陕西省商洛市商州区2018-2019学年八年级(上)期末数学试卷 含解析

合集下载

陕西省商洛市名校2018-2019学年八上数学期末教学质量检测试题

陕西省商洛市名校2018-2019学年八上数学期末教学质量检测试题

陕西省商洛市名校2018-2019学年八上数学期末教学质量检测试题一、选择题1.一件工作,甲独做x 小时完成,乙独做y 小时完成,那么甲、乙合做全部工作需( )小时A .1x y +B .11x y +C .1x y -D .xy x y+ 2.观察下列等式:1a n =,2111a a =-,3211a a =-,…;根据其蕴含的规律可得( ) A .2013a n = B .20131n a n -= C .201311a n =- D .201311a n=- 3.下列计算正确的是( )A.a•a 2=a 2B.(x 3)2=x 5C.(2a)2=4a 2D.(x+1)2=x 2+1 4.某物业公司将面积相同的一部分门脸房出租.随着城市发展,每间房屋的租金今年比去年多500元,已知去年和今年的租金总额分别为9.6万元和10.2万元,若设今年每间房屋的租金是x 元,那么依题意列方程正确的是( )A .96000102000500x x =- B .9.610.2500x x =- C .96000102000500x x=+ D .9.610.2500x x =+ 5.下列运算正确的是() A .a 3·a 2=a 5 B .a +2a =3a 2 C .(a 4)2=a 6 D .824a a a ÷=6.若m 2n 1x x x +÷=,则m 与n 的关系是( ) A .m 2n 1=+ B .m 2n 1=-- C .m 2n 2-=D .m 2n 2-=- 7.如图所示,AB ,CD ,AE 和CE 均为笔直的公路,已知AB ∥CD ,AE 与AB 的夹角∠BAE 为32°,若线段CF 与EF 的长度相等,则CD 与CE 的夹角∠DCE 为()A .58°B .32°C .16°D .15° 8.等腰三角形是轴对称图形,它的对称轴是( ) A .底边上的垂直平分线 B .底边上的高C .腰上的高所在的直线D .过顶点的直线 9.如图,△ABC 中,AB=AC,AD ⊥BC,下列结论不正确的是( )A.∠B=∠CB.BD=CDC.AB=2BDD.AD 平分∠BAC10.如图,点D 是BAC ∠的外角平分线上一点,且满足BD CD =,过点D 作DE AC ⊥于点E ,DF AB ⊥交BA 的延长线于点F ,则下列结论:①CDE BDF ∆≅∆;②CE AB AE =+;③ADF CDE ∠=∠;④BDC BAC ∠=∠.其中正确的结论有( )A .1个B .2个C .3个D .4个11.给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的的个数有( )A .1个B .2个C .3个D .4个12.如图,用三角尺按下面方法操作:在已知AOB ∠的两边上分别取点M 、N ,使OM ON =,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,连接MN.则下面的结论:PM PN ①=;1MP OP 2=②;AOP BOP ∠∠=③;OP ④垂直平分MN ;正确的个数是( )A .4B .3C .2D .1 13.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )A .五边形B .六边形C .七边形D .八边形14.如图,七边形ABCDEFG 中,AB 、ED 的延长线交于点O,若∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD 的度数为( )A .30°B .35°C .40°D .45°15.一个多边形截去一个角后,形成新多边形的内角和为2 520°,则原多边形的边数为( )A .15B .16C .13或15D .15或16或17二、填空题16.当x=_____为何值时,分式的值为0.17.若281x mx -+是一个完全平方式,则m 的值为_______________.【答案】18±18.如图,点P 是等边三角形ABC 内一点,将CP 绕点C 逆时针旋转060得到CQ ,连接AP ,BP ,BQ ,PQ ,若040PBQ ∠=,下列结论:①ACP ∆≌BCQ ∆;②0100APB ∠=;③050=∠BPQ ,其中一定..成立的是_________(填序号).19.如图,在△ABC 中,∠A =40°,外角∠ACD =100°,则∠B =_____.20.如图,数轴上A 点表示数7,B 点表示数5,C 为OB 上一点,当以OC 、CB 、BA 三条线段为边,可以围成等腰三角形时,C 点表示数______.三、解答题21.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次又用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?22.先化简,再求值:()()()22523a a b a b a b -++--,其中3a =-、15b =. 23.已知ABC ∆中,AB AC =,线段AB 的垂直平分线MN 分别交AC 、AB 于点D 、E ,若DBC ∆的周长为25cm ,BC 10cm =,求ABC ∆的周长.24.如图,在ABC ∆中,90C ∠=︒,AD 是BAC ∠的平分线,DE AB ⊥于点E ,点F 在边AC 上,BD DF =.求证:(1)CF EB =;(2)2AB AF EB =+.25.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.(1)已知一个“特征三角形”的“特征角”为100°,求这个“特征三角形”的最小内角的度数.(2)是否存在“特征角”为120°的三角形,若存在.请举例说明.【参考答案】***一、选择题16.-7.17.无18.①②19.60°20.2或或3三、解答题21.第一次买了10本资料.22.5ab ,-323.40cm【解析】【分析】由AB 的垂直平分线MN 交AC 于D ,可得AD=BD ,继而可得△DBC 的周长=AC+BC ,则可求得答案.【详解】∵AB 的垂直平分线MN 交AC 于D ,∴AD=BD ,∵△DBC 的周长是25cm ,BC=10cm ,∴BC+CD+BD=BC+CD+AD=BC+AC=25cm ,∴AC=15cm .∴△ABC 的周长=AB+AC+BC=15+15+10=40cm .【点睛】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.24.(1)见解析;(2)见解析.【解析】【分析】(1)由角平分线的性质“角平分线上的点到角两边的距离相等”可知DC=DE ,再用HL 证明Rt DCF Rt DEB ∆≅∆即可;(2)利用角平分线性质证明Rt ADC Rt ADE ∆≅∆,从而得AC=AE ,再将线段AB 进行转化可得结论.【详解】证明:(1)∵AD 是BAC ∠的平分线,DE AB ⊥,DC AC ⊥,∴DC DE =.在Rt DCF ∆和Rt DEB ∆中,DF DB DC DE =⎧⎨=⎩,∴()Rt DCF Rt DEB HL ∆≅∆.∴CF EB =.(2)由(1)知DC DE =,CF EB =.在Rt ADC ∆和Rt ADE ∆中,DC DE AD AD =⎧⎨=⎩, ∴()Rt ADC Rt ADE HL ∆≅∆.∴AC AE =.∴AB AE BE AC EB AF CF EB =+=+=++2AF EB =+.【点睛】本题考查了角平分线的性质和直角三角形全等的判定(HL ),解(1)题的关键是先证得DC=DE ,(2)题的关键是证得AC=AE ,很明显,熟知并能灵活应用角平分线的性质是解决本题的关键.25.(1)30° (2)不存在。

陕西省商洛市八年级上学期数学期末考试试卷

陕西省商洛市八年级上学期数学期末考试试卷

陕西省商洛市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图所示,观察下面的国旗,是轴对称图形的是()。

