三角函数图像与性质3

合集下载

三角函数的图像和性质(3)

三角函数的图像和性质(3)

第一节 三角函数的图像和性质一、 知识梳理2.函数)sin(ϕω+=x A y 的图像与性质:(1)函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是T=_________ (2)函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是T=_________(3)五点法作)sin(ϕω+=x A y 的简图,设X x ωϕ=+,X 取______________________来求相应x 的值以及对应的y 值再描点作图。

(4)关于平移伸缩变换可具体参考函数平移伸缩变换,提倡先平移后伸缩。

切记每一个变换总是对字母 x 而言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。

二、 基础自测1.(2011·大纲全国卷理,5)设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A.13 B .3 C .6 D .9 答案:C2、(理)函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4C.⎝ ⎛⎭⎪⎫π,3π2D.⎝ ⎛⎭⎪⎫3π2,2π 答案:C3.已知-π6≤x <π3,cos x =m -1m +1,则m 的取值范围是( )A .m <-1B .3<m ≤7+4 3C .m >3D .3<m <7+43或m <-1 答案:C4.已知函数y =tan ωx 在⎝⎛⎭⎫-π2,π2内是减函数,则( ) A .0<ω≤1 B .-1≤ω<0 C .ω≥1 D .ω≤-1 答案:B5.(2012·湖洲中学月考)已知函数f (x )=A cos(ωx +φ)的图像如下图所示,f ⎝⎛⎭⎫π2=-23,则f (0)=________.答案:2/36.sin1,sin2,sin3的大小关系为________. 答案: sin3< sin1< sin27.求y =sin 2x -cos x +2的最值. 答案:最大值与最小值分别为134与1.三、 例题讲解[例1] 求下列函数的定义域:(1)y =-2cos 2x +3cos x -1+lg(36-x 2);(2)y =2+log 12x +tan x .[解析] (1)由题意得⎩⎪⎨⎪⎧-2cos2x +3cosx -1≥036-x2>0,即⎩⎪⎨⎪⎧2cosx -1cosx -1≤0-6<x<6,也即⎩⎪⎨⎪⎧cosx ≥12-6<x<6.解得⎩⎪⎨⎪⎧-π3+2k π≤x ≤π3+2k πk ∈Z-6<x<6 (*)取k =-1,0,1,可分别得到 x ∈⎝⎛⎦⎤-6,-5π3或x ∈⎣⎡⎦⎤-π3,π3或x ∈⎣⎡⎭⎫5π3,6. 即所求的定义域为⎝⎛⎦⎤-6,-5π3∪⎣⎡⎦⎤-π3,π3∪⎣⎡⎭⎫5π3,6.(2)要使函数有意义,只要⎩⎪⎨⎪⎧2+log 12 x ≥0tanx ≥0 即⎩⎪⎨⎪⎧0<x ≤4k π≤x<k π+π2k ∈Z即0<x<π2或π≤x ≤4.所以函数的定义域为⎝⎛⎭⎫0,π2∪[π,4].变式:求下列各函数的定义域:(1)y =11-cosx;(2)y =sinx +1-tanx. [解析] (1)函数y =11-cosx有意义时,1-cosx ≠0,即cosx ≠1,所以x ≠2k π(k ∈Z),所以函数的定义域为{x|x ≠2k π,x ∈R ,k ∈Z}.(2)要使函数有意义,必须⎩⎪⎨⎪⎧sinx ≥0,1-tanx ≥0.由上图知道,函数的定义域为⎣⎡⎦⎤2k π,2k π+π4∪⎝⎛⎦⎤2k π+π2,2k π+π(k ∈Z).[例2] 求下列函数值域:(1)y =2cos 2x +2cos x ;(2)y =3cos x -3sin x ;(3)y =sin x +cos x +sin x cos x . [解析] (1)y =2cos2x +2cosx =2⎝⎛⎭⎫cosx +122-12. 当且仅当cosx =1时,得ymax =4, 当且仅当cosx =-12时,得ymin =-12,故函数值域为⎣⎡⎦⎤-12,4. (2)y =3cosx -3sinx =23⎝⎛⎭⎫32cosx -12sinx=23cos ⎝⎛⎭⎫x +π6.∵⎪⎪⎪⎪cos ⎝⎛⎭⎫x +π6≤1, ∴该函数值域为[-23,23]. (3)y =sinxcosx +sinx +cosx =sinx +cosx 2-12+2sin ⎝⎛⎭⎫x +π4=sin2⎝⎛⎭⎫x +π4+2sin ⎝⎛⎭⎫x +π4-12=⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π4+222-1, 所以当sin ⎝⎛⎭⎫x +π4=1时,当sin ⎝⎛⎭⎫x +π4=-22时,y 取最小值-1,∴该函数值域为⎣⎡⎦⎤-1,12+2. 变式:求y =sin2x -sinxcosx +2的值域. [解析] y =sin2x -sinxcosx +2=1-cos2x 2-12sin2x +2=-12(sin2x +cos2x)+52=-22sin ⎝⎛⎭⎫2x +π4+52. 又∵-1≤sin ⎝⎛⎭⎫2x +π4≤1,∴5-22≤y ≤5+22.