中考数学B卷题目专项训练
福建中考b卷数学试题及答案

福建中考b卷数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + c (a ≠ 0)B. y = ax^2 + bx + c (a = 0)C. y = ax + b + c (a ≠ 0)D. y = ax + b (a ≠ 0)答案:A2. 已知一个三角形的两边长分别为3和5,第三边长x满足的条件是:A. 2 < x < 8B. 3 < x < 5C. 5 < x < 8D. 2 < x < 10答案:A3. 下列哪个选项是不等式的基本性质?A. 若a > b,则a + c > b + cB. 若a > b,则ac > bc(c > 0)C. 若a > b,则a/c > b/c(c < 0)D. 若a > b,c > 0,则ac > bc答案:A4. 一个圆的半径为r,其面积S与半径r之间的关系是:A. S = πr^2B. S = 2πrC. S = πrD. S = πr^3答案:A5. 函数y = 2x + 3的图象是:A. 一条直线B. 一条曲线C. 一个圆D. 一个椭圆答案:A6. 已知一个样本数据为:2, 3, 4, 5, 6,其平均数是:A. 4B. 3.5C. 3D. 2.5答案:A7. 一个正方体的棱长为a,其体积V与棱长a之间的关系是:A. V = a^3B. V = a^2C. V = 2a^3D. V = 3a^3答案:A8. 一个等腰三角形的底角相等,设底角为x,则顶角为:A. 180° - 2xB. 180° - xC. 90° - xD. 90° + x答案:A9. 已知一个样本数据为:2, 3, 4, 5, 6,其中位数是:A. 3.5B. 4C. 3D. 2.5答案:B10. 一个长方体的长、宽、高分别为a、b、c,其体积V与长、宽、高之间的关系是:A. V = abcB. V = a^2bC. V = ab^2D. V = a^2c答案:A二、填空题(每题3分,共15分)11. 已知一个三角形的两边长分别为4和6,且这两边的夹角为60°,则第三边长为_________。
最新浙江省杭州市中考数学强化训练试卷B卷附解析

浙江省杭州市中考数学强化训练试卷B 卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列成语所描述的事件是必然发生的是( )A .水中捞月B .拔苗助长C .守株待免D .瓮中捉鳖2.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A . 43B . 34C . 53D . 543.二次函数y=x 2-2x +1与坐标轴轴的交点个数是( )A . 0B . 1C . 2D . 34.已知某种品牌电脑的显示器的寿命大约为4210⨯小时,这种显示器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( )5.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2 6.已知关于x 的一元一次方程431x m x -=+的解是负数,则m 的取值范围是( ) A .1m >-B .1m <-C .1m ≥-D .1m ≤- 7. 若a 的值使得224(2)1x x a x ++=+-成立,则a 值为( )A . 5B .4C . 3D . 2 8.如图是5×5 的正方形网络,以点D ,E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( )A .5个B .4个C .3个D .2个9.如图,图形旋转多少度后能与自身重合()A.45°B.60°C.72°D.90°10.三角形的一边长为(3a b+)cm,这条边上的高为2a cm,这个三角形的面积为()A.5a b+ cm2 B.262a ab+ cm2 C.23a ab+ cm2 D.232a ab+ cm211.如图,是一个风筝的平面示意图,四边形ABCD是等腰梯形,E、F、G、H分别是各边的中点.假设图中阴影部分所需布料的面积为S1,其它部分所需布料的面积之和为S2(边缘外的布料不计),则S1与S2的大小关系为()A.S1>S2 B.S1<S2 C.S1=S2 D.不确定12.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为()A.5 B.7 C.16 D.33二、填空题13.已知,⊙O中弦AB⊥CD于E,AE=2,EB=6,ED=3,则⊙O的半径为________.14.已知⊙O的半径为8 cm,OP=5cm,则在过点P的所有弦中,最短的弦长为,最长的弦长为 cm.15.有一间长为20 m,宽为15 m的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,若四周未铺地毯的每边宽度相等,则每边的宽度是.解答题16.已知一次函数y kx b=+(k≠0)的图象经过点(0,1),而且y随x的增大而增大,请你写出一个符合上述条件的函数解析式.17.不等式组52110xx-≥-⎧⎨->⎩的整数解是 .18.三名同学同一天生日,她们做了一个游戏:买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张.则她们拿到的贺卡都不是自己所写的概率是__________.19.如图所示,四边形ABCD为正方形,它被虚线分成了9个小正方形,则△DBE与△DEC 的面积之比为.20.某校共有教师100名,现按职称(高级、一级、其它职称)制成统计图,则其它职称的教师占%.三、解答题21.如图,AB 是⊙O 的直径,CD 切⊙O 于点 C ,若 OA= 1,∠BCD= 60°,求∠BAC 的度数和 AC 的长.22.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P 1(x 1,y 1),P 2(x 2,y 2),其两点间距离公式为22122121()()PP x x y y =-+-,同时,当两点所在的直线在坐标轴上或平行于x 轴或垂直于x 轴时,两点间距离公式可简化成21x x -或21y y -.(1)已知A(3,5)、B(-2,-l),试求A 、B 两点的距离;(2)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为5,点B 的纵坐标为-l ,试求A 、B 两点的距离;(3)已知一个三角形各顶点坐标为A(0,6)、B(-3,2)、C(3,2),你能断定此三角形的形状吗?说明理由.23.如图,分别以Rt ABC ∆的直角边AC ,BC 为边,在Rt ABC ∆外作两个等边三角形ACE ∆和BCF ∆,连结BE ,AF.求证:BE=AF.24.(1)计算后填空:(1)(2)x x -+= ;(3)(1)x x --= ; (2)归纳、猜想后填空:2()()()()x a x b x x ++=++;(3)运用②的猜想结论,直接写出计算结果:(2)()x x m ++= ;(4)根据你的理解,填空:2310()()x x --=.25.如图,在ABC △中,7050A B CD ∠=∠=,,平分ACB ∠.求∠ADC 的度数.26.编号是1~99的99张卡片中,任意取1张,求:(1)取得的卡片号是偶数的概率;(2)取得的卡片号是6的倍数的概率.27.如图所示,历史上最有名的军师诸葛孔明,率精兵与司马仲对阵,孑L 明一挥羽扇. 军阵瞬时由图①变为图②.其实只移动了其中3“骑”而已,请问如何移动?28.利用等式的性质解下列方程,并写出检验过程.B CA D(1)9x=8x-6(2)253 3x-=(3)11 232 x+=29.计算下列各式的值:(1)2581;(2)2253-;(3)3338.30.如图,某班教室中有9排5列座位,请根据下列四位同学的描述.在图中标出“5号”孙靓的位置.1号同学说:“孙靓在我的后方.”2号同学说:“孙靓在我的左后方.”3号同学说:“孙靓在我的左前方.”4号同学说:“孙靓离1号同学和3号同学的距离一样远.”【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.C4.C5.B6.B7.C8.B9.C10.C11.C12.B二、填空题13.6514.239,1615.2.5m16.y=2x+1(答案不唯一)17.2,318.119.31:220.65三、解答题21.连结 OC,∵CD 是⊙O的切线,∠BCD= 60°,∴∠BCO=30°.∵AB 是⊙O的直径,∴∠OCA=60°,∵ AO=CO,∴△AOC是正三角形,∴∠BAC=60°,∵OA=1,∴AC=122.61(2)6;(3)等腰三角形23.证明△ACF≌△ECB24.(1)232x x ++,223x x -+; (2)a b +,ab ; (3)2(2)2x m x m +++; (4)(5)(2)x x -+ 25.80°26.(1)9949;(2)9916. 27.略28.(1)6x =-检验略 (2)x =12 (3)13x = 29.(1)59;(2) 4;(3)32 30.如图:。
中考数学B卷填空题专题

中考数学B 卷填空专项练习1.在Rt △ABC 中,∠C =90°,AC =6,cot B =43,P 、Q 分别是边AB 、BC 上的动点,且AP=BQ .若PQ 的垂直平分线过点C ,则AP 的长为_____________.2.如图,在△ABC 中,AB =AC =5,BC =6,D 是AC 边的中点,E 是BC 边上一动点(不与端点重合),EF ∥BD 交AC 于F ,交AB 延长线于G ,H 是BC 延长线上一点,且CH =BE ,连接FH .(1)连接AE ,当以GE 为半径的⊙G 和以FH 为半径的⊙F 相切时,tan ∠BAE 的值为____________;(2)当△BEG 与△FCH 相似时,BE 的长为_________________.3.在直角梯形ABCD 中,AD ∥BC ,∠C =90°,AD =1,AB =5,CD =4,P 是腰AB 上一动点,PE ⊥CD 于E ,PF ⊥AB 交CD 于F ,连接PD ,当AP =________________________时,△PDF 是等腰三角形.4.如图,∠AOB =30°,n 个半圆依次相外切,它们的圆心都在射线OA 上,并与射线OB 相切.设半圆C 1、半圆C 2、半圆C 3、…、半圆C n 的半径分别是r 1、r 2、r 3、…、r n ,则r 2012r 2011=___________.AB CPQ ABC DE F HA B C P DE F5.如图,n 个半圆依次外切,它们的圆心都在x 轴的正半轴上,并与直线y =33x 相切.设半圆C 1、半圆C 2、半圆C 3、…、半圆C n 的半径分别是r 1、r 2、r 3、…、r n ,则当r 1=1时,r 3=___________,r 2012=___________.6.如图,在△ABC 中,AB =AC =10cm ,BC =16cm ,长为4cm 的动线段DE (端点D 从点B 开始)沿BC 边以1cm /s 的速度向点C 运动,当端点E 到达点C 时运动停止.过点E 作EF ∥AC 交AB 于点F ,连接DF ,设运动的时间为t 秒.(1)当t =_______________秒时,△DEF 为等腰三角形;(2)设M 、N 分别是DF 、EF 的中点,则在整个运动过程中,MN 所扫过的面积为___________cm 2.7.