A . (1)(2)(3)B . (1)(2)(4)C . (2)(3)(4)D . (1)(3)(4)2. (2分)(2018·赤峰) 如图,直线与x轴、y轴分别交于A,B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最小值是()A . 5B . 10C . 15D . 203. (2分)(2016·眉山) (2016•眉山)我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()A . 6.75×103吨B . 67.5×103吨C . 6.75×104吨D . 6.75×105吨4. (2分)等腰三角形两边长分别为4,8,则它的周长为()A . 20B . 16C . 20或16D . 不能确定5. (2分)下列式子中二次根式的个数有()① ;② ;③﹣;④ ;⑤ ;⑥ (x>1);⑦ .A . 2个B . 3个C . 4个D . 5个6. (2分) (2019八上·杭州期末) 如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE 的是()A . BC=BEB . ∠A=∠DC . ∠ACB=∠DEBD . AC=DE7. (2分)对于一次函数y=kx+k﹣1(k≠0),下列叙述正确的是()A . 当0<k<1时,函数图象经过第一、二、三象限B . 当k>0时,y随x的增大而减小C . 当k<1时,函数图象一定交于y轴的负半轴D . 函数图象一定经过点(﹣1,﹣2)8. (2分)如图,在△ABC中,BD为AC的垂直平分线,若AB=8,AC=10,则△ABC周长等于()A . 24B . 26C . 28D . 369. (2分)如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是()A . (﹣1,)B . (﹣, 1)C . (,﹣1)D . (1,﹣)10. (2分) (2018九上·汝阳期末) 在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)(2019·长沙) 若式子在实数范围内有意义,则x的取值范围是________.12. (1分)已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=________.13. (1分) (2020八上·张店期末) 一次函数y=2x-1经过第________象限.14. (1分)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=4,CE= ,则△ABC的面积为________.15. (1分)某市政府计划修建一处公共服务设施,使它到三所公寓A、B、C 的距离相等。

陕西省商洛市八年级上学期期末数学试卷

陕西省商洛市八年级上学期期末数学试卷

陕西省商洛市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八上·沙洋期中) 下列图形中,不是轴对称图形的是()A .B .C .D .2. (2分)正八边形的每个内角为()A . 120ºB . 135ºC . 140ºD . 144º3. (2分)如图,在矩形ABCD中,EF∥AB,GH∥BC,EF.GH的交点P在BD上,图中面积相等的四边形有()A . 3对B . 4对C . 5对D . 6对4. (2分) (2016八上·唐山开学考) 分解因式:a﹣ab2的结果是()A . a(1+b)(1﹣b)B . a(1+b)2C . a(1﹣b)2D . (1﹣b)(1+b)5. (2分)化简 + 的结果是().A . x +1B .C . x﹣1D .6. (2分)如图,阴影部分的面积是()A . xyB . xyC . 5xyD . 2xy7. (2分) (2019八上·绍兴月考) 下列不是利用三角形的稳定性的是()A . 伸缩晾衣架B . 三角形房架C . 自行车的三角形车架D . 矩形门框的斜拉条8. (2分)一个多边形的每个外角是60°,则该多边形边数是()A . 5B . 6C . 7D . 89. (2分) (2016八上·射洪期中) 将下列多项式因式分解,结果中不含有因式a+1的是()A . a2﹣1B . a2+aC . a2+a﹣2D . (a+2)2﹣2(a+2)+110. (2分)已知:△ABC的三边分别为a,b,c,△A′B′C′的三边分别为a′,b′,c′,且有a2+a′2+b2+b′2+c2+c′2=2ab′+2bc′+2ca′,则△ABC与△A′B′C′()A . 一定全等B . 不一定全等C . 一定不全等D . 无法确定二、填空题 (共6题;共6分)11. (1分) (2018八下·东台期中) 若分式方程有增根,则这个增根是________12. (1分)若等腰三角形的两边分别是一元二次方程x2﹣12x+32=0的两根,则等腰三角形的周长为________ .13. (1分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是________ (用a、b的代数式表示).14. (1分) (2016七下·东台期中) 肥皂泡的泡壁厚度大约是0.0007mm,将0.0007用科学记数法表示为________.15. (1分) (2017七下·苏州期中) 一个等腰三角形的边长分别是4cm和9cm,则它的周长是________cm.16. (1分) (2018九上·阆中期中) 三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为________.三、解答题 (共8题;共63分)17. (3分) (2018七下·深圳期中) 杨辉三角是一个由数字排列成等腰三角形数表,一般形式如图所示,其中每一横行都表示(此处,,,,,,)的展开式中的系数,杨辉三角最本质的特征是,它的两条斜边都是由数字组成的,而其余的数则是等于它“肩”上的两个数之和.上图的构成规律你看懂了吗?(1)请你直接写出 ________.(2)杨辉三角还有另一个特征从第二行到第五行,每一行数字组成的数(如第三行为)都是上一行的数与________积.(3)由此你可写出 =________.18. (10分)化简:(1) a(a+4a3b2)+(a+b)2﹣(a+2b)(a﹣b)﹣(2a2b)2;(2)(x﹣1﹣)÷ .19. (5分) (2019八下·朝阳期中) 解方程:20. (5分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)21. (5分)如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.22. (10分)已知在△ABC中,∠ABC=90°,AB=BC=8cm,点D为AC一点,过点D作DE⊥AC交线段AB于点E,点M为EC的中点.(1)求证:△BMD为等腰直角三角形;(2)当AD为 cm,求四边形BEDM的面积.23. (10分)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?24. (15分)(2017·乐山) 在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共63分)17-1、17-2、17-3、18-1、18-2、19-1、20-1、21-1、22-1、22-2、23、答案:略24-1、24-2、24-3、第11 页共11 页。

陕西省商洛市八年级上学期期末数学试卷

陕西省商洛市八年级上学期期末数学试卷

陕西省商洛市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共10分)1. (1分)(2019·常熟模拟) DNA分子的直径只有0. 000 000 2 cm,将0. 000 000 2用科学计数法可表示为________.2. (1分)已知a+=5,则a2+的结果是________.3. (1分) (2020八上·和平期末) 若方程的解不大于13,则的取值范围是________.4. (1分)(2019·烟台) 小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),的度数是________.5. (5分) (2019九上·东台月考) 如图,在中,AB=AC,BC=4,以为直径作半圆,交于点,则的长是__.6. (1分) (2016七下·岱岳期末) 已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)=________.二、选择题 (共8题;共16分)7. (2分) (2017八下·简阳期中) 若分式的值为0,则x的取值是()A . x≠2B . x≠﹣1C . x=2D . x≠±18. (2分)下列图形中,不是轴对称图形的是()A . 一条线段B . 两条相交直线C . 有公共端点的两条相等的线段D . 有公共端点的两条不相等的线段9. (2分) (2020七上·浦东月考) 下列运算正确的()A . a2+a3=a5B . a2·a3=a6C . (a2)3=a8D . (-a)2·a3=a510. (2分)计算1052-952的结果为()A . 1000B . 1980C . 2000D . 400011. (2分) (2015九上·罗湖期末) 如图,点A在双曲线y= 上,且OA=4,过点A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B,如果AB+BC﹣AC=2,则k的值为()A . 8﹣2B . 8+2C . 3D . 612. (2分)(2020·鹿邑模拟) 某口罩生产车间接了一个60000个口罩的订单,由于任务紧急改进了生产工艺,效率为之前的倍,完成订单后发现比工艺改进前还少用了10个小时,设工艺改进前每小时生产口罩个,依据题意可得方程为()A .B .C .D .13. (2分)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是A . 2mnB . (m+n)2C . (m-n)2D . m2-n214. (2分)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2 , a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A . 我爱美B . 宜昌游C . 爱我宜昌D . 美我宜昌三、解答题 (共7题;共52分)15. (5分) (2016七下·谯城期末) 先化简再求值÷(x+3)• ,其中x=3.16. (5分) (2018八上·大石桥期末) 某文化用品商店在开学初用2000元购进一批学生书包,按每个120元出售,很快销售一空,于是商店又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元,仍按120元出售,最后剩下4个按八折卖出,这笔生意该店共盈利多少元?17. (10分)(2016·温州) 计算:(1)+(﹣3)2﹣(﹣1)0(2)化简:(2+m)(2﹣m)+m(m﹣1).18. (10分)(2019·鄂尔多斯)(1)先化简:,再从的整数中选取一个你喜欢的的值代入求值.(2)解不等式组,并写出该不等式组的非负整数解.19. (5分) (2017八下·宝坻期中) 如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.20. (10分)某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为80 m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如下图所示:(1)从上述统计图中可知:每人每分能擦课桌椅________m2;擦玻璃、擦课桌椅、扫地拖地的面积分别是________m2、________m2、________m2;(2)如果x人每分钟擦玻璃的面积是y m2 ,那么y关于x的函数关系式是________;(3)他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅.如果你是卫生委员,该如何分配这两组的人数才能最快地完成任务?21. (7分)(2017·胶州模拟) 探究题问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.(1)类比解决:请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)(2)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:请你类比上述推导过程,利用图形的几何意义确定:13+23+33=________ .(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=________.(直接写出结论即可,不必写出解题过程)参考答案一、填空题 (共6题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、二、选择题 (共8题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共7题;共52分)15-1、16-1、17-1、17-2、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、21-3、。