∴函数的值域为[5-22,5+22]. [例3]判断下列函数的奇偶性(1)sin 2tan y x x =- (2)1sin cos 1sin cos x xy x x +-=++ (3)()cos sin y x =(4)y =答案:(1) 奇 (2) 非奇非偶 (3)偶 (4)奇,偶变式:函数y =2sin ⎝⎛⎭⎫x -π4cos ⎝⎛⎭⎫π4-x 是( ) A .周期为2π的奇函数 B .周期为π的奇函数 C .周期为π的偶函数 D .周期为π的非奇非偶函数 [答案] C[例4] 求函数y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间. [解析] ∵y =2sin ⎝⎛⎭⎫π3-2x=-2sin ⎝⎛⎭⎫2x -π3,∴y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间就是y =2sin ⎝⎛⎭⎫2x -π3的单调减区间.由2k π+π2≤2x -π3≤3π2+2k π,k ∈Z ,得2k π+5π6≤2x ≤11π6+2k π.∴k π+5π12≤x ≤11π12+k π. ∴y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间是⎣⎡⎦⎤k π+5π12,11π12+k π,k ∈Z.变式:(理)已知函数f (x )=sin 2x +2sin x cos x +3cos 2x ,x ∈R.求:(1)函数f (x )的最大值及取得最大值时自变量x 的集合;(2)函数f (x )的单调增区间. [解析] (1)∵f(x)=1-cos2x 2+sin2x +31+cos2x2=2+sin2x +cos2x =2+2sin ⎝⎛⎭⎫2x +π4,∴当2x +π4=2k π+π2,即x =k π+π8 (k ∈Z)时,f(x)取得最大值2+ 2.因此,f(x)取得最大值时自变量x 的集合是 {x|x =k π+π8,k ∈Z}(2)f(x)=2+2sin ⎝⎛⎭⎫2x +π4.由题意得2k π-π2≤2x +π4≤2k π+π2 (k ∈Z),即k π-3π8≤x ≤k π+π8(k ∈Z), 因此f(x)的单调增区间是⎣⎢⎡⎦⎥⎤k π-38π,k π+π8(k ∈Z).[例5]求下列函数的最小正周期(1) ()()2sin cos f x x x π=-;(2) ()23tan 1tan x f x x =-;(3) ()1cos 43f x x π⎛⎫=++ ⎪⎝⎭. 答案:(1)π (2)π (3)2π[例6] 已知向量(sin ,1),(3cos ,cos 2)(0)3Am x n A x x A ==>,函数()f x m n =⋅的最大值为6.(1)求A ;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域. 答案:见暑假作业13题变式:1.已知函数f(x)=2sin x 4cos x 4-23sin 2x4+ 3.(1)求函数f (x )的最小正周期及最值;(2)令g (x )=f (x +π3),判断函数g (x )的奇偶性,并说明理由.[解析] (1)∵f(x)=sin x 2+3(1-2sin2x4)=sin x 2+3cos x 2=2sin(x 2+π3),∴f(x)的最小正周期T =2π12=4π. 当sin(x 2+π3)=-1时,f(x)取得最小值-2;当sin(x 2+π3)=1时,f(x)取得最大值2.(2)由(1)知f(x)=2sin(x 2+π3),又g(x)=f(x +π3)∴g(x)=2sin[12(x +π3)+π3]=2sin(x 2+π2)=2cos x2.∵g(-x)=2cos(-x 2)=2cos x2=g(x),∴函数g(x)是偶函数.2.(卷一:3) 已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24 ()C1(0,]2 ()D (0,2] 【答案】A 四、 反馈训练反馈训练1 一、选择题1.函数y =sin2x +sinx -1的值域为( )A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54][答案] C[解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sinx =t 换元转化为t 的二次函数的最值问题,体现了换元思想和转化的思想,令t =sinx ∈[-1,1],y =t2+t -1,(-1≤t ≤1),显然-54≤y ≤1,选C.2.若函数f(x)=sin ωx(ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( )A .3B .2 C.32 D.23[答案] C[解析] 本题主要考查正弦型函数y =sin ωx 的单调性 依题意y =sin ωx 的周期T =4×π3=43π,又T =2πω,∴2πω=43π,∴ω=32.故选C(亦利用y =sinx 的单调区间来求解)3.对于函数f(x)=2sinxcosx ,下列选项中正确的是( ) A .f(x)在(π4,π2)上是递增的B .f(x)的图像关于原点对称C .f(x)的最小正周期为2πD .f(x)的最大值为2 [答案] B[解析] 本题考查三角函数的性质.f(x)=2sinxcosx =sin2x ,周期为π,最大值为1,故C 、D 错;f(-x)=sin(-2x)=-2sinx ,为奇函数,其图像关于原点对称,B 正确;函数的递增区间为⎣⎡⎦⎤k π-π4,k π+π4,(k ∈Z)排除A.4.