中考模拟命题 带答案

合集下载

中考数学考试模拟卷(含答案解析)

中考数学考试模拟卷(含答案解析)

中考数学考试模拟卷(含答案解析)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(3分)﹣3的绝对值是()A.﹣B.3 C.D.﹣32.(3分)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.3.(3分)节肢动物是最大的动物类群,目前已命名的种类有120万种以上,将数据120万用科学记数法表示为()A.0.12×106B.1.2×107C.1.2×105D.1.2×1064.(3分)正多边形的每个内角为108°,则它的边数是()A.4 B.6 C.7 D.55.(3分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是()A.B.C.D.6.(3分)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM =35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°7.(3分)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2﹣18.(3分)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为()A.B.C.D.9.(3分)若关于x的分式方程:2﹣=的解为正数,则k的取值范围为()A.k<2 B.k<2且k≠0 C.k>﹣1 D.k>﹣1且k≠010.(3分)下列命题:①(m•n2)3=m3n5②数据1,3,3,5的方差为2③因式分解x3﹣4x=x(x+2)(x﹣2)④平分弦的直径垂直于弦⑤若使代数式在实数范围内有意义,则x≥1其中假命题的个数是()A.1 B.3 C.2 D.4二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= .12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= .14.(4.00分)不等式组的解集为.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= .16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.[来源:学,科,网]18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是°;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.参考答案与解析一、选择题1.【分析】应用绝对值的计算方法进行计算即可得出答案.【解答】解:|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:120万用科学记数法表示为:1.2×106.故选:D.4.【分析】方法一:根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解;方法二:设多边形的边数为n,然后根据多边形的内角和公式(n﹣2)•180°列方程求解即可.【解答】解:方法一:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,方法二:设多边形的边数为n,由题意得,(n﹣2)•180°=108°•n,解得n=5,所以,这个多边形的边数为5.故选:D.5.【分析】根据“每人出8钱,会多出3钱;每人出7钱,又差4钱”,即可得出关于x,y 的二元一次方程组,此题得解.【解答】解:依题意得:.故选:C.6.【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.7.【分析】根据图象的平移规律,可得答案.【解答】解:将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是y=(x﹣1+1)2+1﹣2,即y=x2﹣1.故选:D.8.【分析】由格点构造直角三角形,由直角三角形的边角关系以及圆周角定理可得答案.【解答】解:∵AB为直径,∴∠ACB=90°,又∵点A,B,C都在格点上,∴∠ADC=∠ABC,在Rt△ABC中,cos∠ABC====cos∠ADC,故选:B.9.【分析】先解分式方程可得x=2﹣k,再由题意可得2﹣k>0且2﹣k≠2,从而求出k的取值范围.【解答】解:2﹣=,2(x﹣2)﹣(1﹣2k)=﹣1,2x﹣4﹣1+2k=﹣1,2x=4﹣2k,x=2﹣k,∵方程的解为正数,∴2﹣k>0,∴k<2,∵x≠2,∴2﹣k≠2,∴k≠0,∴k<2且k≠0,故选:B.10.【分析】利用幂的运算性质、方差的计算公式、因式分解的方法、垂径定理及二次根式有意义的条件分别判断后即可确定正确的选项.【解答】解:①(m•n2)3=m3n6,故原命题错误,是假命题,符合题意;②数据1,3,3,5的方差为2,故原命题正确,是真命题,不符合题意;③因式分解x3﹣4x=x(x+2)(x﹣2),正确,是真命题,不符合题意;④平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,符合题意;⑤若使代数式在实数范围内有意义,则x≥1,正确,是真命题,不符合题意,假命题有2个,故选:C.二、细心填一填11.(4.00分)计算:()0﹣1= 0 .【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.(4.00分)不等式组的解集为x>2 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m 代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b 是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S=AC•BC=m2+6,利用二次函数的性质即可△ABC求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.【分析】先化简各式,然后再进行计算即可解答.【解答】解:•+4|1﹣|sin60°﹣()﹣1=2+4×(﹣1)×﹣2=2+2(﹣1)﹣2=2+6﹣2﹣2=4.【点评】本题考查了特殊角的三角函数值,负整数指数幂,绝对值,估算无理数的大小,二次根式的乘除法,实数的运算,准确熟练地化简各式是解题的关键.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.【分析】先算括号里的异分母分式的减法,再算括号外,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(a﹣)÷=•=•=a(a+2)=a2+2a,,解得:﹣1<a≤2,∴该不等式组的整数解为:0,1,2,∵a≠0,a﹣2≠0,∴a≠0且a≠2,∴a=1,∴当a=1时,原式=12+2×1=1+2=3.【点评】本题考查了分式的混合运算,解一元一次不等式组,准确熟练地进行计算是解题的关键.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)【分析】(1)直接根据概率公式求解即可;(2)画出树状图,共有12个等可能的结果,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的结果有8个,再由概率公式求解即可.【解答】解:(1)吉祥物“冰墩墩”放在区域①的概率是;故答案为:;(2)根据题意画图如下:共有12种等可能的情况数,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域有8种,则吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率是=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).【分析】在Rt△BDE中求出ED,再在Rt△ACM中求出AM,最后根据线段的和差关系进行计算即可.【解答】解:如图,过点C、D分别作BE的平行线交BA的延长线于点M、N,在Rt△BDE中,∠BDE=90°﹣45°=45°,∴DE=BE=14m,在Rt△ACM中,∠ACM=60°,CM=BE=14m,∴AM=CM=14(m),∴AB=BM﹣AM=CE﹣AM=20+14﹣14≈10.2(m),答:AB的长约为10.2m.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键.22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有200 人;在扇形统计图中,B所对应的扇形的圆心角的度数是108 °;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.【分析】(1)根据A项目的人数和所占的百分比,求出调查的总人数,再用360°乘以B所占的百分比即可得出答案;(2)用总人数减去其它项目的人数,求出C选项的人数,从而补全统计图;(3)用全校的总人数乘以选修篮球和跳绳两个项目的总人数所占的百分比即可.【解答】解:(1)本次调查的学生共有:30÷15%=200(人),在扇形统计图中,B所对应的扇形的圆心角的度数是:360°×=108°;故答案为:200,108;(2)C项目的人数有:200﹣30﹣60﹣20=90(人),补全统计图如下:(3)根据题意得:1200×=900(人),答:估计该校选修篮球和跳绳两个项目的总人数有900人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.【分析】(1)根据题意和题目中的数据,可以分别写出y甲,y乙关于x的函数关系式;(2)根据(1)中的结果和题意,令0.85x=0.7x+90,求出x的值,再求出相应的y的值,即可得到点A的坐标.(3)根据函数图象和(2)中点A的坐标,可以写出选择去哪个体育专卖店购买体育用品更合算.【解答】解:(1)由题意可得,y=0.85x,甲当0≤x≤300时,y乙=x,当x>300时,y乙=300+(x﹣300)×0.7=0.7x+90,则y乙=;(2)令0.85x=0.7x+90,解得x=600,将x=600代入0.85x得,0.85×600=510,即点A的坐标为(600,510);(3)由图象可得,当x<600时,去甲体育专卖店购买体育用品更合算;当x=600时,两家体育专卖店购买体育用品一样合算;当x>600时,去乙体育专卖店购买体育用品更合算.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.【分析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.【解答】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a ≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,[来源:Z。