如图,在平面直角坐标系中,直线l 1:y =3 4 x 与直线l 2:y =- 4 3 x + 203相交于点A ,直线l 2与两坐标轴分别相交于点B 和点C ,点P 从点O 出发,以每秒1个单位的速度沿线段OB 向点B 运动;同时点Q 从点B 出发,以每秒4个单位的速度沿折线B →O →C →B 的方向向点B 运动,过点P 作直线PM ⊥OB ,分别交l 1、l 2于点M 、N ,连接MQ ,设点P 、Q 运动的时间为t 秒(t >0).(1)点Q 在OC 上运动时,当t =_______________秒时,四边形CQMN 是平行四边形; (2)当t =_______________秒时,MQ ∥OB .8.如图,正方形ABCD中,点O为AD上一动点(0<OD<12AD),以O为圆心,OA长为半径的⊙O交边CD于点M,过点M作⊙O的切线交边BC与点N,若△CMN的周长为8,则正方形ABCD的边长为____________.9.在△ABC中,AB=11,AC=7,D为BC上一点,且DC=2BD,则AD的取值范围是________________.10.若抛物线y=2x2-px+4p+1中不论p取何值时都经过一定点,则该定点坐标为______________.11.如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=14OA=2,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两个动点,且始终保持∠DEF=45°.设OE=x,AF=y,则y与x的函数关系式为____________________;当△AEF是等腰三角形时,将△AEF沿EF对折得到△A′EF,则△A′EF与五边形OEFBC重叠部分的面积为____________________.12.已知函数y=|x2-4x+3|,若直线y=m与该函数图象至少有三个公共点,则实数m的取值范围是_______________;若直线y=kx与该函数图象有四个公共点,则实数k的取值范围是_______________.13.已知直线y=1与函数y=x2-|x|+a的图象有四个公共点,则实数a的取值范围是_______________.14.对于每个x,函数y是y1=-x+6,y2=-2x2+4x+6这两个函数中的较小值,则函数y 的最大值是__________.15.对于每个x,函数y是y1=3x,y2=x+2,y3=8x这三个函数中的最小值,则函数y的最大值是__________.16.如图,边长为1的正方形ABCD 中,以A 为圆心,1为半径作BD ︵,将一块直角三角板的直角顶点P 放置在BD ︵(不包括端点B 、D )上滑动,一条直角边通过顶点A ,另一条直角边与边BC 相交于点Q ,连接PC ,则△CPQ 周长的最小值为____________.17.如图,在直角坐标系中,点A 在y 轴负半轴上,点B 、C 分别在x 轴正、负半轴上,AO =8,AB =AC ,sin ∠ABC =45,点D 在线段AB 上,连结CD 交y 轴于点E ,若S △COE =S △ADE,则过B 、C 、E 三点的抛物线的解析式为18.两张大小相同的纸片,每张都分成7个大小相同的矩形,如图放置,重合的顶点记作A ,顶点C 在另一张纸的分隔线上,若BC =28,则AB 的长是____________.19.如图,ABCD 是一张矩形纸片,AB =5,AD =1.在边AB 上取一点E ,在边CD 上取一点F ,将纸片沿EF 折叠,BE 与DF 交于点G ,则△EFG 面积的最大值为____________.20.如图,△AOB 为等腰直角三角形,斜边OB 在x 轴上,一次函数y =3x -4和反比例函数y =k x (x >0)的图象都经过点A .点P 是x 轴上一动点,点Q 是反比例函数y =kx(x >0)图象上一动点,若△PAQ 为等腰直角三角形,则点Q 的坐标为________________________.AP BC DQAB CB D AC BD A EF C G21.如图,矩形ABCD 中,BE ⊥AC 于E ,连接DE ,若△DEC 是等腰三角形,则ABAD的值为_________ ______________.22.如图,矩形ABCD 是一个长为1000米、宽为600米的货场,A 、D 是入口.现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台Q ,则铺设公路AP 、DP 以及PQ 的长度之和的最小值为_________________米.23.如图,梯形ABCD 中,AD ∥BC ,点E 、F 是腰AB 上的点,AE =BF ,CE 与DF 相交于O ,若梯形ABCD 的面积为34cm 2,△OCD 的面积为11cm 2,则阴影部分的面积为______________cm 2.24.在平面直角坐标系中,点A (0,2),点B (3,1),点P 是x 轴上一动点,以AP 为边作等边△APQ (点A 、P 、Q 逆时针排列),若以A 、O 、Q 、B 为顶点的四边形是梯形,则点P 的坐标为________________________AB CDEC25.如图,⊙O 的直径AB 与弦CD 相交于点E ,交角为45°,且CE2+DE2=8,则AB 等于__________.26.在△ABC 中,AB =15,AC =13,高AD =12,设能完全覆盖△ABC 的圆的半径为r ,则r 的最小值是________________.27.对于每个非零自然数n ,抛物线y =x2-2n +1n (n +1)x +1n (n +1)与x 轴交于A n 、B n 两点,以A n B n 表示这两点间的距离,则A 1B 1+A 2B 2+A 3B 3+…+A 2011B 2011的值等于_____________.28.如图,直线l 与⊙O 相切于点D ,直角三角板ABC 的60°角的顶点B 在直线l 上滑动,斜边AB 始终与⊙O 相切.若⊙O 的半径为2,BC =2,那么点B 滑动的最大距离为______________.29.如图,四边形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2均为正方形,点A 1,A 2,A 3在直线y =kx +b (k >0)上,点C 1,C 2,C 3在x 轴上,若点B 3的坐标为(194,94),则k =________,b =________.30朝上洗匀后,第一次随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,放回洗匀后第二次再随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的b ,则一次函数y =kx +bA B31.如图,在△ABC 中,AB =AC ,AD ⊥BC ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .若EFBE=ab,则GEBE等于___________.32.已知a ﹑b 均为正整数,且b -a =2011,若关于x 方程x2-ax +b =0有正整数解,则a 的最小值是___________.33.如图,⊙O 的半径为4,M 是AB ︵的中点,弦MN =43,MN 交AB 于点C ,则∠ACM =__________°.34.如图,延长四边形ABCD 的四边分别至E 、F 、G 、H ,使AB =nBE ,BC =nCF ,CD =nDG ,DA =nAH (n >0),则四边形EFGH 与四边形ABCD 的面积之比为________________(用含n 的代数式表示).35.如图,一根直立于水平地面上的木杆AB 在灯光下形成影子AC (AC >AB ),当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.已知AE =5m ,在旋转过程中,影长的最大值为5m ,最小值为3m,则路灯EF 的高度为____________m .36.如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕点B 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为BC (假定BCABCDEF GA BCD EFG H>AB ),影长的最大值为m ,最小值为n ,那么下列结论:①m >BC ;②m =BC ;③n =AB ;④影子的长度先增大后减小.其中,正确结论的序号是________________.37.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).那么,转动两次转盘,第一次得到的数与第二次得到的数绝对值相等的概率为_____________.38.将分别标有数字1,4,8的三张卡片洗匀后,背面朝上放在桌面上。
2024年重庆市中考数学试题B卷+答案解析

2024年重庆市中考数学试题B 卷+答案解析(试题部分)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫−− ⎪⎝⎭,对称轴为2b x a =−. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 下列各数中最小的数是( )A. 1−B. 0C. 1D. 22. 下列标点符号中,是轴对称图形的是( )A. B. C. D.3. 反比例函数10y x =−的图象一定经过的点是( ) A. ()1,10 B. ()2,5− C. ()2,5 D. ()2,8 4. 如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A. 35︒B. 45︒C. 55︒D. 125︒ 5. 若两个相似三角形的相似比为1:4,则这两个三角形面积的比是( )A. 1:2B. 1:4C. 1:8D. 1:16 6.的值应在( )A. 8和9之间B. 9和10之间C. 10和11之间D. 11和12之间 7. 用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是( )A. 20B. 21C. 23D. 26 8. 如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为( )A. 28︒B. 34︒C. 56︒D. 62︒9. 如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为( )A. 2B.C.D. 12510. 已知整式1110:n n n n M a x a x a x a −−++++,其中10,,,n n a a −为自然数,n a 为正整数,且1105n n n a a a a −+++++=.下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:023−+=______.12. 甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.13. 若正多边形的一个外角是45°,则该正多边形的边数是_________.14. 重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.15. 