函数y =sin2x +acos2x 的图像关于直线x =-π8对称,则a 的值为( )A. 2 B .- 2 C .1 D .-1[答案] D[解析] 解法1:由y =sin2x +acos2x 可联想到形如y =Asin(ωx +φ)的函数.又知其对称轴为x =-π8,故此直线必经过函数图像的波峰或波谷.从而将x =-π8代入原式,可使函数取最大值或最小值.即-22+22a =±a2+1,∴a =-1.解法2:由于函数图像关于直线x=-π8对称∴f(0)=f(-π4),∴a=-1,故选D.5.已知函数f(x)=3sin πxR图像上相邻的一个最大值点与一个最小值点恰好都在圆x2+y2=R2上,则f(x)的最小正周期为()A.1 B.2 C.3 D.4 [答案] D[解析]f(x)的周期T=2ππR=2R,f(x)的最大值是3,结合图形分析知R>3,则2R>23>3,只有2R=4这一种可能,故选D.6.已知函数f(x)=sin(2x+φ)为实数,若f(x)≤|f(π6)|对x∈R恒成立,且|f(π2)|>f(π),则f(x)的单调递增区间是()A.[kπ-π3,kπ+π6](k∈Z)B.[kπ,kπ+π2](k∈Z)C.[kπ+π6,kπ+2π3](k∈Z)D.[kπ-π2,kπ](k∈Z)[答案] C[解析]本题主要考查正弦函数的有界性以及正弦函数的单调性.若f(x)≤|f(π6)|对x∈R恒成立,则|f(π6)|=|sin(π3+φ)|=1,所以π3+φ=kπ+π2,k∈Z,φ=kπ+π6,k∈Z,由f(π2)>f(π),(k∈Z),可知sin(π+φ)>sin(2π+φ).即sinφ<0,所以φ=2kπ-5π6,k∈Z.代入f(x)=sin(2x+φ),得f(x)=sin(2x-5π6).由2k π-π2≤2x -5π6≤2k π+π2,得k π+π6≤x ≤k π+2π3,故选C.二、填空题7.比较大小:(1)sin ⎝⎛⎭⎫-π18________sin ⎝⎛⎭⎫-π10.(2)cos ⎝⎛⎭⎫-23π5________cos ⎝⎛⎭⎫-17π4.[答案] (1)> (2)<[解析] (1)∵-π2<-π10<-π18<π2,y =sinx 在⎣⎡⎦⎤-π2,π2上是增函数,∴sin ⎝⎛⎭⎫-π10<sin ⎝⎛⎭⎫-π18,即sin ⎝⎛⎭⎫-π18>sin ⎝⎛⎭⎫-π10.(2)cos ⎝⎛⎭⎫-23π5=cos 23π5=cos ⎝⎛⎭⎫4π+3π5=cos 3π5,cos ⎝⎛⎭⎫-17π4=cos 17π4=cos ⎝⎛⎭⎫4π+π4=cos π4.∵0<π4<3π5<π,且函数y =cosx 在[0,π]上是减函数, ∴cos π4>cos 3π5,即cos ⎝⎛⎭⎫-17π4>cos ⎝⎛⎭⎫-23π5, 即cos ⎝⎛⎭⎫-23π5<cos ⎝⎛⎭⎫-17π4.8.函数f(x)=sinx +2|sinx|,x ∈[0,2π]的图像与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________.[答案] (1,3)[解析] f(x)=sinx +2|sinx|=⎩⎪⎨⎪⎧3sinx , 0≤x ≤π,-sinx ,π<x ≤2π.在同一坐标系中,作出函数f(x)与y =k 的图像可知1<k<3.三、解答题9.(2012·福建四地六校联考)已知函数f(x)=-1+23sinxcosx +2cos2x. (1)求f(x)的单调递减区间;(2)求f(x)图像上与原点最近的对称中心的坐标; (3)若角α,β的终边不共线,且f(α)=f(β), 求tan(α+β)的值.[解析] f(x)=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6,(1)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z)得k π+π6≤x ≤k π+2π3(k ∈Z),∴f(x)的单调减区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z).(2)由sin ⎝⎛⎭⎫2x +π6=0得2x +π6=k π(k ∈Z),即x =k π2-π12(k ∈Z), ∴f(x)图像上与原点最近的对称中心坐标是⎝⎛⎭⎫-π12,0.(3)由f(α)=f(β)得:2sin ⎝⎛⎭⎫2α+π6=2sin ⎝⎛⎭⎫2β+π6,又∵角α与β不共线,∴⎝⎛⎭⎫2α+π6+⎝⎛⎭⎫2β+π6=2k π+π(k ∈Z),即α+β=k π+π3(k ∈Z),∴tan(α+β)= 3.反馈训练2 一、选择题1.函数f(x)=3cos(3x -θ)-sin(3x -θ)是奇函数,则θ等于( ) A .k π (k ∈Z) B .k π+π6 (k ∈Z)C .k π+π3 (k ∈Z)D .k π-π3(k ∈Z)[答案] D[解析] 解法1:由两角和与差的三角公式得f(x)=2sin ⎝⎛⎭⎫π3-3x +θ.由f(x)是奇函数得π3+θ=k π(k ∈Z)⇒θ=k π-π3(k ∈Z).故选D.解法2:∵函数f(x)为奇函数,定义域为R. ∴f(0)=0,即3cos θ+sin θ=0,∴sin ⎝⎛⎭⎫θ+π3=0,∴θ+π3=k π,∴θ=k π-π3(k ∈Z). 2.