【中考冲刺】2023年安徽省合肥市中考模拟语文试卷(附答案)

【中考冲刺】2023年安徽省合肥市中考模拟语文试卷(附答案)

2023年安徽省合肥市中考模拟语文试题学校:___________姓名:___________班级:___________考号:___________一、句子默写1.默写。

(1)兔从狗窦入,_______________________。

(《乐府诗集》)(2)_________________,万钟于我何加焉!(孟子《鱼我所欲也》)(3)______________,却话巴山夜雨时。

(李商隐《夜雨寄北》(4)四面歌残终破楚,_______________。

(秋瑾《满江红》(5)杜甫在《茅屋为秋风所破歌》中,推己及人,抒发作者关心天下百姓,希望天下苦难中的人都能过上幸福生活的美好感情的句子是:“______________,______________。

”(6)生命的价值在一腔矢志不渝的热情里,在赤诚如火的凛然气节中。

辛弃疾在《破阵子·为陈同甫赋壮词以寄之》用“______________,______________”两句道出了词人渴望建功立业,报效君王的雄心壮志。

(7)陆游在《游山西村》中,既描绘了明媚秀丽、变化万千的自然风光,又蕴含深刻哲理的句子是:“______________,______________。

”二、名著阅读2.请运用所积累的知识,完成各题。

再说踏着那瑞雪再说A踏着那瑞雪,迎着北风,飞也似奔到草料场门口,开了锁,入内看时,只叫得苦。

那两间草厅,已被雪压倒了。

A寻思:“怎地好?”放下花枪、葫芦在雪里。

恐怕火盆内有火炭延烧起来,搬开破壁子,探半身入去摸时,火盆内火种都被雪水jìn灭了。

A把手床上摸时,只拽得一条絮被。

A钻将出来,见天色黑了,寻思:“又没打火处,怎生安排?”想起:“离了这半里路上,有一古庙,可以安身。

我且去那里宿一夜,等到天明,却作理会。

”把被卷了,花枪挑着酒葫声,依旧把门拽上,锁了,望那庙里来。

入得庙门,再把门掩上,旁边止有一块大石头,掇将过来,靠了门。

中考数学模拟试卷一附答案解析

中考数学模拟试卷一附答案解析

2021年湖南省长沙市教科所中考模拟试卷〔一〕数学一、选择题〔在以下各题四个选项中,只有一项为哪一项符合题意.请在答题卡中填涂符合题意选项.本大题共12个小题,每题3分,共36分〕1.以下各组数中,互为相反数是〔〕A.﹣2 与2B.2与2C.3与D.3与32.长城、故宫等是我国第一批胜利入选世界遗产文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为〔〕×106×10﹣6×105×1073.如图,与∠1是内错角是〔〕A.∠2B.∠3C.∠4D.∠54.以下运算正确是〔〕A.B.C.a2•a3=a5D.〔2a〕3=2a35.如图是小强用八块一样小正方体积木搭建几何体,这个几何体左视图是〔〕A.B.C.D.6.如图,点C、D是线段AB上两点,点D是线段AC中点.假设AB=10cm,BC=4cm,那么线段DB长等于〔〕A.2cm B.3cm C.6cm D.7cm7.以下命题中,错误是〔〕A.三角形两边之和大于第三边B.三角形外角和等于360°C.等边三角形既是轴对称图形,又是中心对称图形8.有15位同学参与歌咏竞赛,所得分数互不一样,获得分前8位同学进入决赛.某同学知道自己分数后,要推断自己能否进入决赛,他只需知道这15位同学〔〕A.平均数B.中位数C.众数D.方差9.某人想沿着梯子爬上高4米房顶,梯子倾斜角〔梯子与地面夹角〕不能>60°,否那么就有危急,那么梯子长至少为〔〕A.8米B.米C.米D.米10.如图,要使平行四边形ABCD成为矩形,需添加条件是〔〕A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠211.关于x方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么a满意〔〕A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠512.如图1,点E为矩形ABCD边AD上一点,点P从点B动身沿BE→ED→DC运动到点C停顿,点Q从点B动身沿BC运动到点C停顿,它们运动速度都是1cm/s.假设点P、Q同时开始运动,设运动时间为t〔s〕,△BPQ面积为y〔cm2〕,y与t之间函数图象如图2所示.给=48cm2;③14<t<22时,出以下结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABEy=110﹣5t;④在运动过程中,使得△ABP是等腰三角形P点一共有3个;⑤当△BPQ与△BEA相像时,t=14.5.其中正确结论序号是〔〕A.①④⑤B.①②④C.①③④D.①③⑤二、填空题〔本大题共6个小题,每题3分,共18分〕13.假设二次根式有意义,那么x取值范围为.14.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都一样.假设从该布袋里随意摸出1个球,是红球概率为,那么a等于.16.某蔬菜基地圆弧形蔬菜大棚剖面如下图,AB=16m,半径OA=10m,那么蔬菜大棚高度CD=m.17.如图,在△ABC中,BE平分∠ABC,DE∥BC,假如DE=2AD,AE=3,那么EC=.18.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,那么tan∠DBE值是.三、解答题〔本大题共8个小题,第19、20题每题6分,第21、22题每题6分,第23、24题每题6分,第25、26题每题6分,共66分.