如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .若2BC =,则AD 的长度为________.16. 若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪−<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y −−=++的解均为负整数,则所有满足条件的整数a 的值之和是________. 17. 如图,AB 是O 的直径,BC 是O 的切线,点B 为切点.连接AC 交O 于点D ,点E 是O 上一点,连接BE ,DE ,过点A 作AF BE ∥交BD 的延长线于点F .若5BC =,3CD =,F ADE ∠=∠,则AB 的长度是________;DF 的长度是________.18. 一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b −=−=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()()312a a a a −+−+;(2)22241244x x x x −⎛⎫+÷ ⎪−−+⎝⎭. 20. 数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ≤≤,B .8090x ≤<,C .7080x ≤<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:=a ________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x ≥的总共有多少人?21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹) (2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④. 22. 某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?23. 如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质; (3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2) 24. 如图,A ,B ,C ,D 分别是某公园四个景点,B 在A 的正东方向,D 在A 的正北方向,且在C 的北偏西60︒方向,C 在A 的北偏东30︒方向,且在B 的北偏西15︒方向,2AB =千米.(参考数据:1.41≈ 1.73≈2.45≈)(1)求BC 的长度(结果精确到0.1千米);(2)甲、乙两人从景点D 出发去景点B ,甲选择的路线为:D C B −−,乙选择的路线为:D A B −−.请计算说明谁选择的路线较近?25. 如图,在平面直角坐标系中,抛物线23y ax bx =+−与x 轴交于()1,0A −,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC 2PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠−∠=︒,请直接写出所有符合条件的点N 的坐标.26. 在Rt ABC △中,90ACB ∠=︒,AC BC =,过点B 作BD AC ∥.(1)如图1,若点D 在点B 的左侧,连接CD ,过点A 作AE CD ⊥交BC 于点E .若点E 是BC 的中点,求证:2AC BD =;(2)如图2,若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,连接BF 并延长交AC 于点G ,连接CF .过点F 作FM BG ⊥交AB 于点M ,CN 平分ACB ∠交BG 于点N ,求证:2AM CN BD =+; (3)若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,且AF AC =.点P 是直线AC 上一动点,连接FP ,将FP 绕点F 逆时针旋转60︒得到FQ ,连接BQ ,点R 是直线AD 上一动点,连接BR ,QR .在点P 的运动过程中,当BQ 取得最小值时,在平面内将BQR 沿直线QR 翻折得到TQR △,连接FT .在点R 的运动过程中,直接写出FT CP的最大值.2024年重庆市中考数学试题B 卷+答案解析(答案详解)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫−− ⎪⎝⎭,对称轴为2b x a =−. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 下列各数中最小的数是( )A. 1−B. 0C. 1D. 2【答案】A【解析】【分析】根据正数大于0,0大于负数,即可作出判断.【详解】1−是负数,其他三个数均是非负数,故1−是最小的数;故选:A .【点睛】本题考查了有理数大小的比较:负数小于一切非负数,明确此性质是关键.2. 下列标点符号中,是轴对称图形的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A .该标点符号是轴对称图形,故此选项符合题意;B .该标点符号不是轴对称图形,故此选项不符合题意;C .该标点符号不是轴对称图形,故此选项不符合题意;D .该标点符号不是轴对称图形,故此选项不符合题意.故选:A .3. 反比例函数10y x =−的图象一定经过的点是( ) A. ()1,10B. ()2,5−C. ()2,5D. ()2,8 【答案】B【解析】【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当1x =时,10101y =−=−,图象不经过()1,10,故A 不符合要求; 当2x =−时,1052y =−=−,图象一定经过()2,5−,故B 符合要求; 当2x =时,1052y =−=−,图象不经过()2,5,故C 不符合要求; 当2x =时,1052y =−=−,图象不经过()2,8,故D 不符合要求; 故选:B .4. 如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A. 35︒B. 45︒C. 55︒D. 125︒【答案】C【解析】 【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒−∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .5. 若两个相似三角形的相似比为1:4,则这两个三角形面积的比是( )A. 1:2B. 1:4C. 1:8D. 1:16 【答案】D【解析】【分析】本题主要考查了相似三角形的性质,根据相似三角形的面积之比等于相似比的平方进行求解即可.【详解】解:∵两个相似三角形的相似比为1:4,∴这两个三角形面积的比是221:41:16=,故选:D .6. 的值应在( )A. 8和9之间B. 9和10之间C. 10和11之间D. 11和12之间 【答案】C【解析】【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.【详解】解:6=,而45<=<,∴10611<<,故答案为:C7. 用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是( )A. 20B. 21C. 23D. 26【答案】C【解析】 【分析】本题考查了图形类的规律探索,解题的关键是找出规律.利用规律求解.通过观察图形找到相应的规律,进行求解即可.【详解】解:第①个图案中有()131112+⨯−+=个菱形,第②个图案中有()132115+⨯−+=个菱形,第③个图案中有()133118+⨯−+=个菱形,第④个图案中有()1341111+⨯−+=个菱形,∴第n 个图案中有()131131n n +−+=−个菱形,∴第⑧个图案中菱形的个数为38123⨯−=,故选:C .8. 如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为( )A. 28︒B. 34︒C. 56︒D. 62︒【答案】B【解析】 【分析】本题考查了圆周角定理,等腰三角形的性质等知识,利用圆周角定理求出COB ∠,根据等腰三角形的三线合一性质求出AOB ∠,等边对等角然后结合三角形内角和定理求解即可.【详解】解:∵28D ∠=︒,∴256BOC D ∠=∠=︒,∵OC AB ⊥,OA OB =,∴2112AOB BOC ∠=∠=︒,OAB OBA ∠=∠, ∴()1180342OAB AOB ∠=︒−∠=︒, 故选:B .9. 如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为( )A. 2B.C.D. 125【答案】D【解析】 【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,先由正方形的性质得到904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,再证明()SAS ABE ADF △≌△得到AE AF =,进一步证明()SAS AEM AFM △≌△得到EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=−=−,,在Rt CEM △中,由勾股定理得()()222134x x +=+−,解方程即可得到答案. 【详解】解:∵四边形ABCD 是正方形,∴904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,又∵1BE DF ==,∴()SAS ABE ADF △≌△,∴AE AF =,∵AM 平分EAF ∠,∴EAM FAM ∠=∠,又∵AM AM =,∴()SAS AEM AFM △≌△,∴EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=−=−,,在Rt CEM △中,由勾股定理得222EM CE CM =+,∴()()222134x x +=+−, 解得125x =, ∴125DM =, 故选:D .10. 已知整式1110:n n n n M a x a x a x a −−++++,其中10,,,n n a a −为自然数,n a 为正整数,且1105n n n a a a a −+++++=.下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3 【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a −为自然数,n a 为正整数,且1105n n n a a a a −+++++=,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:023−+=______.【答案】3【解析】【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.12. 甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________. 