函数y =11-x 的图像与函数y =2sin πx(-2≤x ≤4)的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .8[答案] D[解析] 本题主要考查了正弦函数的性质以及数形结合法.依题意:两函数的图像如下图所示:由两函数的对称性可知:交点A1,A2,A3,A4,A5,A6,A7,A8的横坐标满足x1+x8=2,x2+x7=2,x3+x6=2,x4+x5=2,即x1+x2+x3+x4+x5+x6+x7+x8=8,故选D.二、填空题3.已知函数f(x)=Atan(ωx +φ)(ω>0,|φ|<π2),y =f(x)的部分图像如下图,则f(π24)=______.[答案] 3[解析] 本小题考查内容为正切函数的图像与解析式.∵T =π2=πω,∴ω=2. 当x =0时,f(0)=Atan φ=1,当x =3π8时,f ⎝⎛⎭⎫3π8=Atan ⎝⎛⎭⎫3π4+φ=0,∴φ=π4,A =1, ∴f ⎝⎛⎭⎫π24=tan ⎝⎛⎭⎫2×π24+π4=tan π3= 3. 4.动点A(x ,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t =0时点A 的坐标是(12,32),则当0≤t ≤12时,动点A 的纵坐标y 关于t(单位:秒)的函数的单调递增区间是______________.[答案] [0,1]和[7,12][解析] 设点A 的纵坐标y 关于t 的函数为y =sin(ωt +φ).∵T =12=2πω,∴ω=π6. 当t =0时,sin φ=32,cos φ=12,∴φ可取π3. ∴y =sin(π6t +π3),由正弦函数的单调性知, 2k π-π2≤π6t +π3≤2k π+π2(k ∈Z) 2k π-5π6≤π6t ≤2k π+π6(k ∈Z). ∴12k -5≤t ≤12k +1(k ∈Z).当k =0时 ,-5≤t ≤1;当k =1时,7≤t ≤13又∵0≤t ≤12,∴单调增区间为[0,1]和[7,12].三、解答题5.(2012·深圳模拟)已知函数f(x)=sinx +acos2x 2,a 为常数,a ∈R ,且x =π2是方程f(x)=0的解. (1)求函数f(x)的最小正周期;(2)当x ∈[0,π]时,求函数f(x)的值域.[解析] (1)f ⎝⎛⎭⎫π2=sin π2+acos2π4=0, 则1+12a =0,解得a =-2. 所以f(x)=sinx -2cos2x 2=sinx -cosx -1, 则f(x)=2sin ⎝⎛⎭⎫x -π4-1. 所以函数f(x)的最小正周期为2π.(2)由x ∈[0,π],得x -π4∈⎣⎡⎦⎤-π4,3π4,则sin ⎝⎛⎭⎫x -π4∈⎣⎡⎦⎤-22,1, 则2sin ⎝⎛⎭⎫x -π4-1∈[-2,2-1], 所以y =f(x)值域为[-2,2-1].6.(2011·北京理,15)已知函数f(x)=4cosxsin(x +π6)-1. (1)求f(x)的最小正周期;(2)求f(x)在区间[-π6,π4]上的最大值和最小值. [解析] (1)因为f(x)=4cosxsin(x +π6)-1 =4cosx ⎝⎛⎭⎫32sinx +12cosx -1 =3sin2x +2cos2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6 ∴f(x)的最小正周期为π.(2)当x ∈⎣⎡⎦⎤-π6,π4时,2x +π6∈⎣⎡⎦⎤-π6,2π3, 当2x +π6=π2,即x =π6时,f(x)取到最大值2; 当2x +π6=-π6即x =-π6时,f(x)取到最小值-1. ∴f(x)的最大值和最小值分别是2和-1.7.已知函数f(x)=log 12(sinx -cosx). (1)求它的定义域和值域;(2)求它的单调区间;(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的最小正周期.[分析] 对于(1),(2)可以从sinx -cosx =2sin ⎝⎛⎭⎫x -π4入手.对于(3)则看f(x)的定义域是否关于原点对称.对于(4)可利用f(x +T)=f(x)先验证T 是一个周期,再证T 是最小正周期.[解析] (1)由题意得sinx -cosx>0,即2sin ⎝⎛⎭⎫x -π4>0,从而得2k π<x -π4<2k π+π(k ∈Z).∴函数f(x)的定义域为⎩⎨⎧⎭⎬⎫x|2k π+π4<x<2k π+54π,k ∈Z . ∵0<sin ⎝⎛⎭⎫x -π4≤1,∴0<sinx -cosx ≤2, 即有log 12 2≤log 12(sinx -cosx). 故函数f(x)的值域是⎣⎡⎭⎫-12,+∞. (2)∵sinx -cosx =2sin ⎝⎛⎭⎫x -π4在f(x)的定义域上的单调递增区间为⎝⎛⎭⎫2k π+π4,2k π+3π4(k ∈Z),单调递减区间为⎣⎡⎭⎫2k π+3π4,2k π+5π4(k ∈Z). ∴f(x)的单调递增区间是⎣⎡⎭⎫2k π+3π4,2k π+5π4(k ∈Z); 单调递减区间是⎝⎛⎭⎫2k π+π4,2k π+3π4(k ∈Z). (3)∵f(x)的定义域在数轴上对应的点关于原点不对称,∴函数f(x)是非奇非偶函数.(4)∵f(x +2π)=log 12[sin(x +2π)-cos(x +2π)]=log 12(sinx -cosx)=f(x),∴函数f(x)的最小正周期T =2π.[点评] 本题综合考查了三角函数的性质,解题的关键是把sinx -cosx 化为Asin(ωx +φ)的形式.。