解容许写出必要文字说明、证明过程或演算步骤〕19.〔6分〕计算:〔π﹣3.14〕0﹣2﹣|﹣3|=.20.〔6分〕解不等式组,并写出其全部整数解.21.〔8分〕“端午节〞是我国传统佳节,民间历来有吃“粽子〞风俗.我市某食品厂为理解市民对去年销量较好肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽〔以下分别用A、B、C、D表示〕这四种不同口味粽子宠爱状况,在节前对某居民区市民进展了抽样调查,并将调查状况绘制成如下两幅统计图〔尚不完好〕.请根据以上信息答复:〔1〕本次参与抽样调查居民有多少人?〔2〕将两幅不完好图补充完好;〔3〕求扇形统计图中C所对圆心角度数;〔4〕假设有外型完全一样A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图方法,求他第二个吃到恰好是C粽概率.22.〔8分〕如图,AB为圆O直径,点C为圆O上一点,假设∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.〔1〕试推断CD与圆O位置关系,并说明理由;〔2〕假设直线l与AB延长线相交于点E,圆O半径为3,并且∠CAB=30°,求AD长.23.〔9分〕由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工作所需时间比是3:2,两队共同施工6天可以完成.〔1〕求两队单独完成此项工程各需多少天?〔2〕此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元酬劳,假设按各自完成工程量安排这笔钱,问甲、乙两队各应得到多少元?24.〔9分〕如图,边长为1正方形ABCD对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ〔0°<θ<90°〕,PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.〔1〕求四边形OEBF面积;〔2〕求证:OG•BD=EF2;25.〔10分〕在数学上,我们把符合肯定条件动点所形成图形叫做满意该条件点轨迹.例如:动点P坐标满意〔m,m﹣1〕,全部符合该条件点组成图象在平面直角坐标系xOy中就是一次函数y=x﹣1图象.即点P轨迹就是直线y=x﹣1.〔1〕假设m、n满意等式mn﹣m=6,那么〔m,n﹣1〕在平面直角坐标系xOy中轨迹是;〔2〕假设点P〔x,y〕到点A〔0,1〕间隔与到直线y=﹣1间隔相等,求点P轨迹;〔3〕假设抛物线y=上有两动点M、N满意MN=a〔a为常数,且a≥4〕,设线段MN中点为Q,求点Q到x轴最短间隔.26.〔10分〕如图1,二次函数y=ax2﹣2ax﹣3a〔a<0〕图象与x轴交于A、B两点〔点A在点B右侧〕,与y轴正半轴交于点C,顶点为D.〔1〕求顶点D坐标〔用含a代数式表示〕;〔2〕假设以AD为直径圆经过点C.①求抛物线函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN〔点P、M、N分别和点O、B、E对应〕,并且点M、N都在抛物线上,作MF⊥x轴于点F,假设线段MF:BF=1:2,求点M、N坐标;③点Q在抛物线对称轴上,以Q为圆心圆过A、B两点,并且和直线CD相切,如图3,求点Q坐标.参考答案与试题解析一、选择题1.以下各组数中,互为相反数是〔〕A.﹣2 与2B.2与2C.3与D.3与3【分析】根据相反数概念作出推断.【解答】解:A.﹣2与2互为相反数,正确;B.2=2,不是相反数,故错误;×=1,互为倒数,故错误;D.3=3,不是相反数,故错误;应选:A.【点评】此题考察了相反数,解决此题关键是熟记相反数定义.2.长城、故宫等是我国第一批胜利入选世界遗产文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为〔〕×106×10﹣6×105×107【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点挪动了多少位,n肯定值与小数点挪动位数一样.当原数肯定值>1时,n是正数;当原数肯定值<1时,n是负数.【解答】×106,应选:A.【点评】此题考察科学记数法表示方法.科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值.3.如图,与∠1是内错角是〔〕A.∠2B.∠3C.∠4D.∠5【分析】根据内错角定义找出即可.应选:B.【点评】此题考察了“三线八角〞问题,确定三线八角关键是从截线入手.对平面几何中概念理解,肯定要紧扣概念中关键词语,要做到对它们正确理解,对不同几何语言表达要留意理解它们所包含意义.4.以下运算正确是〔〕A.B.C.a2•a3=a5D.〔2a〕3=2a3【分析】根据算术平方根定义、二次根式加减运算、同底数幂乘法及积乘方运算法那么逐一计算即可推断.【解答】解:A、=2,此选项错误;B、2+不能进一步计算,此选项错误;C、a2•a3=a5,此选项正确;D、〔2a〕3=8a3,此选项计算错误;应选:C.【点评】此题主要考察二次根式加减和幂运算,解题关键是驾驭算术平方根定义、二次根式加减运算、同底数幂乘法及积乘方运算法那么.5.如图是小强用八块一样小正方体积木搭建几何体,这个几何体左视图是〔〕A.B.C.D.【分析】左视图有2列,从左到右分别是2,1个正方形.【解答】解:这个几何体左视图是,应选:D.【点评】此题主要考察了简洁组合体三视图,关键是驾驭左视图所看位置.6.如图,点C、D是线段AB上两点,点D是线段AC中点.