陕西省商洛市八年级上学期期末考试数学试题

陕西省商洛市八年级上学期期末考试数学试题

陕西省商洛市八年级上学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·会昌期中) 下列图案是轴对称的图形的有()A .B .C .D .2. (2分) (2017八下·长泰期中) 下列各式,,,,中,分式共有()个.A . 2B . 3C . 4D . 53. (2分) (2019八上·潮南期末) 十边形的外角和等于()A . 1800°B . 1440°C . 360°D . 180°4. (2分)下列长度的三条线段能组成三角形的是()A . 1,2,3B . 3,4,5C . 3,1,1D . 3,4,75. (2分) (2018八上·台州期中) 已知点关于y轴的对称点的坐标是,则的值为()A . 10B . 25C . -3D . 326. (2分) (2020七上·五华期末) 下面计算正确的是()A . 4x2-x2=3B . 3a2+2a3=5a5C . 3a2+2b=5abD . 0.25ab+7. (2分) (2016七下·泗阳期中) 下列等式由左边至右边的变形中,属于因式分解的是()A . x2+3x﹣1=x(x+3)﹣1B . x2﹣9+2x=(x+3)(x﹣3)+2xC . a2﹣16=(a+4)(a﹣4)D . (x+2)(x﹣2)=x2﹣48. (2分)(2016·淮安) 已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A . 1B . 2C . 5D . 79. (2分) (2017八上·利川期中) 如图,已知AC和BD相交于O,且BO=DO,AO=CO,下列判断正确的是()A . 只能证明△AOB≌△CODB . 只能证明△AOD≌△COBC . 只能证明△AOB≌△COBD . 能证明△AOB≌△COD和△AOD≌△COB10. (2分)如图,点P在∠MON的角平分线上,A、B分别在∠MON的边OM、ON上,若OB=3,S△OPB=6,则线段AP的长不可能是()A . 3B . 4C . 5D . 6二、填空题 (共7题;共7分)11. (1分) (2018八上·河口期中) 代数式有意义的条件________.12. (1分)(2017·路南模拟) 计算:()﹣1=________.13. (1分) (2019八上·徐汇月考) 已知等腰△ABC的两边是关于x的方程x²-3mx+9m=0的两根,第三边的长是4,则m=________.14. (1分)(2018·肇源模拟) 分解因式: =________.15. (1分) (2019八上·柳州期末) 将数字0.0026用科学记数法表示为________.16. (1分) (2020八下·惠东期中) 如图,AC⊥BC于点C ,DE⊥BE于点E , BC平分∠ABE ,∠BDE=58°,则∠A=________°.17. (1分) (2017七下·兴化期中) 若,则的值是________.三、解答题 (共9题;共60分)18. (10分) (2020七上·上海期末) 计算:19. (5分)(2019·江川模拟) 先化简,再求值:,其中 .20. (10分) (2019七下·南海期末) 如图,在△ABC中,∠ABC=∠C,D是BA延长线上一点,E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC的平分线AM;②连接BE并延长,交AM于点F.(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并证明你的结论.21. (5分) (2019九上·丽江期末) 如图,AB是⊙O的直径,PA切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=30°,求∠B的度数.22. (5分)(2016·黔东南) 先化简:•(x ),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.23. (5分) (2018七下·历城期中) 如图,B,C,E,F在同一条直线上,BF=CE,∠B=∠C,AE∥DF,那么AB=CD吗?请说明理由.24. (5分)若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.25. (5分)(2017·娄底模拟) 目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?26. (10分)(2020·铜仁) 某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共60分)18-1、19-1、20-1、20-2、21-1、22-1、23-1、24-1、25-1、26-1、26-2、。

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)(2)

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)(2)