【答案】13【解析】【分析】本题考查了列表法与树状图法:画树状图展示所有9种等可能的结果数,找出甲、乙恰好游玩同一景点的结果数,然后根据概率公式求解.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,他们选择同一个景点有3种, 故他们选择同一个景点的概率是:3193=, 故答案为:13. 13. 若正多边形的一个外角是45°,则该正多边形的边数是_________.【答案】8【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用36045︒÷︒可求得边数. 【详解】解:多边形外角和是360度,正多边形的一个外角是45︒,360458∴︒÷︒=即该正多边形的边数是8,故答案为:8.【点睛】本题主要考查了多边形外角和以及多边形的边数,解题的关键是掌握正多边形的各个内角相等,各个外角也相等.14. 重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.【答案】()22001401x +=【解析】【分析】本题主要考查了一元二次方程的实际应用,设第二、第三两个季度安全运行架次的平均增长率为x ,则第二季度低空飞行航线安全运行了()2001x +架次,第三季度低空飞行航线安全运行了()22001x +架次,据此列出方程即可.【详解】解:设第二、第三两个季度安全运行架次的平均增长率为x ,由题意得,()22001401x +=,故答案为:()22001401x +=.15. 如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .若2BC =,则AD 的长度为________.【答案】2【解析】【分析】本题主要考查了等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,先根据等边对等角和三角形内角和定理求出72C ABC ∠=∠=︒,再由角平分线的定义得到36ABD CBD ∠=∠=︒,进而可证明A ABD BDC C ==∠∠,∠∠,即可推出2AD BC ==.【详解】解:∵在ABC 中,AB AC =,36A ∠=︒, ∴180722A C ABC ︒︒−∠∠=∠==, ∵BD 平分ABC ∠, ∴1362ABD CBD ABC ∠=∠=∠=︒, ∴72A ABD BDC A ABD C ==+=︒=∠∠,∠∠∠∠,∴AD BD BD BC ==,,∴2AD BC ==,故答案为:2.16. 若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪−<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y −−=++的解均为负整数,则所有满足条件的整数a 的值之和是________. 【答案】12【解析】【分析】本题主要考查了根据分式方程解的情况求参数,根据不等式组的解集求参数,先解不等式组中的两个不等式,再根据不等式组的解集求出2a >;解分式方程得到102a y −=,再由关于y的分式方程8122a y y y −−=++的解均为负整数,推出10a <且6a ≠且a 是偶数,则210a <<且6a ≠且a 是偶数,据此确定符合题意的a 的值,最后求和即可. 【详解】解:2133423x x x a +⎧≤⎪⎨⎪−<+⎩①②解不等式①得:4x ≤,解不等式②得:2x a <+ ,∵不等式组的解集为4x ≤,∴24a +>,∴2a >; 解分式方程8122a y y y −−=++得102a y −=, ∵关于y 的分式方程8122a y y y −−=++的解均为负整数, ∴1002a −<且102a −是整数且102202a y −+=+≠, ∴10a <且6a ≠且a 是偶数,∴210a <<且6a ≠且a 是偶数,∴满足题意的a 的值可以为4或8,∴所有满足条件的整数a 的值之和是4812+=.故答案为:12.17. 如图,AB 是O 的直径,BC 是O 的切线,点B 为切点.连接AC 交O 于点D ,点E 是O 上一点,连接BE ,DE ,过点A 作AF BE ∥交BD 的延长线于点F .若5BC =,3CD =,F ADE ∠=∠,则AB 的长度是________;DF 的长度是________.【答案】 ①.203##263②. 83##223 【解析】 【分析】由直径所对的圆周角是直角得到90ADB BDC ∠=∠=︒,根据勾股定理求出4BD =,则3cos 5CD C BC ==,由切线的性质得到90ABC ∠=︒,则可证明C ABD ∠=∠,解直角三角形即可求出20cos 3BD AB ABD ==∠;连接AE ,由平行线的性质得到BAF ABE ∠=∠,再由F ADE ∠=∠,ADE ABE ∠=∠,推出F BAF ∠=∠,得到203BF AB ==,则208433DF BF BD =−=−=. 【详解】解:∵AB 是O 的直径,∴90ADB BDC ∠=∠=︒,在Rt BDC中,由勾股定理得4BD ==, ∴3cos 5CD C BC ==, ∵BC 是O 的切线,∴90ABC ∠=︒,∴90C CBD CBD ABD +=+=︒∠∠∠∠,∴C ABD ∠=∠,在Rt △ABD 中,4203cos 35BD AB ABD ===∠;如图所示,连接AE ,∵AF BE ∥,∴BAF ABE ∠=∠,∵F ADE ∠=∠,ADE ABE ∠=∠,∴F BAF ∠=∠, ∴203BF AB ==, ∴208433DF BF BD =−=−=; 故答案为:203;83. 【点睛】本题主要考查了切线的性质,同弧所对的圆周角相等,直径所对的圆周角是直角,勾股定理,解直角三角形,等腰三角形的判定等等,证明F BAF ∠=∠是解题的关键.18. 一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b −=−=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是________.【答案】 ①. 3456 ②. 6273【解析】【分析】本题主要考查了新定义,根据新定义得到9a d b c +=+=,再由1b a c b −=−=可求出a 、b 、c 、d 的值,进而可得答案;先求出9999099M a b =++,进而得到()36981313F M ab cda b a ++++=++,根据()13F M ab cd ++是整数,得到369813a b a ++++是整数,即3613a b ++是整数,则36a b ++是13的倍数,求出8a ≤,再按照a 从大到小的范围讨论求解即可. 【详解】解:∵abcd 是一个“友谊数”,∴9a d b c +=+=,又∵1b a c b −=−=,∴45b c ==,,∴36a d ==,,∴这个数为3456; ∵M abcd =是一个“友谊数”,∴100010010M a b c d =+++()10001001099a b b a =++−+−9999099a b =++,∴()11110119M F M a b ==++, ∴()13F M ab cd++ 1111011101013a b a b c d ++++++= ()111101*********a b a b b a+++++−+−= 12011013a b ++= 1173104613a ab ++++= 369813a b a ++=++, ∵()13F M ab cd++是整数,∴369813a b a ++++是整数,即3613a b ++是整数, ∴36a b ++是13的倍数,∵a b c d 、、、都是不为0的正整数,且9a d b c +=+=,∴8a ≤,∴当8a =时,313638a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当7a =时,283635a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当6a =时,253632a b ≤++≤,此时可以满足36a b ++是13的倍数,即此时2b =,则此时37d c ==,,∵要使M 最大,则一定要满足a 最大,∴满足题意的M 的最大值即为6273;故答案为:3456;6273.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()()312a a a a −+−+;(2)22241244x x x x −⎛⎫+÷ ⎪−−+⎝⎭. 【答案】(1)42a -(2)2x x + 【解析】【分析】本题主要考查了整式的混合计算,分式的混合计算∶(1)先根据单项式乘以多项式的计算法则和多项式乘以多项式的计算法则去括号,然后合并同类项即可得到答案;(2)先把小括号内的式子通分,再把除法变成乘法后约分化简即可得到答案.【小问1详解】解:()()()312a a a a −+−+22322a a a a a =−+−+−42a =−;【小问2详解】 解:22241244x x x x −⎛⎫+÷ ⎪−−+⎝⎭ ()()()2222222x x x x x +−−+=÷−− ()()()22222x x x x x −=⋅−+− 2x x =+. 20. 数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ≤≤,B .8090x ≤<,C .7080x ≤<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:=a ________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x≥的总共有多少人?【答案】(1)88;87;40(2)八年级学生数学文化知识较好,理由见解析(3)310人【解析】【分析】本题主要考查了中位数,众数,用样本估计总体,扇形统计图等等:(1)根据中位数和众数的定义可求出a、b的值,先求出把年级A组的人数,进而可求出m的值;(2)根据八年级学生成绩的中位数和众数都比七年级学生成绩的高即可得到结论;(3)用七年级的人数乘以七年级样本中优秀的人数占比求出七年级优秀人数,用八年级的人数乘以八年级样本中优秀的人数占比求出八年级优秀人数,再二者求和即可得到答案.【小问1详解】解:八年级C组的人数为1020%2⨯=人,而八年级B组有4人,则把八年级10名学生的成绩按照从低到高排列,处在第5名和第6名的成绩分别为88分,88分,∴八年级学生成绩的中位数8888882a+==;∵七年级10名学生成绩中,得分为87分的人数最多,∴七年级的众数87b=;由题意得,1041020%%100%40%10m−−⨯=⨯=,∴40m=;故答案为:88;87;40;【小问2详解】解:八年级学生数学文化知识较好,理由如下:∵两个年级10名学生的平均成绩相同,但是八年级学生成绩的中位数和众数都比七年级学生成绩的高,∴八年级学生数学文化知识较好;【小问3详解】解:350040040%31010⨯+⨯=人,∴估计该校七、八年级学生中数学文化知识为“优秀”的总共有310人.21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹) (2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析 (2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图: (1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22. 某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?【答案】(1)A 种外墙漆每千克的价格为26元,则B 种外墙漆每千克的价格为24元.(2)甲每小时粉刷外墙的面积是25平方米.【解析】【分析】本题考查的是分式方程的应用,一元一次方程的应用,理解题意建立方程是解本题的关键; (1)设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x −元,再根据总费用为15000元列方程求解即可;(2)设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;利用乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.从而建立分式方程求解即可.【小问1详解】解:设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x −元,∴()300300215000x x +−=,解得:26x =,∴224x −=,答:A 种外墙漆每千克的价格为26元,B 种外墙漆每千克的价格为24元.【小问2详解】设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;。