假设AB=10cm,BC=4cm,那么线段DB长等于〔〕A.2cm B.3cm C.6cm D.7cm【分析】先根据线段和差关系求出AC,再根据中点定义求得CD长,再根据BD=CD+BC即可解答.【解答】解:∵AB=10,BC=4,∴AC=AB﹣BC=6,∵点D是AC中点,∴AD=CD=AC=3.∴BD=BC+CD=4+3=7cm,应选:D.【点评】此题考察了两点间间隔,根据是娴熟驾驭线段和差计算,以及中点定义.7.以下命题中,错误是〔〕A.三角形两边之和大于第三边B.三角形外角和等于360°C.等边三角形既是轴对称图形,又是中心对称图形D.三角形一条中线能将三角形分成面积相等两部分【分析】根据三角形性质即可作出推断.【解答】解:A、正确,符合三角形三边关系;B、正确;三角形外角和定理;C、错误,等边三角形既是轴对称图形,不是中心对称图形;D、三角形一条中线能将三角形分成面积相等两部分,正确.应选:C.【点评】此题考察了命题真假推断,属于根底题.根据定义:符合事实真理推断是真命题,不符合事实真理推断是假命题,不难选出正确项.8.有15位同学参与歌咏竞赛,所得分数互不一样,获得分前8位同学进入决赛.某同学知道自己分数后,要推断自己能否进入决赛,他只需知道这15位同学〔〕A.平均数B.中位数C.众数D.方差【分析】由中位数概念,即最中间一个或两个数据平均数;可知15人成果中位数是第8名成果.根据题意可得:参赛选手要想知道自己是否能进入前8名,只须要理解自己成果以及全部成果中位数,比较即可.【解答】解:由于15个人中,第8名成果是中位数,故小方同学知道了自己分数后,想知道自己能否进入决赛,还需知道这十五位同学分数中位数.【点评】此题主要考察统计有关学问,主要包括平均数、中位数、众数意义.反映数据集中程度统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进展合理选择和恰当运用.9.某人想沿着梯子爬上高4米房顶,梯子倾斜角〔梯子与地面夹角〕不能>60°,否那么就有危急,那么梯子长至少为〔〕A.8米B.米C.米D.米【分析】倾斜角取最大,利用最大角正弦值即可求解.【解答】解:如图:AC=4,AC⊥BC.∵梯子倾斜角〔梯子与地面夹角〕不能>60°.∴∠ABC≤60°,最大角为60°.∴AB====4×===.即梯子长至少为米.应选:C.【点评】此题主要考察学生对直角三角形坡度问题驾驭,做此题关键是明白当梯子倾斜角越大时梯子长度要求越短,所以坡角取最大值.10.如图,要使平行四边形ABCD成为矩形,需添加条件是〔〕A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠2【分析】根据一个角是90度平行四边形是矩形进展选择即可.【解答】解:A、是邻边相等,可断定平行四边形ABCD是菱形;B、是对角线互相垂直,可断定平行四边形ABCD是菱形;C、是一内角等于90°,可推断平行四边形ABCD成为矩形;D、是对角线平分对角,可断定平行四边形ABCD是菱形.【点评】此题主要应用学问点为:矩形断定.①对角线相等且互相平分四边形为矩形.②一个角是90度平行四边形是矩形.11.关于x方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么a满意〔〕A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠5【分析】由于x方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么分两种状况:〔1〕当a﹣5=0时,方程肯定有实数根;〔2〕当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a 取值范围.【解答】解:分类探讨:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程肯定有实数根;②当a﹣5≠0即a≠5时,∵关于x方程〔a﹣5〕x2﹣4x﹣1=0有实数根∴16+4〔a﹣5〕≥0,∴a≥1.∴a取值范围为a≥1.应选:A.【点评】此题考察了一元二次方程ax2+bx+c=0〔a≠0〕根判别式△=b2﹣4ac:当△>0,方程有两个不相等实数根;当△=0,方程有两个相等实数根;当△<0,方程没有实数根;切记不要忽视一元二次方程二次项系数不为零这一隐含条件.12.如图1,点E为矩形ABCD边AD上一点,点P从点B动身沿BE→ED→DC运动到点C停顿,点Q从点B动身沿BC运动到点C停顿,它们运动速度都是1cm/s.假设点P、Q同时开始运动,设运动时间为t〔s〕,△BPQ面积为y〔cm2〕,y与t之间函数图象如图2所示.给=48cm2;③14<t<22时,出以下结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABEy=110﹣5t;④在运动过程中,使得△ABP是等腰三角形P点一共有3个;⑤当△BPQ与△BEA相像时,t=14.5.其中正确结论序号是〔〕A.①④⑤B.①②④C.①③④D.①③⑤【分析】根据题意,得到P、Q分别同时到达D、C可推断①②,分段探讨PQ位置后可以推断③,再由等腰三角形分类探讨方法确定④,根据两个点相对位置推断点P在DC上时,存在△BPQ与△BEA相像可能性,分类探讨计算即可.【解答】解:由图象可知,点Q到达C时,点P到E那么BE=BC=10,ED=4故①正确那么AE=10﹣4=6t=10时,△BPQ面积等于∴AB=DC=8=故S△ABE故②错误当14<t<22时,y=故③正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线那么⊙A、⊙B及AB垂直平分线与点P运行途径交点是P,满意△ABP是等腰三角形此时,满意条件点有4个,故④错误.