三角函数的图像与性质

三角函数的图像与性质
3π 7π f(x)的单调递减区间为kπ+ 8 ,kπ+ 8 (k∈Z).
抓住1个考点
突破3个考向
揭秘3年高考
求较为复杂的三角函数的单调区间时,首先化简 成y=Asin(ωx+φ)形式,再求y=Asin(ωx+φ)的单调区间,只
需把ωx+φ看作一个整体代入y=sin x的相应单调区间内即
抓住1个考点
突破3个考向
揭秘3年高考
两种方法 求三角函数值域(最值)的两种方法
(1)将所给函数化为y=Asin(ωx+φ)的形式,通过分析ωx+φ
的范围,结合图象写出函数的值域; (2)换元法:把sin x(cos x)看作一个整体,化为二次函数来解 决.
抓住1个考点
突破3个考向
揭秘3年高考
考点自测 1.函数
).
抓住1个考点
突破3个考向
揭秘3年高考
1 1-cos 2x 1 1 解析 f(x)=sin x-2= -2=-2cos 2x, 故函数 2 的最小正周期为 T=π,且为偶函数.
2
答案 D
抓住1个考点
突破3个考向
揭秘3年高考
3.(2013· 安顺模拟)已知函数
π f(x)=sinωx+3(ω>0)的最小正
抓住1个考点
突破3个考向
揭秘3年高考
π 5π 在[0,2π]内,满足 sin x=cos x 的 x 为4, 4 ,再结合正弦、余 弦函数的周期是 2π,所以原函数的定义域为
π 5π x2kπ+ ≤x≤2kπ+ 4 4 ,k∈Z.
法二
利用三角函数线,如图,MN 为正弦线,OM 为余弦
解.
(2)求解三角函数的值域(最值)常见到以下几种类型的题目: ①形如y=asin x+bcos x+c的三角函数化为y=Asin(ωx+φ)+ k的形式,再求最值(值域); ②形如y=asin2x+bsin x+c的三角函数,可先设sin x=t,化

三角函数图像及性质的总结

三角函数图像及性质的总结

第三节三角函数的图像与性质复习要求:1,理解正弦函数、余弦函数、正切函数的图像和性质2,理解周期函数、最小正周期的概念3,学会用五点法画图知识点:1.正弦函数、余弦函数、正切函数、余切函数的图像和性质3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。

4.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。

途径二:先周期变换(伸缩变换)再平移变换。

先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。

5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。

6.对称轴与对称中心: sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。

三角函数公式、图像大全

三角函数公式、图像大全

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cos α cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h-------------------------------------------------------------------------------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。

三角函数的图象与性质 (共44张PPT)

三角函数的图象与性质 (共44张PPT)

(
)
3 3 A.-2,2 3 3 3 3 C. - , 2 2
解析: 当 故
π π 1 π π 5π x∈0,2 时, 2x- ∈- 6, 6 , sin2x-6 ∈-2,1, 6
上是减函数 - π , 0 C.在[0,π]上是增函数,在
)
π π π π D.在2,π和-π,-2上是增函数,在-2,2 上是减函数
3.(2015· 皖南八校模拟)函数 f(x)=cos 2x+2sin x 的最大值与最小值 的和是 A.-2 3 C.- 2
4.求函数 y=cos x+sin
2
π x|x|≤4 的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
sin 2x>0, 解析:由 2 9-x ≥0,
π kπ<x<kπ+ ,k∈Z, 2 得 -3≤x≤3.
π π ∴-3≤x<- 或 0<x< . 2 2 ∴函数 y=lg(sin 2x)+ 9-x
2
π π 的定义域为-3,2 ∪0,2 .
2
π 1- 5 x通法]
1.三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借 助三角函数线或三角函数图象来求解.
2.三角函数值域的不同求法 (1)利用 sin x 和 cos x 的值域直接求;

高考数学一轮复习课件:三角函数的图像与性质

高考数学一轮复习课件:三角函数的图像与性质

4.sinxcosx 与 sinx±cosx 同时存在型可换元转化. 5.y=acssiinnxx++db(或 y=acccoossxx++db)型,可用分离常数法或由 |sinx|≤1 来解决. 6.y=cacsoinsxx++bd型,可用斜率公式来解决.
求下列函数的值域: (文)(1)y=2s1in+x·scionsx2x,x∈[0,2π]; (2)y=sin2x+2sinx·cosx+3cos2x.
(2)求三角函数定义域时,通常归结为解三角不等式或不 等式组.
求下列各函数的定义域: (1)y=1-1cosx;(2)y= sinx+ 1-tanx. [分析]
[解析] (1)函数 y=1-1cosx有意义时,1-cosx≠0,即 cosx≠1,所以 x≠2kπ(k∈Z),所以函数的定义域为{x|x≠2kπ, x∈R,k∈Z}.
(2)第(2)小题解不等式组 2
,然后利用数轴求
tanx≥0
解.
[解析] (1)要使原函数有意义,必须有:
2sinx-1>0, 1-2cosx≥0,
即csionsxx>≤12,12.
由图知,原函数的定义域为:
[2kπ+3π,2kπ+56π)(k∈Z).
(2)要使函数有意义 2+log12 x≥0,
() A.[-2,2]
B.[- 3, 3]
C.[-1,1]
D.[-
23,
3 2]
[答案] B
[解析] 本题考查两角和的余弦公式、辅助角公式,三角 函数的值域.
由题意知,f(x)=sinx-cosxcosπ6+sinxsin6π=32sinx-
3 2 cosx
= 3( 23sinx-12cosx)= 3sin(x-6π),