九年级数学B卷复习题

九年级B 卷专题训练【21题题型】21.已知关于x 的方程224220x x p p --++=的一个根为p ,则p = _________. 21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________.21.设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.21. 已知y = 31x – 1,那么31x 2 – 2xy + 3y 2– 2的值是 .21.已知x 是一元二次方程2310x x +-=的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 . 21.(2010安徽芜湖)已知x 1、x 2为方程x 2+3x +1=0的两实根,则x 13+8x 2+20=__________. 21.设1x 、2x 是一元二次方程0342=-+x x 的两个根,且()23522221=+-+a x x x ,则a =21.设x 1、x 2是一元二次方程0352=-+x x 的两个实根,且,4)36(22221=+-+a x x x则a =21.设a,b 是方程0201522=-+x x 的两个实数根,则b a a ++32的值为 。
21、已知关于x 的方程0)cos 1(2sin 432=-+⋅-ααx x 有两个不相等的实数根,α为锐角,那么α的取值范围是21.实数a 、b 满足015,01522=+-=+-a a b b ,则=+baa b 21、已知a 是关于x 的一元二次方程0322=--x x 的实数根,那么代数式aa 212-的值为_ ___。
21、若是关于1x 、2x 是关于x 的的一元二次方程012=+++m mx x 的两个实数根,且62221=+x x ,则m 的值为 。
21..已知012=--a a ,则=+-20093a a .21.已知不等式组2123x a x b -<⎧⎨->⎩的解集是11x -<<,则)1)(1(-+b a 的值等于 .21.已知m bac a c b c b a =+=+=+232323 ,且0≠++c b a ,那么直线m mx y -=一定不通过...第 象限. 21.若0132=+-x x ,则1242++x x x的值为____________.21.若0121322=++++-b b a a ,则b a a -+221= .21.已知22222()()60a b a b +-+-=, 则=+22b a ___ ___. 21、若041=-+-a b ,且一元二次方程02=++b ax kx 有两个实数根,则k 的取值范围是________;21.已知正数a 、b 、c 满足a2+c2=16,b2+c2=25,则k =a2+b2的取值范围是_________________.21.已知m ,n 是关于x 的方程x2-2ax +a +6=0的两实根,则(m -1)2+(n -1)2的最小值为_____________.21.已知实数a ≠b ,且满足(a +1)2=3-3(a +1),3(b +1)=3-(b +1)2,则ba a ab b +的值为__________.21.若βα、是关于x 的方程01200520062=+-x x 的两个实数根, 则βαα+-200420062的值为 。
成都初三数学b卷试题及答案

成都初三数学b卷试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x+3=7的解?A. x=1B. x=2C. x=3D. x=42. 一个数的平方是36,这个数是?A. 6B. ±6C. -6D. 363. 一次函数y=2x+1的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 圆的面积公式是πr²,其中r是?A. 直径B. 半径C. 周长D. 面积5. 一个长方体的长、宽、高分别为3cm、2cm、1cm,其体积是?B. 9cm³C. 12cm³D. 18cm³6. 一个角的补角是120°,那么这个角的度数是?A. 60°B. 30°C. 90°D. 120°7. 函数y=3x-2的图象与x轴交点的横坐标是?A. 2/3B. -2/3C. 2D. -28. 一个三角形的内角和是?A. 90°B. 180°C. 360°D. 720°9. 一个数的立方是-27,这个数是?A. -3B. 3C. ±3D. 910. 一个圆的直径是10cm,那么它的半径是?A. 5cmC. 15cmD. 20cm二、填空题(每题3分,共30分)1. 一个数的相反数是-5,那么这个数是______。
2. 如果一个角是直角的一半,那么这个角的度数是______。
3. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的面积是______。
4. 一个数的绝对值是4,这个数可以是______。
5. 一个长方体的体积是64cm³,长和宽都是4cm,那么它的高是______。
6. 一个数的平方根是2,那么这个数是______。
7. 一个数的立方根是-2,那么这个数是______。
8. 一个直角三角形的两条直角边长分别是3cm和4cm,那么它的斜边长是______。
中考专题2022年河北省石家庄市中考数学模拟专项测试 B卷(含答案及详解)

2022年河北省石家庄市中考数学模拟专项测试 B 卷考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知2a ++3b -=0,则a-b 的值是( ) . A .-1 B .1 C .-5 D .52、如图,AD 是ABC 的边BC 上的中线,7,5AB AD ==,则AC 的取值范围为( )A .515AC <<B .315AC << C .317AC <<D .517AC <<3、把分式2222x x x x -+-+-化简的正确结果为( ) A .284x x --B .284xx -+C .284x x -D .22284x x +-4、把 ()()()()5315+-+--+- 写成省略括号后的算式为 ( )·线○封○密○外A .5315--+-B .5315---C .5315++-D .5315-+-5、如图,在数轴上有三个点A 、B 、C ,分别表示数5-, 3.5-,5,现在点C 不动,点A 以每秒2个单位长度向点C 运动,同时点B 以每秒1.5个单位长度向点C 运动,则先到达点C 的点为( )A .点AB .点BC .同时到达D .无法确定6、石景山某中学初三()1班环保小组的同学,调查了本班10名学生自己家中一周内丢弃的塑料袋的数量,数据如下(单位:个)10,10,9,11,10,7,10,14,7,12.若一个塑料袋平铺后面积约为20.25m ,利用上述数据估计如果将全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为( ) A .210m B .225mC .240mD .2100m7、若把分式2x yx y+-中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .不变 C .缩小10倍 D .缩小20倍8、计算-1-1-1的结果是( ) A .-3B .3C .1D .-19、如图是三阶幻方的一部分,其每行、每列、每条对角线上三个数字之和都相等,则对于这个幻方,下列说法错误的是( )A .每条对角线上三个数字之和等于3aB .三个空白方格中的数字之和等于3aC .b 是这九个数字中最大的数D .这九个数字之和等于9a10、某种速冻水饺的储藏温度是182C C -±,四个冷藏室的温度如下,不适合储藏此种水饺是( ) A .17C -B .22C -C .18C -D .19C -第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,2,,AB AC B C BD CE ∠∠====,F 是AC 边上的中点,则AD EF-________1.(填“>”“=”或“<”)2、如图,半圆O 的直径AE =4,点B ,C ,D 均在半圆上.若AB =BC ,CD =DE ,连接OB ,OD ,则图中阴影部分的面积为________.3、如图,在高2米,坡角为27的楼梯表面铺地毯,地毯的长度至少需要________米.(精确到0.1米)4、如图,圆心角∠AOB =20°,将 AB 旋转n °得到CD ,则CD 的度数是______度.·线○封○密○外5、如图,若满足条件________,则有AB ∥CD ,理由是_________________________.(要求:不再添加辅助线,只需填一个答案即可)三、解答题(5小题,每小题10分,共计50分)1、对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得(0MP kNP k =>) ,则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上, Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点 Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示-4,-2,2.(1)点B 是点A 到点C 的______倍分点,点C 是点B 到点A 的______倍分点; (2)点B 到点C 的3倍分点表示的数是______;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的2倍分点,写出x 的取值范围.2、如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =,抛物线的对称轴与直线BC 交于点M ,与x 轴交于点N .