∵△BEA为直角三角形∴只有点P在DC边上时,有△BPQ与△BEA相像由,PQ=22﹣t∴当或时,△BPQ与△BEA相像分别将数值代入或解得t=故⑤正确应选:D.【点评】此题是动点问题函数图象探究题,考察了三角形相像断定、等腰三角形断定,应用了分类探讨和数形结合数学思想.二、填空题〔本大题共6个小题,每题3分,共18分〕13.假设二次根式有意义,那么x取值范围为x≥.【分析】函数关系中主要有二次根式.根据二次根式意义,被开方数是非负数.【解答】解:根据题意得:1+2x≥0,解得x≥﹣.故答案为:x≥﹣.【点评】此题主要考察自变量取值范围,函数自变量范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式分母不能为0;〔3〕当函数表达式是二次根式时,被开方数为非负数.14.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都一样.假设从该布袋里随意摸出1个球,是红球概率为,那么a等于1.【分析】设袋中有a个黄球,再根据概率公式求出a值即可.【解答】解:设袋中有a个黄球,∵袋中有红球2个,白球3个,从中随意摸出一个球是红球概率为,∴=,解得:a=1.故答案为:1.【点评】此题考察是概率公式,熟知随机事务A概率P〔A〕=事务A可能出现结果数与全部可能出现结果数商是解答此题关键.15.假设反比例函数y=图象位于第一、三象限,那么正整数k值是1.【分析】由反比例函数性质列出不等式,解出k范围,在这个范围写出k整数解那么可.【解答】解:∵反比例函数图象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整数,∴k值是:1.故答案为:1.【点评】此题考察了反比例函数性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.16.某蔬菜基地圆弧形蔬菜大棚剖面如下图,AB=16m,半径OA=10m,那么蔬菜大棚高度CD=4m.【分析】由垂径定理,可得AD=AB,然后由勾股定理求得OD长,继而求得中间柱CD高度.【解答】解:∵CD是中间柱,即=,∴OC⊥AB,∴AD=BD=AB=×16=8〔m〕,∵半径OA=10m,在Rt△AOD中,OD==6〔m〕,∴CD=OC﹣OD=10﹣6=4〔m〕.故答案为:4【点评】此题考察了垂径定理应用与勾股定理.此题比较简洁,留意数形结合思想应用.17.如图,在△ABC中,BE平分∠ABC,DE∥BC,假如DE=2AD,AE=3,那么EC=6.【分析】由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案.【解答】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=6.故答案为:6.【点评】此题考察了平行线分线段成比例定理以及等腰三角形断定与性质.留意驾驭线段对应关系是解此题关键.18.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,那么tan∠DBE值是2.【分析】求出AD=AB,设AD=AB=5x,AE=3x,那么5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出tan∠DBE=,代入求出即可,【解答】解:∵四边形ABCD是菱形,∴AD=AB,∵cosA=,BE=4,DE⊥AB,∴设AD=AB=5x,AE=3x,那么5x﹣3x=4,x=2,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:DE==8,在Rt△BDE中,tan∠DBE===2,故答案为:2.【点评】此题考察了菱形性质,勾股定理,解直角三角形应用,关键是求出DE长.三、解答题〔本大题共8个小题,第19、20题每题6分,第21、22题每题6分,第23、24题每题6分,第25、26题每题6分,共66分.解容许写出必要文字说明、证明过程或演算步骤〕19.〔6分〕计算:〔π﹣3.14〕0﹣2﹣|﹣3|=﹣1.【分析】此题涉及零指数幂、负指数幂、二次根式化简和特别角三角函数值4个考点.在计算时,须要针对每个考点分别进展计算,然后根据实数运算法那么求得计算结果.【解答】解:原式=1﹣2×+4﹣3,=1﹣3+4﹣3,=﹣1.故答案为:﹣1.【点评】此题主要考察了实数综合运算实力,是各地中考题中常见计算题型.解决此类题目关键是娴熟驾驭负整数指数幂、零指数幂、二次根式、肯定值等考点运算.20.〔6分〕解不等式组,并写出其全部整数解.【分析】先求出不等式组解集,即可求得该不等式组整数解.【解答】解:由①得,x≥1,由②得,x<4.所以不等式组解集为1≤x<4,该不等式组整数解为1,2,3.【点评】此题考察是解一元一次不等式组及求一元一次不等式组整数解,求不等式公共解,要遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.〔8分〕“端午节〞是我国传统佳节,民间历来有吃“粽子〞风俗.我市某食品厂为理解市民对去年销量较好肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽〔以下分别用A、B、C、D表示〕这四种不同口味粽子宠爱状况,在节前对某居民区市民进展了抽样调查,并将调查状况绘制成如下两幅统计图〔尚不完好〕.请根据以上信息答复:〔1〕本次参与抽样调查居民有多少人?〔2〕将两幅不完好图补充完好;〔3〕求扇形统计图中C所对圆心角度数;〔4〕假设有外型完全一样A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图方法,求他第二个吃到恰好是C粽概率.