2018-2019学年八年级(上)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.下列图形是轴对称图形的是()A.B.C.D.2.病毒H7N9的直径为0.000000028米,用科学记数法表示这个病毒直径的大小,正确的是()A.28×10﹣9B.2.8×10﹣8C.0.28×10﹣7D.2.8×10﹣63.若分式有意义,则x的取值范围是()A.x≠0B.x≠3C.x≠﹣3D.x≠﹣4.下列式子正确的是()A.(2a2)3=6a6B.2a2×a4=2a8C.(a+2)2=a2+4D.a﹣2=5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠B=∠E B.BC∥EF C.∠BCA=∠F D.∠A=∠EDF6.如图,直尺经过一副三角尺中的一块三角板DCB的顶点B,若∠C=30°,∠ABC=20°,则∠DEF度数为()A.25°B.40°C.50°D.80°7.若等腰三角形有两条边的长度为5和8,则此等腰三角形的周长为()A.18或21B.21C.24或18D.188.在平面直角坐标系内,点A(x﹣6,2y+1)与点B(2x,y﹣1)关于y轴对称,则x+y的值为()A.0B.﹣1C.2D.﹣39.如图,在△ABC中,AB=AC,点E在BC边上,在线段AC的延长线上取点D,使得CD=CE,连接DE,CF是△CDE的中线,若∠FCE=52°,则∠A的度数为()A.38°B.34°C.32°D.28°10.体育测试中,甲和乙进行400米跑测试,甲的速度是乙的1.6倍,甲比乙少用了30秒,设乙的速度是x米/秒,则所列方程正确的是()A.40×1.6x﹣30x=400B.﹣=30C.﹣=30D.﹣=3011.如图,在Rt△ABC中,∠A=30°,DE垂直平分AB,垂足为点E,交AC于D点,连接BD,若DE=2,则AC的值为()A.4B.6C.8D.1012.在△ABC中,∠A=40°,点D在BC边上(不与C、D点重合),点P、点Q分别是AC、AB 边上的动点,当△DPQ的周长最小时,则∠PDQ的度数为()A.140°B.120°C.100°D.70°二、填空题(本题共6小题,每小题4分,共24分)13.因式分解:x2﹣9=.14.从3cm、4cm、5cm、7cm的四根小棒中任取三根,能围成个三角形.15.若式子a2﹣2a+1+|b﹣2|=0,则ab=.16.如图,在△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,BD:DC=4:3,点D到AB 的距离为6,则BC等于.17.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.18.如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动秒时,△BCA与点P、N、B为顶点的三角形全等.三、解答题(本题共8小题,共90分)19.(8分)解分式方程:=+20.(10分)先化简,后求值:(1﹣)÷(),其中a=3.21.(10分)已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.22.(12分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=2,b=﹣1,直接写出a,b的“如意数”c;(2)如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.23.(12分)如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B.(1)求证:AB=AC;(2)若∠D比∠BAC大15°,求∠BAC的度数.24.(12分)某商场购进甲、乙两种空调共40台.已知购进一台甲种空调比购进一台乙种空调进价多0.2万元;用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不多于11.5万元用于购买甲、乙两种空调,且购进甲种空调至少14台,商场有哪几种购进方案?25.(12分)等腰直角△ABC中,BC=AC,∠ACB=90°,将该三角形在直角坐标系中放置.(1)如图(1),过点A作AD⊥x轴,当B点为(0,1),C点为(3,0)时,求OD的长;(2)如图(2),将斜边顶点A、B分别落在y轴上、x轴上,若A点为(0,1),B点为(4,0),求C点坐标;26.(14分)数学兴趣活动课上,小明将等腰△ABC的底边BC与直线1重合,问:(1)已知AB=AC=6,∠BAC=120°,点P在BC边所在的直线l上移动,根据“直线外一点到直线上所有点的连线中垂线段最短”,小明发现AP的最小值是;(2)为进一步运用该结论,小明发现当AP最短时,在Rt△ABP中,∠P=90°,作了AD平分∠BAP,交BP于点D,点E、F分别是AD、AP边上的动点,连接PE、EF,小明尝试探索PE+EF 的最小值,为转化EF,小明在AB上截取AN,使得AN=AF,连接NE,易证△AEF≌△AEN,从而将PE+EF转化为PE+EN,转化到(1)的情况,若BP=3,AB=6,AP=3,则PE+EF 的最小值为;(3)请应用以上转化思想解决问题(3),在直角△ABC中,∠C=90°,∠B=30°,AC=10,点D是CD边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,求线段CP的最小值.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000000028用科学记数法表示2.8×10﹣8,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵分式有意义,∴x+3≠0.解得:x≠﹣3.故选:C.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4.【分析】根据单项式乘单项式、幂的乘方、完全平方公式和负整数幂解答即可.【解答】解:A、(2a2)3=8a6,错误;B、2a2×a4=2a6,错误;C、(a+2)2=a2+4a+4,错误;D、,正确;故选:D.【点评】此题考查单项式乘单项式、幂的乘方、完全平方公式和负整数幂,关键是根据单项式乘单项式、幂的乘方、完全平方公式和负整数幂法则解答.5.【分析】等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:∵AB=DE,BC=EF,∴要使△ABC≌△DEF,只要满足∠B=∠E或AC=BC即可,故选:A.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.【分析】依据三角形外角性质,即可得到∠BAD,再根据平行线的性质,即可得到∠DEF的度数.【解答】解:∵∠C=30°,∠ABC=20°,∴∠BAD=∠C+∠ABC=50°,∵EF∥AB,∴∠DEF=∠BAD=50°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.7.【分析】根据等腰三角形的性质,分两种情况:①当腰长为5时,②当腰长为8时,解答出即可.【解答】解:根据题意,①当腰长为5时,周长=5+5+8=18;②当腰长为8时,周长=8+8+5=21.故选:A.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.8.【分析】直接利用关于y轴对称点的性质进而得出x,y的值,即可得出答案.【解答】解:∵点A(x﹣6,2y+1)与点B(2x,y﹣1)关于y轴对称,∴2y+1=y﹣1,x﹣6=﹣2x解得:y=﹣2,x=2,故x+y=0.故选:A.【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的符号是解题关键.9.【分析】利用等腰三角形的三线合一求出∠ECD,再求出∠ACB即可解决问题.【解答】解:∵CE=CD,FE=FD,∴∠ECF=∠DCF=52°,∴∠ACB=180°﹣104°=76°,∵AB=AC,∴∠B=∠ACB=76°,∴∠A=180°﹣152°=28°,故选:D.【点评】本题考查等腰三角形的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【分析】先分别表示出甲和乙跑400米的时间,再根据甲比乙少用了30秒列出方程即可.【解答】解:设乙的速度是x米/秒,则甲跑400米用的时间为秒,乙跑400米用的时间为秒,∵甲比乙少用了30秒,∴方程是﹣=30,故选:C.【点评】此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出甲、乙的速度,以及甲和乙跑400米所用的时间,根据时间差列方程即可.11.【分析】依据含30°角的直角三角形的性质,即可得到AD的长,再根据角平分线的性质,即可得到CD的长,进而得出AC的长.【解答】解:∵∠A=30°,DE垂直平分AB,DE=2,∴AD=BD=4,∴∠ABD=∠A=30°,∴∠DBC=∠ABD=30°,即BD平分∠ABC,又∵DE⊥AB,DC⊥BC,∴CD=DE=2,∴AC=4+2=6,故选:B.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题注意掌握数形结合思想的应用.12.【分析】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,根据四边形的内角和得到∠EDF=140°,求得∠E+∠F=40°,根据等腰三角形的性质即可得到结论.