(1)求抛物线的解析式;(2)若点P 是对称轴上的一个动点,是否存在以P 、C 、M 为顶点的三角形与MNB 相似?若存在,求出点P 的坐标,若不存在,请说明理由.(3)D 为CO 的中点,一个动点G 从D 点出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .要使动点G 走过的路程最短,请找出点E 、F 的位置,写出坐标,并求出最短路程. 3、当x 为何值时,333x -和3112x --互为相反数. 4、在平面直角坐标系中,抛物线222y x mx m =-+(m 为常数)的顶点为M ,抛物线与直线1x m =+交于点A ,与直线3x =-交于点B ,将抛物线在A 、B 之间的部分(包含A 、B 两点且A 、B 不重合)记作图象G . (1)当1m =-时,求图象G 与x 轴交点坐标. (2)当AB ∥x 轴时,求图象G 对应的函数值y 随x 的增大而增大时x 的取值范围. (3)当图象G 的最高点与最低点纵坐标的差等于1时,求m 的取值范围. (4)连接AB ,以AB 为对角线构造矩形AEBF ,并且矩形的各边均与坐标轴垂直,当点M 与图象G 的最高点所连线段将矩形AEBF 的面积分为1:2两部分时,直接写出m 值.5、如图是函数214y x =-+的部分图像.·线○封○密·○外(1)请补全函数图像;(2)在图中的直角坐标系中直接画出221y x =+的图像,然后根据图像回答下列问题:①当x 满足 时,12y y =,当x 满足 时,12y y >; ②当x 的取值范围为 时,两个函数中的函数值都随x 的增大而增大?-参考答案-一、单选题 1、C 【分析】根据绝对值具有非负性可得a+2=0,b-3=0,解出a 、b 的值,然后再求出a-b 即可. 【详解】解:由题意得:a+2=0,b-3=0, 解得:a= -2,b=3,a-b=-2-3=-5, 故选:C . 【点睛】本题考查绝对值,关键是掌握绝对值的非负性. 2、C 【分析】延长AD 至点E ,使5DE AD ==,连接CE ,证明ABD ECD ≌,可得7CE AB ==,然后运用三角形三边关系可得结果. 【详解】 如图,延长AD 至点E ,使5DE AD ==,连接CE .∵AD 为ABC 的BC 边上的中线,∴BD CD =, 在ABD △和ECD 中,,,,AD ED ADB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩·线○封○密○外∴()SAS ABD ECD ≌, ∴7CE AB ==.在ACE 中,AE EC AC AE CE -<<+, 即557557AC +-<<++, ∴317AC <<, 故选:C . 【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,根据中点倍长法构造全等三角形是解题的关键. 3、A 【分析】先确定最简公分母是(x +2)(x −2),然后通分化简. 【详解】2222x x x x -+-+-=()()222(2)(2)2x x x x ---++=284x x --; 故选A . 【点睛】分式的加减运算中,异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减. 4、D 【分析】先把算式写成统一加号和的形式,再写成省略括号的算式即可. 【详解】把()()()()()()()5315=+5315+-+--+-+-+++-统一加号和,再把()()()+5315+-+++-写成省略括号后的算式为 5-3+1-5. 故选:D .【点睛】 本题考查有理数加减法统一加法的问题,掌握加减法运算的法则,会用减法法则把减法装化为加法,会写省略括号的算式是解题关键. 5、A 【分析】先分别计算出点A 与点C 之间的距离为10,点B 与点C 之间的距离为8.5,再分别计算出所用的时间.【详解】 解:点A 与点C 之间的距离为:5(5)5510--=+=, 点B 与点C 之间的距离为:5( 3.5)5 3.58.5--=+=, 点A 以每秒2个单位长度向点C 运动,所用时间为5210=÷(秒); 同时点B 以每秒1.5个单位长度向点C 运动,所用时间为1728.5 1.5533÷==(秒);故先到达点C 的点为点A , 故选:A . 【点睛】本题考查了数轴,解决本题的关键是计算出点A 与点C ,点B 与点C 之间的距离. 6、D 【分析】先求出每一名学生自己家中一周内丢弃的塑料袋的数量的平均数,即可得到每名同学丢弃的塑料袋平·线○封○密○外铺后面积.那么全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开所占面积即可求出. 【详解】由题意可知:本班一名学生自己家中一周内丢弃的塑料袋的数量的平均数为1010911107101471210+++++++++=10个,则每名同学丢弃的塑料袋平铺后面积约为10×0.25m 2=2.5,全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为40×2.5=100m 2. 故选D . 【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法. 7、B 【分析】把x 和y 都扩大10倍,根据分式的性质进行计算,可得答案. 【详解】解:分式2x y x y +-中的x 和y 都扩大10倍可得:1021010(2)2101010()x y x y x yx y x y x y+⨯++==---,∴分式的值不变, 故选B . 【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变. 8、A 【分析】根据有理数的减法法则计算. 【详解】解:-1-1-1=-1+(-1)+(-1)=-3.故选:A .【点睛】本题考查有理数的减法.有理数减法法则:减去一个数等于加上这个数的相反数.9、B【分析】 根据每行、每列、每条对角线上三个数字之和都相等,则由第1列三个已知数5+4+9=18可知每行、每列、每条对角线上三个数字之和为18,于是可分别求出未知的各数,从而对四个选项进行判断. 【详解】 ∵每行、每列、每条对角线上三个数字之和都相等, 而第1列:5+4+9=18,于是有 5+b+3=18, 9+a+3=18, 得出a =6,b =10, 从而可求出三个空格处的数为2、7、8, 所以答案A 、C 、D 正确, 而2+7+8=17≠18,∴答案B 错误, 故选B . 【点睛】 本题考查的是数字推理问题,抓住条件利用一元一次方程进行逐一求解是本题的突破口. 10、B 【分析】 根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.·线○封○密·○外【详解】解:-18-2=-20℃,-18+2=-16℃,温度范围:-20℃至-16℃,故选:B .【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.二、填空题1、<【分析】连接AE ,先证明△≌△ADB AEC 得出AD AE =,根据三角形三边关系可得结果.【详解】如图,连接AE ,在ADB △和AEC 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADB AEC ≌,∴AD AE =,在AEF中,AE EF AF-<,∴AD EF AF-<,∵F是AC边上的中点,∴112AF AC==,∴1AD EF-<,故答案为:<.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键.2、π【分析】根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.【详解】如图,连接CO,∵AB=BC,CD=DE,∴∠BOC+∠COD=∠AOB+∠DOE=90°,∵AE=4,∴AO=2,∴S阴影=2902360π⋅⋅=π.·线○封○密○外【点睛】本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.3、5.9【分析】首先利用锐角三角函数关系得出AC的长,再利用平移的性质得出地毯的长度.【详解】由题意可得:tan27°=BCAC=2AC≈0.51,解得:AC≈3.9,故AC+BC=3.9+2=5.9(m),即地毯的长度至少需要5.9米.故答案为5.9.【点睛】本题主要考查了解直角三角形的应用,得出AC的长是解题的关键.4、20【分析】先根据旋转的性质得AB CD,则根据圆心角、弧、弦的关系得到∠DOC=∠AOB=20°,然后根据圆心角的度数等于它所对弧的度数即可得解.【详解】解:∵将AB 旋转n°得到CD , ∴AB CD =∴∠DOC=∠AOB=20°,∴CD 的度数为20度.故答案为20.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了旋转的性质. 5、答案不唯一,如3A ∠=∠; 同位角相等,两直线平行. 【分析】 根据平行线的判定(同位角相等、内错角相等或同旁内角互补)写出一组条件即可. 【详解】 若根据同位角相等,判定AB CD 可得: ∵3A ∠=∠, ∴AB//CD(同位角相等,两直线平行). 故答案是:答案不唯一,如3A ∠=∠; 同位角相等,两直线平行. 【点睛】 考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,再根据平行线的判定定理(同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行)解题. ·线○封○密○外三、解答题1、(1)12;23(2)1或4(3)-3≤x≤5【分析】(1)根据“倍分点”的定义进行判断即可;(2)根据“倍分点”的定义进行解答;(3)根据“倍分点”的定义,分两种情况列出关于x的一元一次方程,解得x的值即可;(1)解:由题意得,AB=2,BC=4,AC=6∴AB=12BC,BC=23AC∴点B是点A到点C的12倍分点,点C是点B到点A的23倍分点;故答案为:12;23(2)解:设3倍分点为M,则BM=3CM,若M在B左侧,则BM<CM,不成立;若M在BC之间,则有BM+CM=BC=4, ∵BM=3CM∴4CM=4,CM=1∴M 点为1;若M 在C 点右侧,则有BC +CM =BM∵BM =3CM ,BC =4∴CM =2所以M 点为4综上所述,点B 到点C 的3倍分点表示的数是1或4; 故答案为:1或4 (3) 解:当2倍分点为B 时,x 取得最小值, 此时AB =2(-2-x )=2 解得:x =-3 当2倍分点为C 点且D 点在C 点右侧时,x 取得最大值 此时AC =2(x -2)=6 解得x =5 所以-3≤x ≤5; 【点睛】 本题主要考查两点间的距离,一元一次方程的应用,注意分类讨论的思想是解题的关键. 2、 (1)228y x x =-++ (2)存在,点(1,8)P 或17(1,)2P (3)2(,0),(1,2)3E F,·线○封○密○外【分析】(1)用待定系数法即可求解;(2)当∠CP ′M 为直角时,则P ′C ∥x 轴,即可求解;当∠PCM 为直角时,用解直角三角形的方法求出PN =MN +PM =517622+=,即可求解; (3)作点C 关于函数对称轴的对称点C ′(2,8),作点D 关于x 轴的对称点D ′(0,-4),连接C ′D ′交x 轴于点E ,交函数的对称轴于点F ,则点E 、F 为所求点,进而求解.