【分析】〔1〕根据B类有60人,所占百分比是10%即可求解;〔2〕利用总人数减去其他类型人数即可求得C类型人数,然后根据百分比意义求解;〔3〕利用360°乘以对应百分比即可求解;〔4〕利用列举法即可求解.【解答】解:〔1〕本次参与抽样调查居民人数是:60÷10%=600〔人〕;〔2〕C类人数是:600﹣180﹣60﹣240=120〔人〕,C类所占百分比是:×100%=20%,A类所占百分比是:×100%=30%.;〔3〕扇形统计图中C所对圆心角度数是:360°×20%=72°;〔4〕画树状图如下:那么他第二个吃到恰好是C粽概率是:=.【点评】此题考察是条形统计图和扇形统计图综合运用,读懂统计图,从不同统计图中得到必要信息是解决问题关键.条形统计图能清晰地表示出每个工程数据;扇形统计图干脆反映部分占总体百分比大小.22.〔8分〕如图,AB为圆O直径,点C为圆O上一点,假设∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.〔1〕试推断CD与圆O位置关系,并说明理由;〔2〕假设直线l与AB延长线相交于点E,圆O半径为3,并且∠CAB=30°,求AD长.【分析】〔1〕连接OC,求出OC和AD平行,求出OC⊥CD,根据切线断定得出即可;〔2〕连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【解答】解:〔1〕CD与圆O位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC为半径,∴CD与圆O位置关系是相切;〔2〕连接BC,∵AB是⊙O直径,∴∠BCA=90°,∵圆O半径为3,∴AB=6,∵∠CAB=30°,∴BC=AB=3,AC=BC=3,∵∠BCA=∠CDA=90°,∠CAB=∠CAD,∴△CAB∽△DAC,∴=,∴=,∴AD=.【点评】此题考察了切线性质和断定,圆周角定理,相像三角形性质和断定,解直角三角形等学问点,能综合运用学问点进展推理是解此题关键.23.〔9分〕由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工作所需时间比是3:2,两队共同施工6天可以完成.〔1〕求两队单独完成此项工程各需多少天?〔2〕此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元酬劳,假设按各自完成工程量安排这笔钱,问甲、乙两队各应得到多少元?【分析】〔1〕设甲队单独完成此项工程须要3x天,那么乙队单独完成此项工程须要2x天,根据两队共同施工6天可以完成该工程,即可得出关于x分式方程,解之经检验即可得出结论;〔2〕根据甲、乙两队单独完成这项工作所需时间比可得出两队每日完成工作量之比,再结合总酬劳为4000元即可求出结论.【解答】解:〔1〕设甲队单独完成此项工程须要3x天,那么乙队单独完成此项工程须要2x 天,根据题意得: +=1,解得:x=5,经检验,x=5是所列分式方程解且符合题意.∴3x=15,2x=10.答:甲队单独完成此项工程须要15天,乙队单独完成此项工程须要10天.〔2〕∵甲、乙两队单独完成这项工作所需时间比是3:2,∴甲、乙两队每日完成工作量之比是2:3,∴甲队应得酬劳为4000×=1600〔元〕,乙队应得酬劳为4000﹣1600=2400〔元〕.答:甲队应得酬劳为1600元,乙队应得酬劳为2400元.【点评】此题考察了分式方程应用,找准等量关系,正确列出分式方程是解题关键.24.〔9分〕如图,边长为1正方形ABCD对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ〔0°<θ<90°〕,PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.〔1〕求四边形OEBF面积;〔2〕求证:OG•BD=EF2;〔3〕在旋转过程中,当△BEF与△COF面积之和最大时,求AE长.【分析】〔1〕由四边形ABCD是正方形,直角∠MPN,易证得△BOE≌△COF〔ASA〕,那么可证得S四边形OEBF =S△BOC=S正方形ABCD;〔2〕易证得△OEG∽△OBE,然后由相像三角形对应边成比例,证得OG•OB=OE2,再利用OB 与BD关系,OE与EF关系,即可证得结论;〔3〕首先设AE=x,那么BE=CF=1﹣x,BF=x,继而表示出△BEF与△COF面积之和,然后利用二次函数最值问题,求得AE长.【解答】解:〔1〕∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,,∴△BOE≌△COF〔ASA〕,∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD=×1×1=;〔2〕证明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=BD,OE=EF,∴OG•BD=EF2;〔3〕如图,过点O作OH⊥BC,∵BC=1,∴OH=BC=,设AE=x,那么BE=CF=1﹣x,BF=x,∴S△BEF +S△COF=BE•BF+CF•OH=x〔1﹣x〕+〔1﹣x〕×=﹣〔x﹣〕2+,∵a=﹣<0,∴当x=时,S△BEF +S△COF最大;即在旋转过程中,当△BEF与△COF面积之和最大时,AE=.【点评】此题属于四边形综合题,主要考察了正方形性质,旋转性质、全等三角形断定与性质、相像三角形断定与性质、勾股定理以及二次函数最值问题.留意驾驭转化思想应用是解此题关键.25.