时,关于x 的方程f (x ) = x,即P + 4X+2二須 2, x> 0即疋+ 3x4-2=0, /.X = -2或x = -1,满足题鼠 当x > 0时,关于x 的方程f (x ) = x,即x = 2,满足题意, ・•・关于x 的方程f (x ) = x 的解的个数是3,故选C.第II 卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 【2018届浙江省温州市高三9月测试】(J log2S = ___________ ・【答案】;【解析】@10§23= 2』諮=210g23 = |,故答案为*(1 \14.【2018届河北省石家庄二中八月模拟】已知幕函数/(兀)的图彖经过点-,V2,M/(x ) = 丿_1【答案】x 4[ 1 1V2=>c^ = --,所以/(x) = x 4,应填答案兀J 15. 【2018届宁夏育才中学高三第一次月考】函数y = lo&(x+l ) + 2(d>0且dHl )恒过定点A,则A 的坐【解析】由题意- 丿标为____ .【答案】(0, 2)【解析】log 」=0.・.x = 0R 寸y = 2,即A 的坐标为(0, 2).(3X - 1 x > 016. [2018届贵•州省贵阳市第一中学高三月考一】已知函,数f (x )=L ;x2_;;;:0'若方程£(*)=皿有3个不等的实根,则实数m 的取值范围是 __________ . 【答案】(0, 2)【解析】画出函数图像,得二次函数最高•点位(-12),常函数y = m 和曲线有三个交点,则位于x 轴上方, 最高点「下方即可•故得m e (0,2).三、解答题(本大题共6小题,共70分•解答应写出文字说明、证明过程或演算步骤・)17. (本小题 10 分)计算:(1)(0.064戶 + (-2)‘ 3+16_0-75+(0.25)251 19 【答案】(1) —;(2)—16 4【解析】试题分析:(1)主要利用指数幕的运算法则(a ,n )n =a ,,ut 即可得出;(2)利用对数的运算法则、换 底公式即可得出.2 2 16 8 2 16(2)原式ulogQ 石+lgl00+2 +些•坐=—丄 + 4 + 1= —lg2 21g3 4418. (本小题12分)已知函数/(x) = {x 2+l,-l<x<l2x + 3,x v -1(1) 求 /(/(/(-2)))的值。
高中数学必修1综合测试卷(三套+含答案)

高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。
已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。
5D .6 4。
下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。
设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。
2 B .3 C .9 D 。
187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修一综合测试
一、选择题
1.设集合A ,B 中分别有3个,7个元素,且A B 中有8个元素,则A B 中的元素的个数是 A. 0个 B. 1个 C. 2个 D. 3个
2.若(1)y f x =+为偶函数,则
A .()()f x f x -=
B .()()f x f x -=-
C .(1)(1)f x f x --=+
D .(1)(1)f x f x -+=+
3.设()f x 是定义在R 上的一个增函数,()()()F x f x f x =--,那么()F x 为
A .增函数且是奇函数
B .增函数且是偶函数
C .减函数且是奇函数
D .减函数且是偶函数
4、已知函数y=f(x)与y=g(x)的图象如图,则y=f(x)·g(x)的大致图象为( )
5、把函数x 1
y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为
( )
A 1x 3
x 2y --= B 1x 1
x 2y ---= C 1x 1
x 2y ++= D 1x 3
x 2y ++-=
6、 设f(x) 是R 上的偶函数,)5.7(,13)(,10),()2(f x x f x x f x f 则时当-=≤≤-=+=( )
(A )0.5 (B )-0.5 (C )1.5 (D )-1.5
7、设函数21
()2f x x x =-+的定义域是[],1n n +,*n N ∈,则()f x 的值域中所含整数的个数是
A 1
B 2
C 3
D 2n
8、已知函数()x f 是R 上的增函数,A(0,-1),B(3,1)是其图象上的两点,那么()11<+x f 的解集的补集是( )
A (-1,2)
B (1,4)
C (,1)(4,)-∞-⋃+∞
D (,1)(2,)-∞-⋃+∞
9、已知()x f 是偶函数,它在[)+∞,0上是减函数,若()()1lg f x f >,则x 的取值范围是( ) A ⎪⎭⎫ ⎝⎛1,101 B()+∞⎪⎭⎫ ⎝⎛,1101,0 C⎪⎭
⎫ ⎝⎛10,101 D()()∞+.101,0 10.已知c>0,设P :函数y=c x 在R 上单调递减;Q :函数g(x)=lg(2cx 2+2x+1)的值域为R .如果P 和Q 只有一个是
对的,则c 的取值范围是( ) A.(21,1) B.(21,+∞) C.(0,21)∪[1,+∞) D.(0, 2
1) 11、实数c b a ,,是图象连续不断的函数()x f y =定义域中的三个数,且满足
()()()()0,0,<•<•<<c f b f b f a f c b a ,则函数()x f y =在区间()c a ,上的零点个数为(
) A 2 B 奇数 C 偶数 D 至少是2
12、若方程0=--a x a x 有两个解,则a 的取值范围是( )
A ()+∞,1
B ()1,0
C ()+∞,0
D Φ
二、填空题(每题4分,共4×4=16分)
13.若函数()2f x a x b =-+在[)0,x ∈+∞上为增函数,则实数,a b 的取值范围是 。
14.已知集合{}{},,,,A a b c B d e ==,从A 到B 的不同映射有 ;从B 到A 的不同映射有 。
15. 当_______x =时,函数22212()()()...()n f x x a x a x a =-+-++-取得最小值。
16.设函数1)(2
++=bx ax x f (a 、R b ∈)满足:0)1(=-f ,且对任意实数x 均有)(x f ≥0成立,
则实数a = b = 三、解答题 17、设
20≤≤x ,求函数523421+•-=-x x y 的最大值与最小值。
18、已知函数
()()()1,0,1log ≠>-=a a a x f x a 且, (1)求
()x f 的定义域; (2)讨论函数()x f 的单调性。
19.已知()21log f x x =+ ()14x ≤≤,函数()()()
22[]g x f x f x =+,
求:(1)函数()g x 的定义域; (2)函数()g x 的值域.
20. 已知1
222)(+-+⋅=x x a a x f )(R x ∈,若)(x f 满足)()(x f x f -=-, (1)求实数a 的值;
(2)判断函数的单调性,并加以证明。
21,设函数f(x)定义域为R , 对任意x 、y ∈R, 都有 f(x+y)=f(x)·f(y),当x>0时,0<f(x)<1
(1) 求证: f(0) =1,且x <0 时, f(x) >1 (2) 证明: f(x) 为R 上的减函数
(3)设{})1()(),(2f y x f y x A =-=,{}
R a y ax f y x B ∈=--=,1)2(),(,若A ∩B=∅
求实数a 的取值范围.
22.已知函数2() 1 (,),,f x ax bx a b x =++∈R 为实数() (0)() () (0)
f x x F x f x x >⎧=⎨-<⎩ (1)若(1)0,f -=且函数()f x 的值域为),0[∞+ ,求)(x F 的表达式;
(2)在(1)的条件下, 当[2, 2]x ∈-时, kx x f x g -=)()(是单调函数, 求实数k 的取值范围;
(3)设0,0m n ><, ,0>+n m 0>a 且)(x f 为偶函数, 判断)(m F +)(n F 能否大于零?请说明理由。