(1)由题意得,点A 、B 、C 的坐标分别为(-2,0)、(4,0)、(0,8),设抛物线的表达式为y =ax 2+bx +c ,则42016408a b c a b c c -+⎧⎪++⎨⎪⎩===, 解得128ab c -⎧⎪⎨⎪⎩===, 故抛物线的表达式为y =-x 2+2x +8;(2)存在,理由:当∠CP ′M 为直角时,则以P 、C 、M 为顶点的三角形与△MNB 相似时,则P ′C ∥x 轴,则点P ′的坐标为(1,8);当∠PCM 为直角时,在Rt △OBC 中,设∠CBO =α,则8tan 2tan 4OC CBO OB α∠====,则sin αα== 在Rt △NMB 中,NB =4-1=3,则cos BNBM α==同理可得,MN =6,由点B 、C的坐标得,BC ==CM BC MB =-=在Rt △PCM 中,∠CPM =∠OBC =α,则5sin 2CM PM α==,则PN =MN +PM =517622+=,故点P 的坐标为(1,172),故点P 的坐标为(1,8)或(1,172);(3)∵D 为CO 的中点,则点D (0,4),作点C 关于函数对称轴的对称点C ′(2,8),作点D 关于x 轴的对称点D ′(0,-4),连接C ′D ′交x 轴于点E ,交函数的对称轴于点F ,则点E 、F 为所求点,·线○封○密·○外理由:G走过的路程=DE+EF+FC=D′E+EF+FC′=C′D′为最短,由点C′、D′的坐标得,直线C′D′的表达式为y=6x-4,对于y=6x-4,当y=6x-4=0时,解得23x=,当x=1时,y=2,故点E、F的坐标分别为2(,0)3、(1,2);G走过的最短路程为C′D.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3、1x=【分析】由相反数的定义得到333x-与3112x--的和为零,据此解一元一次方程即可解题.【详解】解:33311=0+23x x---2(33)3(31)60 x x∴-+--=669360x x ∴-+--=15150x ∴-= 解得1x = 即当1x =时,333x -和3112x --互为相反数. 【点睛】 本题考查相反数、解一元一次方程等知识,是基础考点,掌握相关知识是解题关键. 4、 (1)(1-0) (2)21x -≤≤- (3)32m -≤≤- (4)-3.5或-5或0或83-. 【分析】 (1)求出抛物线解析式和点A 、B 的坐标,确定图象G 的范围,求出与x 轴交点坐标即可; (2)1x m =+和3x =-代入222y x mx m =-+,根据纵坐标相等求出m 的值,再根据二次函数的性质写出取值范围即可; (3)分别求出抛物线顶点坐标和点A 、B 的坐标,根据图象G 的最高点与最低点纵坐标的差等于1,列出方程和不等式,求解即可; (4)求出A 、B 两点坐标,再求出直线AM 、BM 的解析式,根据将矩形AEBF 的面积分为1:2两部分,列出方程求解即可. (1) 解:当1m =-时,抛物线解析式为222y x x =+-,直线1x m =+为直线0x =,即y 轴;此时点A 的坐标为(0,-2);当3x =-时,2(3)2(3)21y =-+⨯--=, ·线○封○密○外点B 的坐标为(-3,1);当y =0时,2022x x =+-,解得,11=-x 21=-x∵10->,∴11=-x图象G 与x 轴交点坐标为(1-0)(2)解:当AB ∥轴时,把1x m =+和3x =-代入222y x mx m =-+得,2962(1)2(1)2m m m m m m ++=+-++,解得14m =-,22m =-,当14m =-时,点A 、B 重合,舍去;当22m =-时,抛物线解析式为244y x x =+-,对称轴为直线4222b x a =-=-=-,点A 的坐标为(-1,-7),点B 的坐标为(-3,-7);因为10a =>,所以,图象G 对应的函数值y 随x 的增大而增大时x 的取值范围为:21x -≤≤-;(3)解:抛物线222y x mx m =-+化成顶点式为22()2y x m m m =--+,顶点坐标为: 22)(m m m -+,, 当1x m =+时,22(1)2(1)221y m m m m m m =+-++=-++,点A 的坐标为221)(1m m m +-++,,当3x =-时,96298y m m m =++=+,点B 的坐标为98)(3m +-,, 点A 关于对称轴x m =的对称点的坐标为221)(1m m m --++,,当13m -≥-时,29821m m m +≥-++,此时图象G 的最低点为顶点,则298(2)1m m m +--+=,解得,14m =-(舍去),22m =-, 当13m -<-,3m ≥-时,29821m m m +≤-++,此时图象G 的最低点为顶点,则2221(2)1m m m m -++--+=,等式恒成立,则32m -≤<-, 当3m <-时,此时图象G 的最低点为B ,图象G 的最高点为A ,则221(98)1m m m -++-+=,解得,3m =-(舍去),综上,m 的取值范围为32m -≤≤-.(4)解:由前问可知,点A 的坐标为221)(1m m m +-++,,点B 的坐标为98)(3m +-,,点M 的坐标为22)(m m m -+,, 设直线AM 、BM 的解析式分别为y kx b =+,y cx n =+,把点的坐标代入得, 2221(1)2m m m k b m m mk b ⎧-++=++⎨-+=+⎩,29832m c n m m mc n +=-+⎧⎨-+=+⎩, 解得,21k b m m =⎧⎨=-+⎩,(3)5c m n m =-+⎧⎨=⎩, 所以,直线AM 、BM 的解析式分别为2y x m m =-+,(3)5y m x m =-++, 如图所示,BM 交AE 于C ,把221y m m =-++代入(3)5y m x m =-++得, 2321()5m x m m m =-+++-+,解得,2313m m x m +-=+, 223168333E m C m m m m m +-+=++=++,134EA m m +=+=+, ·线○封○密·○外因为,点M 与图象G 的最高点所连线段将矩形AEBF 的面积分为1:2两部分, 所以,2682(4)33m m m m ++=++, 解得,10m =,24m =-(此时,A 、B 两点重合,舍去);如图所示,BM 交AF 于L ,同理可求L 点纵坐标为:(3)(1)5m m m -+++,398()(1)5m F m L m m ++=-++,29821F m A m m ++=--, 可列方程为2)92(3)(1)5(982138m m m m m m m +++-=+--++, 解得,35m =-,44m =-(此时,A 、B 两点重合,舍去);如图所示,AM 交BF 于P ,同理可求P 点横坐标为:279m m ++,268PF m m =---,4FB m =+,可列方程为22(4)368m m m =-+--, 解得,583m =-,64m =-(此时,A 、B 两点重合,舍去); 如图所示,AM 交EB 于S ,同理可求S 点纵坐标为:23m m --+, 22213ES m m m m =-++++-,22198m m m EB ++--=-, 可列方程为2)92(3)(1)5(982138m m m m m m m +++-=+--++, 解得,7 3.5m =-,44m =-(此时,A 、B 两点重合,舍去);综上,m 值为-3.5或-5或0或83-. 【点睛】 本题考查了二次函数的综合,解题关键是熟练运用二次函数知识,树立数形结合思想和分类讨论思想,通过点的坐标,建立方程求解5、(1)见解析 (2)①3x =-或1x =;31x -<<;②0x < ·线○封○密○外【分析】(1)求出抛物线的顶点坐标,根据对称性作出函数的图象即可;(2)现出直线y=2x+1的图象,找出两函数图象的交点坐标,结合图象可回答问题.(1)由214y x=-+知,函数图象的顶点坐标为(0,4)又抛物线具有对称性,所以,补全函数图像如下:(2)如图,从作图可得出,直线y =2x +1与214y x =-+的交点坐标为(-3,-5)和(1,3) 所以,①当3x =-或1x =时,12y y =,当31x -<<时,12y y >, 故答案为:3x =-或1x =;31x -<<; ②当0x <时,两个函数中的函数值都随x 的增大而增大, 故答案为:0x < 【点睛】 本题考查函数图象,描点法画函数图象,解题的关键是学会利用数形结合的思想解决问题. ·线○封○密○外。
2023年浙江省中考数学能力检测试卷B卷附解析

2023年浙江省中考数学能力检测试卷B卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.生活处处皆学问.如图,眼镜镜片所在的两圆的位置关系是()A.外离B.外切C.内含D.内切2.如图所示,在△ABC 中,∠C= 90°,AC =25,∠BAC 的平分线交 BC 于 D,且AD=4153,则 cos∠BAC 的值是()A.12B.22C.32D.333.如图,P是Rt△ABC的斜边BC上异于B,C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条4.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点.•当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定5.在平行四边形ABCD中,AB=2,BC=3,∠B=60°,则平行四边形ABCD的面积为()A.6 B.332C.3D.36.如果代数式29 34k k-+的值为 2,那么k的值是()A.322-B.32C.322±D.32-7.如果点(3,-4)在反比例函数kyx=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(-2,-6)C.(-2,6)D.(-3,-4)8.已知等腰三角形的顶角为l00°,则该三角形两腰的垂直平分线的交点位于()A .三角形内部B .三角形的边上C .三角形外部D .无法确定 9.如图,AB ∥CD ,AD ,BC 相交于0点,∠BAD=35°,∠BOD=76°,则∠C 的度数是( )A .31°B .35°C .41°D .76°10.关于200920091()22⨯计算正确的是( )A . 0B .1C .-1D .2 11.在Rt △ABC 中,∠BAC=90度,AD 是高,则图中互余的角有 ( )A . 一对B . 二对C . 三对D .四对 12.小敏统计了全班50名同学最喜欢的学科(每个同学只选一门学科).统计结果显示:最喜欢数学和科学的频数分别是13和10.最喜欢语文和英语的人数的频率分别是0.3和0.2,其余的同学最喜欢社会,则下列叙述错误的是( )A .最喜欢语文的人数最多B .最喜欢社会的人数最少C .最喜欢数学的人数和最喜欢语文的人数之和超过总人数的一半D .最喜欢科学的人数比最喜欢英语的人数要少二、填空题13.将抛物线212y x =-绕顶点旋转 180°,则所得的抛物线的解析式为 . 14.若点(a ,b )在第二象限,则点(a b -,ab )在第 象限. 15.