〔10分〕在数学上,我们把符合肯定条件动点所形成图形叫做满意该条件点轨迹.例如:动点P坐标满意〔m,m﹣1〕,全部符合该条件点组成图象在平面直角坐标系xOy中就是一次函数y=x﹣1图象.即点P轨迹就是直线y=x﹣1.〔1〕假设m、n满意等式mn﹣m=6,那么〔m,n﹣1〕在平面直角坐标系xOy中轨迹是y=;〔2〕假设点P〔x,y〕到点A〔0,1〕间隔与到直线y=﹣1间隔相等,求点P轨迹;〔3〕假设抛物线y=上有两动点M、N满意MN=a〔a为常数,且a≥4〕,设线段MN中点为Q,求点Q到x轴最短间隔.【分析】〔1〕先推断出m〔n﹣1〕=6,进而得出结论;〔2〕先求出点P到点A间隔和点P到直线y=﹣1间隔建立方程即可得出结论;〔3〕设出点M,N坐标,进而得出点Q坐标,利用MN=a,得出16〔k2+1〕〔k2+b〕≥16,即可得出结论.【解答】解:〔1〕设m=x,n﹣1=y,∵mn﹣m=6,∴m〔n﹣1〕=6,∴xy=6,∴y=,∴〔m,n﹣1〕在平面直角坐标系xOy中轨迹是y=,故答案为:y=;〔2〕∴点P〔x,y〕到点A〔0,1〕,∴点P〔x,y〕到点A〔0,1〕间隔平方为x2+〔y﹣1〕2,∵点P〔x,y〕到直线y=﹣1间隔平方为〔y+1〕2,∵点P〔x,y〕到点A〔0,1〕间隔与到直线y=﹣1间隔相等,∴x2+〔y﹣1〕2=〔y+1〕2,∴y=x2;〔3〕设直线MN解析式为y=kx+b,M〔x1,y1〕,N〔x2,y2〕,∴线段MN中点为Q纵坐标为,∴x2=kx+b,∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴=〔kx1+b+kx2+b〕= [k〔x1+x2〕+2b]=2k2+b∴MN2=〔x1﹣x2〕2+〔y1﹣y2〕2=〔k2+1〕〔x1﹣x2〕2=〔k2+1〕[〔x1+x2〕2﹣4x1x2]=16〔k2+1〕〔k2+b〕≥16,∴k2+b≥,∴=k2+k2+b≥k2+=〔k2+1+〕﹣1≥2﹣1=1,∴点Q到x轴最短间隔为1.【点评】此题是二次函数综合题,主要考察了点轨迹定义,两点间间隔公式,中点坐标公式公式,根与系数关系,确定出16〔k2+1〕〔k2+b〕≥16是解此题关键.26.〔10分〕如图1,二次函数y=ax2﹣2ax﹣3a〔a<0〕图象与x轴交于A、B两点〔点A在点B右侧〕,与y轴正半轴交于点C,顶点为D.〔1〕求顶点D坐标〔用含a代数式表示〕;〔2〕假设以AD为直径圆经过点C.①求抛物线函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN〔点P、M、N分别和点O、B、E对应〕,并且点M、N都在抛物线上,作MF⊥x轴于点F,假设线段MF:BF=1:2,求点M、N坐标;③点Q在抛物线对称轴上,以Q为圆心圆过A、B两点,并且和直线CD相切,如图3,求点Q坐标.【分析】〔1〕将二次函数解析式进展配方即可得到顶点D坐标.〔2〕①以AD为直径圆经过点C,即点C在以AD为直径圆圆周上,根据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D坐标可由a表达出来,在得出AC、CD、AD长度表达式后,根据勾股定理列等式即可求出a值,由此得出抛物线解析式.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N坐标关键是求出点M坐标;首先根据①函数解析式设出M点坐标,然后根据题干条件:BF=2MF作为等量关系进展解答即可.③设⊙Q与直线CD切点为G,连接QG,由C、D两点坐标不难推断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD2=2QG2=2QB2,设出点Q坐标,然后用Q点纵坐标表达出QD、QB长,根据上面等式列方程即可求出点Q坐标.【解答】解:〔1〕∵y=ax2﹣2ax﹣3a=a〔x﹣1〕2﹣4a,∴D〔1,﹣4a〕.〔2〕①∵以AD为直径圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a〔x﹣3〕〔x+1〕知,A〔3,0〕、B〔﹣1,0〕、C〔0,﹣3a〕,那么:AC2=〔0﹣3〕2+〔﹣3a﹣0〕2=9a2+9、CD2=〔0﹣1〕2+〔﹣3a+4a〕2=a2+1、AD2=〔3﹣1〕2+〔0+4a〕2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1即,抛物线解析式:y=﹣x2+2x+3.②∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M〔x,﹣x2+2x+3〕,那么OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵MF:BF=1:2,即BF=2MF,∴2〔﹣x2+2x+3〕=x+1,化简,得:2x2﹣3x﹣5=0解得:x1=﹣1、x2=∴M〔,〕、N〔,〕.③设⊙Q与直线CD切点为G,连接QG,过C作CH⊥QD于H,如右图;设Q〔1,b〕,那么QD=4﹣b,QB2=QG2=〔1+1〕2+〔b﹣0〕2=b2+4;∵C〔0,3〕、D〔1,4〕,∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;代入数据,得:〔4﹣b〕2=2〔b2+4〕,化简,得:b2+8b﹣8=0,解得:b=﹣4±2;即点Q坐标为〔1,﹣4+2〕或〔1,﹣4﹣2〕.【点评】此题主要考察了二次函数解析式确定、旋转图形性质、圆周角定理以及直线和圆位置关系等重要学问点;后两个小题较难,最终一题中,通过构建等腰直角三角形找出QD和⊙Q半径间数量关系是解题题目关键.。