三角函数的定义、图像和性质

三角函数的定义、图像和性质
0 3
极值点:函数 在其周期内取 得最大值和最 小值的点,即 最值点的横坐 标
0 4
诱导公式
三角函数的诱导 公式是三角函数 性质的重要组成 部分,它可以帮 助我们简化复杂 的三角函数计算。
添加标题
诱导公式包括正 弦、余弦和正切 的诱导公式,它 们可以通过三角 函数的周期性和 对称性推导出来。
添加标题
奇偶性
奇函数:满足f(-x)=-f(x) 的函数
偶函数:满足f(-x)=f(x) 的函数
奇偶性的判断方法:根据 定义来判断
奇偶性在三角函数中的应 用:判断函数的图像对称

最值和零点
最大值和最小 值:三角函数 在其周期内可 以达到的最大 和最小值
0 1
零点:函数值 为零的点,即 解方程的根
0 2
周期性:三角 函数图像呈现 周期性变化, 每个周期内存 在一个最大值 和一个最小值
利用诱导公式, 我们可以将任意 角的三角函数转 化为锐角或0到 360度之间的角的 三角函数,从而
简化计算。
添加标题
诱导公式在三角 函数的图像和性 质中有着广泛的 应用,可以帮助 我们更好地理解 三角函数的性质
和图像。
添加标题
THANK YOU
汇报人:XX
三角函数的定义、 图像和性质
汇报人:XX
目录
01 三 角 函 数 的 定 义 02 三 角 函 数 的 图 像 03 三 角 函 数 的 性 质
01
三角函数的定义
正弦函数
定义:正弦函数是三角函数的一种,定义为y=sinx,x∈R。 图像:正弦函数的图像是一个周期函数,形状类似于波浪。 性质:正弦函数具有一些重要的性质,如奇偶性、周期性、单调性等。

三角函数的图像与性质(名师经典总结)

三角函数的图像与性质(名师经典总结)