如图,用(0,0)表示0点的位置,用(3,2)表示P 点的位置,则可用 表示Q 点的位置.16.已知一组数据:11,15.13,12.15,15.16.15.令这组数据的众数为a ,中位数为b ,则a b (填“>”、“<”或“=”).17.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁): 甲群:13,13,14,15,15,15,l5,l6,17,17;乙群:3,4,4,5,5,6,6,6,54,57.解答下列各题:(1)甲群游客的平均年龄是 岁,中位数是 岁,众数是 岁,其中能较好反映甲群游客年龄特征的是 ;A B D(2)乙群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是.18.如图,在长方形ABCD中,AB=1,BC=2则AC=___________.19.如图,(1)么1的同位角是;(2)∠1与是内错角;(3)∠1与∠3是;(4)若∠l=∠4,则∠1与也相等.△中,∠C=90°,AD为△ABC角平分线,BC=40,AB=50,若20.在ABCBD∶DC=5∶3,则△ADB的面积为_______.解答题21.某网站开展“北京2008年奥运会中国队能获多少枚金牌”的网络调查,共有100000人参加此次活动,现要从中抽取100名“积极参与奖”,那么参加此活动的小华能获奖的概率是__________.22.如图,ΔDEF是ΔABC以直线GH为对称变换所得的像.请写出图中的各对全等三角形: .23.已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.三、解答题24.如图所示,□ABCD的对角线交于点0,直线l绕0点旋转与一组对边相交于E,F点,求:(1)线段BE与DF的关系;(2)直线l把□ABCD分成的两部分的面积关系.25.解不等式(组),并将解集在数轴上表示出来:(1)2(3)3(2)x x -+>+(2)3122109162x x x x -≤-⎧⎪⎨-<+⎪⎩26.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为 ;(2)画出小鱼向左平移3格后的图形.27.从甲、乙两名工人做出的同一种零件中,各抽出4个,量得它们的直径(单位:mm)如下:甲生产零件的尺寸:9.98,10.00,10.02,10.00.乙生产零件的尺寸:10.00,9.97,10.03,10.00.(1)分别计算甲、乙两个样本的平均数;(2)分别求出它们的方差,并说明在使零件的尺寸符合规定方面谁做得较好?28.某农场要建造一个周长为 20m 的等腰三角形围栏,若围栏的腰长为 xm ,试求腰长x 的取值范围.29.如图,OD平分∠AOB,DC∥A0交0B于点C,试说明△OCD是等腰三角形的理由.30..有一块菜地,地形如图,试求它的面积s(单位:m).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.C4.C5.C6.C7.C8.C9.C10.B11.D12.D二、填空题13.212y x =14. 三 15.(9,3)16.=17.(1)15,l5,15,平均数、中位数、众数都可以;(2)15,5.5,6,众数 18.519.(1)∠4;(2)∠2;(3)同旁内角;(4)∠220.62521.10001 22. △ABC 与△DEF,△EGH 与△BGH23.n )2(三、解答题24.(1)BE ∥DF ,BE=DF ;(2)相等25.(1)12x <-,在数轴上表示略 (2)22x -<≤,在数轴上表示略 26.(1)16;(2)图略27.(1)10.00x=甲mm,10.00x=乙mm;(2)200002S=甲.mm2,2000045S=乙.mm2,甲做得较好28.根据题意,得22022020x xx>-⎧⎨->⎩,解得5<x<10.∴腰长的取值范围是5<x<l0.29.说明∠OOC=∠BOD30.24m2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B
C
D
E
P
O 成都市中考数学B 卷题目专项训练
一. 填空题: 1. 已知y =
31x – 1,那么3
1
x 2 – 2xy + 3y 2 – 2的值是 . 2. 化简:22
22
1369x y x y x y x xy y +--÷--+=_______ 3. 设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.
4. 在平面直角坐标系xOy 中,点P (2,a )在正比例函数y=2X
的图象上,则点Q (a ,3a
﹣5)位于第 象限.
5. 某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是 .
6. 如图,A 、B 、c 是⊙0上的三点,以BC 为一边,作∠CBD=∠ABC,过BC 上一点P ,作PE∥AB 交BD 于点E .若∠AOC=60°,BE=3,则点P 到弦AB 的距离为_______.
7.如图,在ABC ∆中,90B ∠=o ,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB
向B 以2mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过_____________秒,四边形APQC 的面积最小.
8. 某校在“爱护地球,绿化祖图”的创建活动中,组织学生开展植树造林活动.为了解全校
植树数量(单位:棵) 4 5 6 8 10 人数
30
22
25
15
8
则这l 00名同学平均每人植树 棵;该校学生的植树总数是 棵.
A
B C
O
x
y
9. 如图,已知点A 是锐角∠MON 内的一点,试分别在OM 、ON 上确定点B 、点C ,使△
ABC 的周长最小.写出你作图的主要步骤并标明你所确定的点
(要求画出草图,保留作图痕迹)
10. 已知2
1
(123...)(1)
n a n n =
=+,,,,记112(1)b a =-,2122(1)(1)b a a =--,…,122(1)(1)...(1)n n b a a a =---,则通过计算推测出n b 的表达式n b =_______.
(用含n 的代数式表示)
11. 有背面完全相同,正面上分别标有两个连续自然数,1k k +(其中0,1,2,,19k =L )的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010++=)不小于14的概率为_________________.
12.改革开放30年以来,成都的城市化推进一直保持着快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已达到4 410 000人,对这个常住人口数有如下几种表示:①5
4.4110⨯人;②6
4.4110⨯人;③5
44.110⨯人.其中是科学记数法表示的序号为_________.
13. 如果m 是从0,1,2,3四个数中任取的一个数,n 是从0,1,2三个数中任取的一个数,那么关于x 的一元二次方程x 2 – 2mx + n 2 = 0有实数根的概率为 . 14. 如图,正方形OABC 的面积是4,点B 在反比例函数(00)k
y k x x
=
><,的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则 当S=m(m 为常数,且0<m<4)时,点R 的坐标是________________________ (用含m 的代数式表示)
15. 已知n 是正整数,111222(,),(,),,(,),n n n P x y P x y P x y L L 是反比例函数k
y x
=
图象上的一列点,其中121,2,,,n x x x n ===L L .记112A x y =,223A x y =,1n n n A x y +=L L ,,若1A a =(a 是非零常数),则12n A A A g g L g 的值是________________________(用含a 和n 的
代数式表示).
16. 在三角形纸片ABC 中,已知∠ABC=90°,AB=6,BC=8.过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的T 处,折痕为MN .当点T 在直线l 上移动时,折痕的端点M 、N 也随之移动.若限定端点M 、N 分别在AB 、BC 边上移动,则线段AT 长度的最大值与最小值之和为 (计算结果不取近似值).
171234S S S S ,,,….计
算213243S S S S S S ---,,….若边长为(n 为正整数)的正方形面积记作n S .根据你的计算结果,猜想1n n S S +-= .
18. 已知M(a ,b)是平面直角坐标系xOy 中的点,其中a 是从l ,2,3三个数中任取的一个数,b 是从l ,2,3,4四个数中任取的一个数.定义“点M(a ,b)在直线x+y=n 上”为事件
Q n (2≤n≤7,n 为整数),则当Q n 的概率最大时,n 的所有可能的值为______.
19.已知关于x 的一元二次方程02
=++c bx ax 无实数解,甲由于看错了二次项系数,误求的两根为2和4,乙由于看错了某一项系数的符号,误求的两根为-1和4,那么=+a
c
b 32 _________.
20. 在平面直角坐标系xOy 中,已知反比例函数满足:当x <0时,y 随x 的增大而减小.若该反比例函数的图象与直线都经过点P ,且,则实数k=______. 二.解答题
21.某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x 为整数);又知前20天的销售价格1Q (元/件)与销售时间x(天)之间有如下关系:11
Q 302
x =
+ (1≤x≤20,且x 为整数),后10天的销售价格2Q (元/件)与销售时间x(天)之间有如下关系:2Q =45(21≤x≤30,且x 为整数).
(1)试写出该商店前20天的日销售利润1R (元)和后l0天的日销售利润2R (元)分别与销售时间x(天)之间的函数关系式;
(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润. 注:销售利润=销售收入一购进成本.
B
22.如图,Rt△ABC 内接于⊙O,AC=BC ,∠BAC 的平分线AD 与⊙0交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结0G .
(1)判断0G 与CD 的位置关系,写出你的结论并证明;
(2)求证:
AE=BF ; (3)若3(2OG DE ⋅=,求⊙O 的面积。
23.在平面直角坐标系xOy 中,已知抛物线y=2
(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与
x
轴的交点为N ,且。
(1)求此抛物线的函数表达式;
(2)在此抛物线上是否存在异于点C 的点P ,使以N 、P 、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标:若不存在,请说明理由;
(3)过点A 作x 轴的垂线,交直线MC 于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?。