【解答】解:作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB 于Q,则此时△DPQ的周长最小,∵∠AGD=∠ACD=90°,∠A=40°,∴∠EDF=140°,∴∠E+∠F=40°,∵PE=PD,DQ=FQ,∴∠EDP=∠E,∠QDF=∠F,∴∠CDP+∠QDG=∠E+∠F=40°,∴∠PDQ=140°﹣40°=100°,故选:C.【点评】本题考查了轴对称﹣最短路线问题,等腰三角形的性质,三角形的内角和,正确的作出图形是解题的关键.二、填空题(本题共6小题,每小题4分,共24分)13.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.【分析】三角形三条边的特性:任意两边的长度和大于第三边,任意两边的长度差小于第三边.根据此特性,进行判断.【解答】解:3cm、4cm、5cm和7cm的四根木棒中,其中共有以下方案可组成三角形:取3cm,4cm,5cm;由于5﹣3<4<5+3,能构成三角形;取3cm,5cm,7cm;由于7﹣3<5<7+3,能构成三角形;取4cm,5cm,7cm;由于7﹣4<5<7+4,能构成三角形.所以有3种方法符合要求.故答案为:3.【点评】本题主要考查三角形三条边的关系:任意两边的长度和大于第三边,任意两边的长度差小于第三边.15.【分析】直接利用绝对值的性质以及偶次方的性质分析得出答案.【解答】解:∵a2﹣2a+1+|b﹣2|=0,∴(a﹣1)2+|b﹣2|=0,∴a﹣1=0,b﹣2=0,解得:a=1,b=2,则ab=2.故答案为:2.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.16.【分析】先根据角平分线的性质得出CD的长,再由BD:DC=4:3求出BD的长,进而可得出结论.【解答】解:∵在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点D到AB的距离为6,∴CD=6.∵BD:DC=4:3,∴BD=CD=×6=8,∴BC=6+8=14.故答案为:14.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.17.【分析】根据共走了45米,每前进5米左转一次可求得左转的次数,则已知多边形的边数,再根据外角和计算左转的角度.【解答】解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.【点评】本题考查了多边形的计算,正确理解多边形的外角和是360°是关键.18.【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC =BP或AC=BN进行计算即可.【解答】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.【点评】本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(本题共8小题,共90分)19.【分析】找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,经检验即可得到原分式方程的解.【解答】解:去分母:4=3x﹣6+x+2解得:x=2,经检验当x=2时,x﹣2=0,所以x=2是原方程的增根,此题无解【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当a=3时,原式==2.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.【分析】首先利用等式的性质可得AC=DF,根据平行线的性质可得∠ACB=∠DFE,然后再利用SAS判定△ABC≌△DEF即可.【解答】证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.【分析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可【解答】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数【点评】本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.23.【分析】(1)根据SAS证明△AED与△AEC全等,进而利用全等三角形的性质和等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.【解答】证明:(1)在△AED与△AEC中,∴△AED≌△AEC(SAS),∴∠D=∠C,∵∠D=∠B,∴∠B=∠C,∴AB=AC;(2)∵∠B=∠C,∵∠D比∠BAC大15°,∴∠BAC+∠BAC+15°+∠BAC+15°=180°,解得,∠BAC=50°.【点评】此题考查全等三角形的判定和性质,关键是根据SAS证明△AED与△AEC全等.24.【分析】(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据“用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍”列出方程,解之可得;(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,由“投入资金不多于11.5万元”列出关于m的不等式,解之求得m的取值范围,继而得到整数m的可能取值,从而可得所有方案.【解答】解:(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据题意,得:=4×,解得:x=0.4,经检验:x=0.4是原分式方程的解,所以甲空调每台的进价为0.4万元,则乙空调每台的进价为0.2万元;(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,根据题意,得:0.4m+0.2(40﹣m)≤11.5,解得:m≤17.5,又m≥14,∴14≤m≤17.5,则整数m的值可以是14,15,16,17,所以商场共有四种购进方案:①购进甲种空调14台,乙种空调26台;②购进甲种空调15台,乙种空调25台;③购进甲种空调16台,乙种空调24台;④购进甲种空调17台,乙种空调23台.【点评】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题中的等量关系是解本题的关键.25.【分析】(1)通过证明△BOC≌△CDA,可得CD=OB=1,即可求OD的长;(2)过点C作CF⊥y轴,CE⊥x轴,通过证明△ACF≌△BCE,可得BE=AF,CF=CE,可证四边形CEOF是正方形,可得CF=OE=OF=CE,即可求点C坐标.【解答】解:(1)∵B点为(0,1),C点为(3,0)∴OB=1,OC=3∵∠ACB=90°,∴∠BCO+∠ACD=90°,且∠BCO+∠OBC=90°∴∠ACD=∠OBC,且AC=BC,∠BOC=∠ADC=90°,∴△BOC≌△CDA(AAS)∴CD=OB=1∴OD=OC+CD=4(2)如图,过点C作CF⊥y轴,CE⊥x轴,∵A点为(0,1),B点为(4,0),∴AO=1,BO=4∵CF⊥y轴,CE⊥x轴,∠AOB=90°,∴四边形CEOF是矩形,∴∠ECF=90°,∴∠FCA+∠ACE=90°,且∠ACE+∠BCE=90°,∴∠FCA=∠BCE,且AC=BC,∠CFA=∠CEB=90°,∴△ACF≌△BCE(AAS)∴BE=AF,CF=CE,∴矩形CEOF是正方形∴CF=OE=OF=CE,∴OA+AF=OB﹣BE∴2AF=OB﹣OA∴AF=∴OF=∴点C(,)【点评】本题考查了全等三角形的判定和性质,坐标与图形性质,等腰直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.26.【分析】(1)如图1中,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.由△EAN≌△EAF (SAS),推出EN=EF,推出PE+EF=PE+NE,推出当P,E,N共线且与PH重合时,PE+PF 的值最小,最小值为线段PH的长.(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.【解答】解:(1)如图1中,作AH⊥BC于H.∵AB=AC=6,AH⊥BC,∴∠BAH=∠CAH=∠BAC=60°,∴AH=AB•cos60°=3,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为3.故答案为3.(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.∵∠EAN=∠EAF,AN=AF,AE=AE,∴△EAN≌△EAF(SAS),∴EN=EF,∴PE+EF=PE+NE,∴当P,E,N共线且与PH重合时,PE+PF的值最小,最小值为线段PH的长,∵•AB•PH=•PA•PB,∴PH==,∴PE+EF的最小值为.故答案为.(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC时,KD的值最小,最小值为5,∴PC的最小值为5.【点评】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.。