三角函数的图像与性质(正弦、余弦、正切)【知识点1】函数y =sin x ,y =cos x ,y =tan x 的图象性质题型1:定义域例1:求下列函数的定义域(1)xx y cos 2cos 1+=; (2)x y 2sin = 2lg(4)x -题型2:值域 例2:求下列函数值域 (1))3π2,6π(,sin 2-∈=x x y (2)y=2sin(2x-3π),x 5,46ππ⎡⎤∈⎢⎥⎣⎦(3) )3π,2π(),3π2cos(2-∈+=x x y(4)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合题型3:周期例3:求下列函数的周期: (1)f(x)=2sin2x (2)y=cos(123x π-) (3)y=tan(2x 4π-) (4)y=sin x 例4: 若函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,则自然数k 的值为______.例5:若)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,则ϖ=________.例6:使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为【 】A .π25B .π45C .πD .π23例7:设函数f(x)=2sin(25x ππ+),若对于任意的x R ∈,都有f(1x )2()()f x f x ≤≤成立,则12x x -的最小值是A.4B.2C.1D.12题型4:奇偶性 例8:函数y =sin (x +2π)(x ∈[-2π,2π])是【 】A.增函数B.减函数C.偶函数D.奇函数例9:判断下列函数的奇偶性 (1)y=xsin(x π+) (2)y=cos 1sin x x+例10:已知函数f(x)=x 3cosx+1,若f(a)=11,则f(-a)=________ 题型5:单调性例11:函数y =21log sin(2x +4π)的单调递减区间是【 】 A.(k π-4π,k π](k ∈Z ) B.(k π-8π,k π+8π](k ∈Z ) C.(k π-83π,k π+8π](k ∈ D.(k π+8π,k π+83π](k ∈Z )例12:.求1cos()3412logx y π+=的单调区间例13:求下列函数的单调增区间(1))3π21cos(-=x y ; (2) ]0,π[),6π2sin(2-∈+=x x y ;(3))23πsin(2x y -=例14:(1)求函数y=2sin(2x-3π)的单调递减区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角函数图像与性质》测试题(3)三角函数的图象与性质524500 广东省吴川市第一中学 柯厚宝A 组一、选择题:共6小题1.(易 函数最大最小值)用A 和B 分别表示函数1sin 13y x =-的最大值和最小值,则A B +等于( ) A.23B.23-C.43-D.2-2.(易 函数单调性)下列函数,在[,2ππ]上是增函数的是( )A.cos2y x =B.cos y x =C.sin 2y x =D.sin y x =3.(易 函数单调区间)下列区间中,函数3sin()6y x π=+的递减区间是( )A.[,]22ππ-B.2[,]33ππC.22[,]33ππ- D.[,0]-π4. (中 三角函数的奇偶性及周期)下列函数中是奇函数,且最小正周期是π的函数是( ) A.tan 2y x =B.sin y x =C.πsin 22y x ⎛⎫=+ ⎪⎝⎭D.3πcos 22y x ⎛⎫=- ⎪⎝⎭5.(中,三角函数的对称性)若函数cos()3y x ωπ=+(0)ω>的图象相邻两条对称轴间距离为2π,则ω等于( ) A.12B.12C.2D.46.(中,函数的值域)sin sin y x x =-的值域是( )A.[2,0]-B.[0,1]C.[1,1]-D.[1,0]-二、填空题:共3小题7.(易 正切函数的周期)已知函数1sin y x =、2tan y x =的最小正周期分别为1T 、2T则12T T += .8.(易 函数的奇偶性)若)(x f 为奇函数,且0>x 时,x x x f sin )(2-=,则0<x 时,()f x =9.(难 三角函数的奇偶性、诱导公式)关于x 的函数f (x )=sin(x +ϕ)有以下命题: ①对任意的ϕ,f (x )都是非奇非偶函数; ②不存在ϕ,使f (x )既是奇函数,又是偶函数;③存在ϕ,使f (x )是奇函数; ④对任意的ϕ,f (x )都不是偶函数.其中一个假命题的序号是_____.因为当ϕ=_____时,该命题的结论不成立. 三、解答题:共2小题10.(中,函数的值域)设全集[1,1]U =-,函数21()()sin 1f x x x =∈+R 的值域为A,sin ()()sin 2xg x x x =∈+R 的值域为B,求()()U U A B .11.(中,正切函数的性质)求函数()tan 23f x x ⎛⎫=+ ⎪⎝⎭ππ的定义域、周期和单调递增区间.B 组一、填空题:共6小题1.(易 三角函数的图像性质)下列叙述中正确的个数为( )①tan y x =在R 上是增函数;②sin ,[0,2y x x =∈π]的图像关于点(,)P π0成中心对称图形;③cos ,[0,2y x x =∈π]的图像关于直线x =π成轴对称图形;④正弦、余弦函数sin y x =、cos y x =的图像不超出两直线1y =-、1y =所夹的范围.A.1个B.2个C.3个D.4个2.(中 三角函数最值)已知函数f(x)=2sin ωx(ω>0)在区间[3π-,4π]上的最小值是-2,则ω的最小值等于( )A.32 B.23C.2D.33.(中 三角函数单调性)使函数x y sin =递减且函数x y cos =递增的区间是( ) A.(,223ππ) B.(2,22k k k ππ-π)(∈)Z C.(2,22k k k ππ+π+π)(∈)Z D.(2,22k k k 3ππ+ππ+)(∈)Z4.(中 三角函数定义域)如果[0,2]x ∈π,则函数x x y cos sin -+=的定义域为( )A.[0,]πB.[,]22π3πC.[,2ππ]D.[,223ππ]5.(中 函数对称性)已知函数f (x )=a sin2x +cos2x (a ∈R )图象的一条对称轴方程为x =π12,则a 的值为( )A.33 B.21 C.23 D.326.(中 三角函数最值)若函数()(1)cos f x x x =+,02x π≤<,则()f x 的最大值为( )A.1B.212 二、填空题:共3小题7.(易 )设3()sin 1f x ax b x =++,(,a b 为常数),且(5)7f =,则(5)f -= .8.(中 三角函数的对称性周期性) 设f (x )=A sin(ωx +φ)(A >0,ω>0)的图象关于直线x =π3对称,它的最小正周期是π,则f (x )图象上的一个对称中心是________(写出一个即可).9.(难 函数图像)函数[]()sin 2|sin |,0,2f x x x x =+∈π的图象与直线k y =有且仅有两个不同的交点,则k 的取值范围是__________. 三、解答题:共2小题10. (中 三角函数的奇偶性)判断函数f (x )=lg(sin x +x 2sin 1+)的奇偶性.11. (中 三角函数对称性最大最小值)设函数()sin(2) (0),()f x x y f x ϕϕ=+-π<<=图像的一条对称轴是直线8x π=. (1)求ϕ;(2)若函数2(),(y f x a a a =+∈为常数R )在113[,]244x ππ∈上的最大值和最小值之和为1, 求a 的值.C 组解答题:共2小题1.