2018—2019学年第一学期八年级数学期末试题(含答案)

2018—2019学年第一学期八年级数学期末试题(含答案)

2018—2019学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列长度的四根木棒中,能与长5cm 、11cm 的两根木棒首尾相接,钉成一个三角形的是 A. 5cmB. 6cmC. 11cmD.16cm2.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法为 A. ①②③④B. ①③④C. ①②④D.②③④3.在北大、清华、复旦和浙大的校标LOGO 中,是轴对称图形的是A.B.C. D .4.若一个三角形的三个内角的度数之比为1∶2∶3,那么相对应的三个外角的度数之比为 A. 3∶2∶1B. 1∶2∶3C. 3∶4∶5 D .5∶4∶35.下列运算正确的是 A.224a a a+= B.62322a a a-÷=-C.222233ab a b a b ⋅= D.224()a a -=6.已知分式242x x -+的值等于零,那么x 的值是A .2B .-2C .±2D .07.不改变分式的值,把0.0230.35x x -+的分子、分母中含x 项的系数化为整数为A.2335x x -+B.23305x x -++C. 230030500x x -+ D .230030500x x +-+ 8.与单项式23a b -的积是32222629a b a b a b -+的多项式是A.23ab --B.2233ab b -+-C.233b - D .2233ab b -+9.如图,已知AC =BD ,添加下列条件,不能使△ABC ≌△DCB 的是 A. ∠ACB =∠DBCB. AB =DCC.∠ABC =∠DCB D .∠A =∠D =90°10.如图,在△ABC 中,AB =AC ,∠A =36°,AB 垂直平分线交AC 于D ,交AB 于E ,给出下列结论:①∠C =72°;②BD 平分∠ABC ;③BC =AD ;④△BDC 是等腰三角形.其中正确结论的个数是 A.1 B.2C.3 D .4 11.若a -b =2,则a 2-b 2-4b 的值是 A.0 B.2C.4 D .6 12.若22(3)1t t --=,则t 可以取的值有 A. 4个B. 3个C. 2个D .1个第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.已知点A (3,b )与点(a ,-2)关于y 轴对称,则a +b = . 14.因式分解:2228mx my -= . 15.一个多边形的外角和是内角和的27,则这个多边形的边数为 . (第9题图)(第10题图)16.如图,在四边形ABCD 中,∠A =50°,直线l 与边AB 、AD 分别相交于点M 、N , 则∠1+∠2= .17.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,AB =10,AC =8,△ABC 的面积为45,则DE 的长为 .18.如图,已知AB ∥CF ,E 是DF 的中点,若AB =9cm ,CF =6cm ,则BD = cm .19.已知,如图△ABC 为等边三角形,高AH =10cm ,D 为AB 的中点,点P 为AH 上的一个动点,则PD +PB 的最小值为 cm . 20.计算:2222()()x y xy --= (结果不含负指数幂).21.轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,则轮船在静水中的速度是 千米/时. 22.观察下列等式:1×3+1=22;2×4+1=32;3×5+1=42;4×6+1=52;…请利用你所发现的规律写出第n 个等式: . 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.计算:(1)234(1)(43)(2)2a a a a -++-÷; (2)2.BAC =α,∠B =β(α>β).(第16题图) (第17题图)(第18题图) (第19题图)(1)若α=70°,β=40°,求∠DCE 的度数;(2)用α、β的代数式表示∠DCE = (只写出结果,不用写演推过程); (3)如图②,若将条件中的CE 改为是△ABC 外角∠ACF 的平分线,交BA 延长线于点E ,且α-β=30°,则∠DCE = (只写出结果,不用写演推过程). 26.(1)解方程:21133x xx x =---; (2)列方程解应用题:某超市用2000元购进某种干果销售,由于销售状况良好,超市又拨6000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多200千克.求该种干果的第一次进价是每千克多少元? 27.如图,△ABC 是等边三角形,BD ⊥AC ,AE ⊥BC ,垂足分别为D 、E ,AE 、BD 相交于点O ,连接DE .(1)求证:△CDE 是等边三角形; (2)若AO =12,求OE 的长.28.如图,AB =AC ,AB ⊥AC ,AD =AE ,AE ⊥AD ,B ,C ,E 三点在同一条直线上. (1)求证:DC ⊥BE ;(2)探究∠CAE 与∠CDE 之间有怎样的数量关系?写出结论,并说明理由.(第28题图)(第27题图)2018—2019学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.-5 ; 14.2(2)(2)m x y x y +-; 15.9 ; 16.230°;17.5; 18.3; 19.10; 20. 261x y ;21.21; 22.2(2)1(1)n n n ++=+. 三、解答题:(共74分)23.解:(1)234(1)(43)(2)2a a a a -++-÷=4a 2﹣4a +3a ﹣3﹣4a 2 ………………………………………………4分 =﹣a ﹣3 ………………………………………………5分 (2)(2x ﹣y )2﹣4x (x ﹣y )=4x 2﹣4xy +y 2﹣4x 2+4xy ……………………………………………9分 =y 2 ……………………………………………10分24.(1)解:原式=[9(a +b )+5(a ﹣b )][9(a +b )﹣5(a ﹣b )] ……2分=(14a +4b )(4a +14b ) ………………………………3分 =4(7a +2b )(2a +7b ) ………………………………5分(2)解:÷(﹣x ﹣1)﹣=…………………………7分=………………………………9分=………………………………………………10分= ………………………………………………11分 =………………………………………………12分25. 解:(1)∵∠ACB =180°﹣(∠BAC +∠B )=180°﹣(70°+40°)=70°, ………………2分 又∵CE 是∠ACB 的平分线,∴1352ACE ACB ∠=∠=︒. ………………………………4分∵CD 是高线,∴∠ADC =90°, ………………………………6分 ∴∠ACD =90°﹣∠BAC =20°,……………………………7分 ∴∠DCE =∠ACE ﹣∠ACD=35°﹣20°=15°.………………………………8分(2)2DCE αβ-∠=; …………………………………………10分(3)∠DCE 的度数为75°.………………………………………12分26.(1)解:方程的两边同乘3(x ﹣1),得6x =3x ﹣3﹣x , ………………………2分解得34x =-. ………………………4分检验:把34x =-代入3(x ﹣1)≠0. ………………………5分故原方程的解为34x =-. ………………………6分(2)解:设第一次的进价为x 元,由题意得 200060002200(120%)x x ⨯+=+ ………………………9分 解得 x =5 ……………………11分经检验:x =5是原分式方程的解,且符合题意. …………12分 答:该种干果的第一次进价是每千克5元. ……………………13分27. 解:(1)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠C =60°,BC =AC , CE =BC ,CD =AC ; ………………………………4分∴CD =CE , ……………5分 又∠C =60°,∴△CDE 是等边三角形.……………………………………6分 (2)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠ABC =∠BAC =60°, …………………………………7分12D B C A B D A B C∠=∠=∠, 12B A E B AC ∠=∠, ……………………………………8分 ∴30ABD BAE ∠=∠=︒ ,30DBC ∠=︒, ……………………………………9分 ∴AO =BO , ……………………………………10分 ∵30DBC ∠=︒,AE ⊥BC ,∴BO =2OE , ……………………………………11分 ∴AO =2OE , ……………………………………12分 又AO =12,∴OE =6. ……………………………………13分28. (1)证明:∵AB ⊥AC ,AE ⊥AD ,AB =AC ,∴∠BAC =∠DAE =90°, ……………………………1分∠B =∠ACB =45°, ……………………………2分(第27题图)∴∠BAC +∠CAE =∠DAE +∠CAE ,∴∠BAE =∠CAD , ……………………………3分 在△BAE 与△CAD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△ABE (SAS ), ……………………………5分∴∠ACD =∠B =45°, ……………………………6分 ∴∠BCD =∠ACD +∠ACB =90°,……………………7分 ∴DC ⊥BE . ……………………………8分(2)∠CAE =∠CDE . ……………………………10分理由:∵AD =AE ,AE ⊥AD ,∴∠AED =∠ADE =45°,……………………………11分 ∵由(1)知DC ⊥BE ,∴∠CDE +∠AEC +∠AED =90°,∴∠CDE +∠AEC =45°,……………………………12分 又∠CAE +∠AEC =∠ACB =45°,…………………13分 ∴∠CAE =∠CDE . ……………………………14分(第28题图)。

2018~2019(上)初二数学期末考试试题解析

2018~2019(上)初二数学期末考试试题解析

(1) 求证:CD⊥AB; (2) 求 AC 的长. 【考点】勾股定理及其逆定理
【难度星级】★★
【答案】(1)证明:在 BCD 中, BD 1, CD 2 , BC 5 ,
∴ BD2 +CD2 12 22 5 , BC 2 5 ∴ BD2 +CD2 BC2 ∴ BCD 是直角三角形,且 CDB 90 ∴CD⊥AB. (2)解:由(1)知 CD⊥AB,∴ ADC 90 ∵ AB 4 , BD 1,∴ AD AB DB 3 在 RtACD 中, CD 2 , AD 3
【考点】函数与方程 【难度星级】★ 【答案】B 【解析】 2x 3y 6,整理可得y 2 x 2 ,图象过一、三、四象限.
3
-1-
-1--1-
4.如图,将含 30°角的直角三角板 ABC 的直角顶点 C 放在直尺的一边上,已知 A 30,1 40 ,则 2 的度数为( )
A.55°
B.60°
一个角的两边,那么这两个角相等.其中是真命题的有( )
A.0 个
B.1 个
C.2 个
D.3 个
【考点】真命题与假命题的判定 【难度星级】★ 【答案】C 【解析】③如果一个角的两边分别平行于另一个角的两边,那么这两个角可能相等也可能互补.真命题个 数有 2 个.
-3-
-3--3-
9. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出 八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出 8 钱, 还多 3 钱;每人出 7 钱,则差 4 钱.求物品的价格和共同购买该物品的人数.设该物品的价格是 x 钱,共同 购买该物品的有 y 人,则根据题意,列出的方程组是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年八年级(上)期末数学试卷一.选择题(共10小题)1.分式有意义的x的取值为()A.x≠2 B.x≠3 C.x=2 D.x=32.下列图形中,是轴对称图形的是()A.B.C.D.3.如果三角形两边的长分别是5cm、7cm,那么这个三角形第三边的长可能是()A.1 cm B.2cm C.10cm D.12 cm4.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.65.分解因式x2y﹣y的结果是()A.y(x2﹣1)B.y(x﹣1)2C.y(x+1)(x﹣1)D.y(x+1)26.下列运算中,计算结果正确的是()A.a2•a3=a6B.(a2)3=a5C.a2y3÷y=a2y2D.(a2b)2=a2b27.如果把分式中的x和y都扩大到原来的3倍,那么分式的值()A.不变B.缩小到原来的C.扩大到原来的3倍D.扩大到原来的9倍8.三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形9.如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3=()A.90°B.180°C.120°D.270°10.如图,AD=AE,BE=CD,∠ADB=∠AEC=110°,∠BAE=80°,下列说法:其中正确的说法有()①△ABE≌△ACD;②△ABD≌△ACE;③∠DAE=40°;④∠C=40°.A.3个B.2个C.1个D.0个二.填空题(共4小题)11.人体内某种细胞可近似地看作球体,它的直径为0.000 000 156m,将0.000 000 156用科学记数法表示为.12.若多边形的内角和为1620°,则该多边形的边数是.13.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠B=30°,AD=1,则AB的长为.14.如图,点B、A、E在同一直线上,△ADB≌△ACE,∠E=40°,∠C=25°,则∠DAC =°三.解答题(共11小题)15.计算:16.先因式分解,再求值:a3b+a2b2+ab3,其中a=2,b=3.17.解分式方程:﹣318.如图,小明和小刚的家分别在A、B两地,ON是去往学校的马路,他们每次上学时都约在ON上一点C,这一点与他们家的距离分别相等.请用尺规作图的方法在图中作出点C (保留作图痕迹).19.如图,在直角坐标系中,A(1,4),B(5,1),C(3,1),在图中画出ABC关于y轴对称的△DEF,并写出点A、B、C的对应点D、E、F的坐标.20.如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区城进行绿化,空白区城进行广场硬化,阴影部分是边长为(a+b)米的正方形.(1)计算广场上需要硬化部分的面积;(2)若a=30,b=10,求硬化部分的面积.21.为落实“美丽城市”的工作部署,市政府计划对城区道路进行改造.现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两队每天能改造道路的长度分别是多少米?22.如图,在等腰△ABC中,AB=AC,DE垂直平分AB,分别交AB,AC于点E,D.(1)若∠ADE=40°,求∠DBC的度数;(2)若BC=6,△CDB的周长为15,求AB的长.23.课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).24.如图,在△ABC中,AB=AC,∠ABC=30°.过点B作DB⊥AB交CA的延长线于点D,过点C作CE⊥AC交BA的延长线于点E,点F为AE的中点,连接CF.(1)求证:△DBA≌△ECA;(2)△CAF是等边三角形吗?为什么?25.如图,在△ABC中,AB=AC=10cm,BC=6cm,点D为AB的中点.如果点P在线段BC 上以1cm/s的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒,△BPD与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案与试题解析一.选择题(共10小题)1.分式有意义的x的取值为()A.x≠2 B.x≠3 C.x=2 D.x=3【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故选:B.2.下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.3.如果三角形两边的长分别是5cm、7cm,那么这个三角形第三边的长可能是()A.1 cm B.2cm C.10cm D.12 cm【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,得出答案.【解答】解:∵三角形的两边长分别是5厘米、7厘米,∴设这个三角形第三边长为x,则x的取值范围是:2<x<12,故这个三角形第三边的长可能是10cm.故选:C.4.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.6【分析】根据角的平分线上的点到角的两边的距离相等即可得.【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,故选:D.5.分解因式x2y﹣y的结果是()A.y(x2﹣1)B.y(x﹣1)2C.y(x+1)(x﹣1)D.y(x+1)2【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=y(x2﹣1)=y(x+1)(x﹣1),故选:C.6.下列运算中,计算结果正确的是()A.a2•a3=a6B.(a2)3=a5C.a2y3÷y=a2y2D.(a2b)2=a2b2【分析】分别计算选项中的每一项a2•a3=a5,(a2)3=a6,(a2b)2=a4b2,即可求解.【解答】解:a2•a3=a5,故A不正确;(a2)3=a6,故B不正确;(a2b)2=a4b2,故D不正确;故选:C.7.如果把分式中的x和y都扩大到原来的3倍,那么分式的值()A.不变B.缩小到原来的C.扩大到原来的3倍D.扩大到原来的9倍【分析】x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y.用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.【解答】解:用3x和3y代替式子中的x和y得:=,则分式的值缩小成原来的,即缩小3倍.故选:B.8.三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形【分析】根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.【解答】解:三角形一边上的中线把原三角形分成两个面积相等的三角形.故选:B.9.如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3=()A.90°B.180°C.120°D.270°【分析】先利用平行线的性质得到∠4+∠5=180°,然后根据多边形的外角和为360°得到∠1+∠2+∠3+∠4+∠5=360°,从而得到∠1+∠2+∠3=180°.【解答】解:如图,∵AB∥CD,∴∠4+∠5=180°,∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=180°.故选:B.10.