(难 三角函数单调性最大最小值)已知函数2()2sin 1f x x x θ=+-,1[]2x ∈ (1)当6θπ=时,求()f x 的最大值和最小值;(2)若()f x 在1[]2x ∈上是单调函数,且[0,2)θ∈π,求θ的取值范围2.(较难 三角函数周期性)设)0(cos sin )(>+=ωωωx b x a x f 的周期T =π,最大值为()412f π=, (1)求ω、a 、b 的值;(2)若α、β为方程()0f x =的两根,且α、β的终边不共线,求tan()αβ+的值.参考答案A 组一、选择题:共6小题1.D 当1sin =x 时1sin 13y x =-有最大值32-,当1sin -=x 时1sin 13y x =-有最小值34-,所以A+B=-2. 2.A x y cos =在[0,2]π的增区间为[,2]ππ,x y 2cos =的增区间为ππ2⎡⎤⎢⎥⎣⎦, 3.B x y sin =的递减区间为3(2,2)22k k ππ+π+π,所以3sin()6y x π=+的递减区间为4(2,2)33k k ππ+π+π,其中2[,]33ππ4[2,2]33k k ππ⊂+π+π,故选B. 4.D 四个选项中为奇函数的是A 和D,其中x y 2tan =的最小正周期为2π.而3cos(2)cos(2)cos(2)sin 2222y x x x x πππ=-=π+-=--=-,最小正周期为π,故选D.5. C x y cos =的图象相邻两条对称轴距离为π,要使cos()3y x ωπ=+的图像相邻两条对称轴的距离为2π,则其周期缩小为原来的一半,所以2=ω. 6.A 当0sin >x 时,0sin sin sin sin =-=-=x x x x y ;当0sin <x 时,x x x x x y sin 2sin sin sin sin =+=-=,y 的最小值为-2,故选D.二、填空题:共3小题7.2π1212,2T T T T =π=π⇒+=π 8.x x sin 2-- 设0<x ,则0>-x ,所以x x x x x f sin )sin()()(22+=---=-,又因为)(x f 为奇函数,则x x x f x f sin )()(2+=-=-,所以x x x f sin )(2--=. 9.①,kπ(k ∈Z );或者①,2π+kπ(k ∈Z );或者④,2π+kπ(k ∈Z ) 当ϕ=2kπ,k ∈Z 时,f (x )=sin x 是奇函数.当ϕ=2(k +1)π,k ∈Z 时f (x )=-sin x 仍是奇函数.当ϕ=2kπ+2π,k ∈Z 时,f (x )=c os x ,或当ϕ=2kπ-2π,k ∈Z 时,f (x )=-c os x ,f (x )都是偶函数.所以②和③都是正确的.无论ϕ为何值都不能使f (x )恒等于零.所以f (x )不能既是奇函数又是偶函数.①和④都是假命题. 三、解答题:共2小题10.解:∵20sin 1x ≤≤,∴21sin 12x ≤+≤, ∴112y ≤≤,∴1[,1]2A =,而[1,1]U =-,∴1[1,)2UA =-;由sin ()sin 2x g x x =+,得sin sin 2xy x =+,于是2sin 1y x y =-,∴1sin 1x -≤≤,∴2111y y -≤≤-,解得113y -≤≤, ∴1{|1}3B y y =-≤≤.而[1,1]U =-,∴1(,1]3U B =;∴11()()(,)32U U A B =.11.解:由232x k +≠+ππππ,得123x k ≠+(k ∈Z ).∴函数()f x 的定义域是1|2,3x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z ;由于()()()tan tan tan 22232323f x x x x f x ⎛⎫⎛⎫⎡⎤=+=++=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦πππππππ,因此函数()f x 的最小正周期为2.由2232k x k -+<+<+ππππππ,k ∈Z ,解得512233k x k -+<<+,k ∈Z .因此,函数的单调递增区间是512,233k k ⎛⎫-++ ⎪⎝⎭,k ∈Z .B 组 一、填空题:共6小题 1.C ①错,其余正确.2. B 由22x ωππ-≤≤得到一个单调递增区间是[,]22ωωππ-,依题意3,322ωωππ-≤-∴≥3.D 在区间3(,2)2ππ上x y sin =单调递增,不合要求.在区间3(2,2)2k k ππ+ππ+上x y sin =递减,x y cos =为递减函数,故选D.4.C 依题意得⎩⎨⎧≤≥0cos 0sin x x ,即0322x x ≤≤π⎧⎪⎨ππ≤≤⎪⎩,[,]2x π∴∈π,故选C 5.A ∵x =π12是对称轴,∴f (0)=f (π6),即cos0=a sin π3+cos π3,∴a =33. 6.B因为()(1)cos f x x x ==cos x x =2cos()3x π-当3x π=是,函数取得最大值为2.故选B 二、填空题:共3小题7.5- 715sin 5)5(3=++=b a f ,则65sin 53=+b a , 又51615sin 5)5(3-=+-=+--=-b a f8.(π12,0) ∵T =2πω=π,∴ω=2,又∵函数的图象关于直线x =π3对称,所以有sin(2×π3+φ)=±1,∴φ=k 1π-π6(k 1∈Z ), 由sin(2x +k 1π-π6)=0得2x +k 1π-π6=k 2π(k 2∈Z ), ∴x =π12+(k 2-k 1)π2,当k 1=k 2时,x =π12,∴f (x )图象的一个对称中心为(π12,0).9.(1,3) 3sin ,[0,)()sin 2sin sin ,[,2]x x f x x x x x ∈π⎧=+=⎨-∈ππ⎩,由其图像可知当直线k y =,)3,1(∈k 时与[]()sin 2|sin |,0,2f x x x x =+∈π的图像与直线k y =有且仅有两个不同的交点. 三、解答题:共2小题10.分析:判断奇偶性首先应看定义域是否关于原点对称,然后再看f (x )与f (-x )的关系.解析:定义域为R ,又f (x )+f (-x )=lg1=0, 即f (-x )=-f (x ),∴f (x )为奇函数. 11.(1)∵2x π=是它的一条对称轴,∴282k ϕππ⋅+=π+. ∴,4k ϕπ=π+又0ϕ-π<<,得4ϕ3π=-; (2)由(1)得3()sin(2)4f x x =-π∴32sin(2)4y x a =-π+,又332644x ππ≤-π≤,∴max min 2,1,y a y a =+=+∴231,a +=∴ 1.a =- 解答题:共2小题C 组1. 解:(1)当6θπ=时,45)21(1)(22-+=-+=x x x x f精品文档实用文档 )(x f ∴在]21,23[--上单调递减,在]21,21[-上单调递增. ∴当21-=x 时,函数)(x f 有最小值45- 当21=x 时,函数)(x f 有最小值41- (2)要使()f x在1[,]22x ∈-上是单调函数,则sin 2θ-≤-或1sin 2θ-≥, 即23sin ≥θ或21sin -≤θ,又[0,2θ∈π), 解得[,][,]3366θπ2π7π11π∈. 2.解析:(1))sin()(22ϕω++=x b a x f ,∴T =π,∴2ω=, 又()f x 的最大值为()412f π=. ∴4=① ,且122cos b 122sina 4π+π=②, 由①、②解出a =2 , b =3.(2)()2sin 24sin(2)3f x x x x π=+=+,∴()()0f f αβ==, ∴4sin(2)4sin(2)33αβππ+=+, ∴22233k απβππ+=++,或22(2)33k αβππ+=π+π-+, 即k αβ=π+ (βα、 共线,故舍去) ,或6k αβπ+=π+, ∴tan()tan()6k αβπ+=π+=()k ∈Z .。

相关文档
最新文档