如图,AD=AE,BE=CD,∠ADB=∠AEC=110°,∠BAE=80°,下列说法:其中正确的说法有()①△ABE≌△ACD;②△ABD≌△ACE;③∠DAE=40°;④∠C=40°.A.3个B.2个C.1个D.0个【分析】根据邻补角互补求出∠ADC=∠AEB=70°,根据三角形内角和定理即可判断③;根据全等三角形的判定定理即可判断①②;求出∠CAD的度数,根据三角形的内角和定理判断④即可.【解答】解:∵∠ADB=∠AEC=110°,∴∠ADC=∠AEB=180°﹣110°=70°,∴∠DAE=180°﹣∠ADC﹣∠AEB=180°﹣70°﹣70°=40°,故③正确;∵在△ABE和△ACD中∴△ABE≌△ACD(SAS),故①正确;∴∠B=∠C,∠BAE=∠CAD=80°,∵在△ABD和△ACE中∴△ABD≌△ACE(AAS),故②正确;∵∠CAD=80°,∠ADC=70°,∴∠C=180°﹣∠CAD﹣∠ADC=30°,故④错误;即正确的个数是3个,故选:A.二.填空题(共4小题)11.人体内某种细胞可近似地看作球体,它的直径为0.000 000 156m,将0.000 000 156用科学记数法表示为 1.56×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 156=1.56×10﹣7,故答案为:1.56×10﹣7.12.若多边形的内角和为1620°,则该多边形的边数是11 .【分析】设该多边形的边数为n,则根据多边形内角和定理得到(n﹣2)×180°=1620°,然后解方程即可.【解答】解:设该多边形的边数为n,根据题意得(n﹣2)×180°=1620°,解得n=11,即该多边形的边数为11.故答案为11.13.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠B=30°,AD=1,则AB的长为 4 .【分析】根据同角的余角相等,可得出∠B=∠ACD,再由直角三角形的性质得出AC=2,再在直角三角形ABC中,可得出AB的长.【解答】解:如图:∵∠ACB=90°,∴∠A+∠B=90°,∵CD⊥AB,∴∠ADC=90°,∴∠A+∠ACD=90°,∴∠ACD=∠B,∵∠B=30°,∴∠ACD=30°,∵AD=1,∴AC=2,∴AB=4,故答案为:4.14.如图,点B、A、E在同一直线上,△ADB≌△ACE,∠E=40°,∠C=25°,则∠DAC=50 °【分析】根据∠DAC=180°﹣∠BAC﹣∠DAE,只要求出∠BCA=∠DAE=65°即可解决问题;【解答】解:∵△ADB≌△ACE,∴∠BAD=∠EAC,∴∠DAE=∠BAC,∵∠BAC=∠C+∠E=65°,∴∠BCA=∠DAE=65°,∴∠DAC=180°﹣∠BAC﹣∠DAE=50°,故答案为50°.三.解答题(共11小题)15.计算:【分析】将分式通分可到=+,利用同分母分式加法的运算法则计算即可.【解答】解:=+=+=.16.先因式分解,再求值:a3b+a2b2+ab3,其中a=2,b=3.【分析】根据a3b+a2b2+ab3的结构特征,可以提出公因式ab,得到,这样就可以形成完全平方公式,进而再利用公式法分解因式,最后把a=2,b=3代入求值.【解答】解:原式==ab(a+b)2把a=2,b=3代入式子得:=75故代数式的值是75.17.解分式方程:﹣3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3﹣6x+6,解得:x=,经检验x=是分式方程的解.18.如图,小明和小刚的家分别在A、B两地,ON是去往学校的马路,他们每次上学时都约在ON上一点C,这一点与他们家的距离分别相等.请用尺规作图的方法在图中作出点C (保留作图痕迹).【分析】先连接AB,再作线段AB的垂直平分线交直线ON于点C,则点C即为所求点.【解答】解:如图所示:19.如图,在直角坐标系中,A(1,4),B(5,1),C(3,1),在图中画出ABC关于y轴对称的△DEF,并写出点A、B、C的对应点D、E、F的坐标.【分析】分别作出A,B,C的对应点D,E,F即可解决问题.【解答】解:如图,△DEF即为所求.D(﹣1,4),E(﹣4,1),F(﹣2,1).20.如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区城进行绿化,空白区城进行广场硬化,阴影部分是边长为(a+b)米的正方形.(1)计算广场上需要硬化部分的面积;(2)若a=30,b=10,求硬化部分的面积.【分析】(1)由题意可知空白部分的面积=长方形的面积﹣阴影部分的面积.长方形的面积是长×宽,即(3a+b)(2a+b);阴影部分是正方形,其面积是(a+b)2,所以空白部分的面积是(2a+b)(3a+b)﹣(a+b)2;(2)将a,b的数值代入(1)题中的代数式求值即可.【解答】解:(1)根据题意,广场上需要硬化部分的面积是(2a+b)(3a+b)﹣(a+b)2=6a2+2ab+3ab+b2﹣(a+b)2=6a2+5ab+b2﹣(a2+2ab+b2)=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab答:广场上需要硬化部分的面积是(5a2+3ab)m2.(2)把a=30,b=10代入5a2+3ab=5×302+3×30×10=5400 m2答:广场上需要硬化部分的面积是5400m2.21.为落实“美丽城市”的工作部署,市政府计划对城区道路进行改造.现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两队每天能改造道路的长度分别是多少米?【分析】设乙队每天能改造道路的长度为x米,甲队每天能改造道路的长度为x,根据题意列出方程即可求出答案.【解答】解:设乙队每天能改造道路的长度为x米,∴甲队每天能改造道路的长度为x,根据题意可知:=﹣3,解得:x=40,经检验,x=40是方程的解,∴=60,答:甲、乙两队每天能改造道路的长度分别是60、40米.22.如图,在等腰△ABC中,AB=AC,DE垂直平分AB,分别交AB,AC于点E,D.(1)若∠ADE=40°,求∠DBC的度数;(2)若BC=6,△CDB的周长为15,求AB的长.【分析】(1)由DE垂直平分AB,根据线段垂直平分线的性质,可得∠AED=∠BED=90°,DA=DB,又由∠ADE=40°,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得答案;(2)由已知条件,运用线段垂直平分线定理得到AD=CD,结合BC=6,△CDB的周长为15,求AB即可.【解答】解:(1)∵DE垂直平分AB,∴∠AED=∠BED=90°,DA=DB,∵∠ADE=40°,∴∠A=∠ABD=50°,又∵AB=AC,∴∠ABC=(180°﹣50°)÷2=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°;(2)∵DE垂直且平分AC,∴AD=CD,△BDC的周长=BC+BD+CD=15,又∵BC=6,∴AB=AC=9.23.课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).【分析】(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.(2)利用(1)中全等三角形的性质进行解答.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);(2)解:由题意得:∵一块墙砖的厚度为a,∴AD=4a,BE=3a,由(1)得:△ADC≌△CEB,∴DC=BE=3a,AD=CE=4a,∴DC+CE=BE+AD=7a=35,∴a=5,答:砌墙砖块的厚度a为5cm.24.如图,在△ABC中,AB=AC,∠ABC=30°.过点B作DB⊥AB交CA的延长线于点D,过点C作CE⊥AC交BA的延长线于点E,点F为AE的中点,连接CF.(1)求证:△DBA≌△ECA;(2)△CAF是等边三角形吗?为什么?【分析】(1)根据全等三角形的判定和性质即可得到结论;(2)利用直角三角形斜边中线的性质,再证明△ACF是等边三角形即可判断.【解答】(1)证明:∵BD⊥AB,EC⊥CA,∴∠DBA=∠ECA=90°,在△DBA和△ECA中,,∴△DBA≌△ECA(ASA).(2)解:∵△DBA≌△ECA,∴AD=AE,∵AB=AC,∴∠ABC=∠ACB=30°,∴∠FAC=∠ABC+∠ACB=60°,∵AF=FE,∠ACE=90°,∴CF=AF=EF,∴△AFC是等边三角形.25.如图,在△ABC中,AB=AC=10cm,BC=6cm,点D为AB的中点.如果点P在线段BC 上以1cm/s的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒,△BPD与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【分析】(1)根据SAS即可判断;(2)利用全等三角形的性质,判断出对应边,根据时间.路程、速度之间的关系即可解决问题.【解答】解:(1)△BPD与△CQP全等,∵点P的运动速度是1cm/s,∴点Q的运动速度是1cm/s,∴运动1秒时,BP=CQ=1cm,∵BC=6cm,∴CP=5cm,∵AB=10,D为AB的中点,∴BD=5,∴BD=CP,∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∵,∴△BPD≌△CQP(SAS).(2)点Q的运动速度与点P的运动速度不相等,则BP≠CQ,若△BPD与△CQP全等,只能BP=CP=3cm,BD=CQ=5cm,此时,点P运动3cm,需3秒,而点Q运动5cm,∴点Q的运动速度是cm/s.。

相关文档
最新文档