2023年数学中考真题模拟试卷(含解析)

2023年数学中考真题模拟试卷(含解析)

2023年数学中考真题模拟试卷(含解析)一、单选题1.不等式组21x x <⎧⎨>-⎩的解集在数轴上表示为()A .B .C .D .2.不等式组24030x x -<⎧⎨+≥⎩的解集在数轴上表示为()A .B .C .D .3.如图,AB 与CD 相交于点O ,OE 是AOC ∠的平分线,且OC 恰好平分EOB ∠,则下列结论中:①AOE EOC ∠=∠;②EOC COB ∠=∠;③AOD AOE ∠=∠;④2DOB AOD ∠=∠,正确的个数有()A .1个B .2个C .3个D .4个4.如果从1,2,3,4,5,6这六个数中任意选取一个数,那么取到的数恰好是3的整数倍的概率是()A .12B .13C .14D .165.如图所示,该几何体的俯视图是()A .B .C .D .6.如图,已知抛物线2y ax bx c =++的对称轴为直线1x =.给出下列结论:①<0abc ;②20a b +=;③0a b c -+=;④2am bm a b +≥+.其中,正确的结论有()A .1个B .2个C .3个D .4个7.如图,正方形ABCD 中,点P 、F 分别是边BC 、AB 的中点,连接AP 、DF 交于点E ,则下列结论错误的是()A .AP DF =B .AP DF ⊥C .CE CD =D .CE EP EF=+8.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;④GE BG DE =+;⑤222BN DF NF +=.真命题有()A .2个B .3个C .4个D .5个二、填空题9.如图,直线a ∥b ,EF ⊥CD 于点F ,∠2=65°,则∠1的度数是_____.10.抛物线24(3)2y x =+-的顶点坐标是______.11.在一次数学探究活动课中,某同学有一块矩形纸片ABCD ,已知AD =13,AB =5,M 为射线AD 上的一个动点,将△ABM 沿BM 折叠得到△NBM ,若△NBC 是直角三角形,则所有符合条件的M 点所对应的AM 的和为__________.12.小红买书需用48元,付款时小红恰好用了1元和5元的纸币共12张,则小红所用的5元纸币为______张.13.阅读下列材料:在平面直角坐标系中,点00(,)P x y 到直线Ax +By +C =0(A 2+B 2≠0)的距离公式为:0022Ax By Cd A B ++=+.例如:求点P (1,3)到直线4330x y +-=的距离.解:由直线4330x y +-=知:A =4,B =3,C =-3,所以P (1,3)到直线4x +3y -3=0的距离为:224133343d ⨯+⨯-=+.根据以上材料,求点1(0,2)P 到直线51126y x =-的距离是_______.14.如图,AC 与BD 交于O ,AB CD =,要使ABC DCB ∆≅∆,可以补充一个边或角的条件是_______.15.已知,BD 为等腰三角形ABC 的腰上的高,=1BD ,tan 3ABD ∠=,则CD 的长为___________.16.如图,在平面直角坐标系中,直线l :33交x 轴于点A ,交y 轴于点B ,点A1、A2、A3,…在x 轴的正半轴上,点B1、B2、B3,…在直线l 上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是______.三、解答题17.如图,平行四边形ABCD中E,F是直线AC上两点,且AE=CF.求证:BE∥DF.18.“五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.19.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房x间,两人间客房y间,请列出满足题意的方程组_____.20.解不等式123214xx x +<⎧⎪⎨--≥-⎪⎩,并利用数轴确定该不等式组的解.21.如图,直线AB∥CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.22.2020年的全球新冠肺炎,使许多国家经济受到严重的打击,我国的疫情也很严重.某记者随机调查了部分市民,发现市民们对新冠肺炎成因所持的观点不一,经对调查结果整理,绘制了如下尚不完全的统计图表.组别观点频数(人数)A食用野生动物160B家禽感染人mC牲畜感染人nD有人制造病毒240E其他120请根据图表中提供的信息解答下列问题:(1)求出统计表中,m n的值,并求出扇形统计图中E组所占的百分比;(2)若宁波市常住人口约有850万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽取一人,则此人持C组“观点”的概率是多少?(如23.在平面直角坐标系xOy中,已知点A坐标是(2,4),点B在x轴上,OB AB图所示),二次函数的图像经过点O、A、B三点,顶点为D.(1)求点B与点D的坐标;(2)求二次函数图像的对称轴与线段AB的交点E的坐标;(3)二次函数的图像经过平移后,点A落在原二次函数图像的对称轴上,点D落在线段AB上,求图像平移后得到的二次函数解析式.24.如图,抛物线与x轴交两点A(﹣1,0),B(3,0),过点A作直线AC与抛物线交于C点,它的坐标为(2,﹣3).(1)求抛物线及直线AC的解析式;(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E点,点E与点A、C围成三角形,求出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.25.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2F(m,0)是x轴的正半轴上一点,将抛物线C 绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N 能否成为正方形?若能,求出m的值;若不能,请说明理由.参考答案与解析1.B【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再比较得到答案.【详解】解:不等式组21x x <⎧⎨>-⎩的解集为:-1<x <2,解集在数轴上的表示为:.故选:B .【点睛】本题考查了求解不等式组的解集,及把不等式的解集在数轴上表示出来,解题的关键是掌握在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.C【分析】先解不等式组,求出不等式组的解集,再根据“小于和大于用空心圆,有等于的时候用实心圆解集;找到那个数在数轴上位置,往上引垂线,大于左画,小于右画”判断即可.【详解】解:24030x x -<⎧⎨+≥⎩①②解不等式①得:2x <解不等式②得:3x ≥-∴不等式组的解集为:32x -≤<,在数轴上表示不等式组的解集为:故选:C .【点睛】本题考查的知识点是在数轴上表示不等式(组)的解集,解答本题的关键是正确的求出不等式组的解集.3.D【分析】根据角平分线的定义和对顶角的性质,逐项判断即可求解.【详解】解:∵OE 是AOC ∠的平分线,∴AOE EOC ∠=∠,故①正确;∵OC 恰好平分EOB ∠,∴EOC COB ∠=∠,故②正确;∴AOE COB ∠=∠,∵COB AOD ∠=∠,∴AOD AOE ∠=∠,故③正确;∵2AOC AOE ∠=∠,∴2AOC AOD ∠=∠,∵AOC BOD ∠=∠,∴2DOB AOD ∠=∠,故④正确;∴正确的有4个.故选:D【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握一般地,从一个角的顶点出发,在角的内部把这个角分成两个相等的角的射线,叫做这个角的平分线;对顶角相等是解题的关键.4.B【分析】由题意得取到的数恰好是3的整数倍的数有3和6,进而问题可求解.【详解】解:由题意得:取到的数恰好是3的整数倍的数有3和6,∴取到的数恰好是3的整数倍的概率是2163P ==;故选B .【点睛】本题主要考查概率,熟练掌握概率的求解是解题的关键.5.B【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看是1个正方形,左下角的正方形的边是浅线,故选B .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.C【分析】根据二次函数的图象与系数的关系,二次函数的性质即可求出答案.【详解】解:由图象可得:a <0,c >0,﹣2b a=1,∴b =-2a >0,∴<0abc ;∴①正确,∵﹣2b a=1,∴b =-2a ,∴20a b +=,∴②正确,∵对称轴为直线1x =,∴312x +=,解得x =-1,∴(3,0)的对称点为(-1,0)当x =﹣1时,y =a ﹣b +c ,∴a ﹣b +c =0,∴③正确,当x =m 时,y =a 2m +bm +c ,当x =1时,y 有最大值为a +b +c ,∴a 2m +bm +c ≤a +b +c ,∴a 2m +bm ≤a +b ,∴④不正确,故选:C .【点睛】本题考查了二次函数的图像,二次函数的对称轴,二次函数的最值,熟练掌握二次函数图像与各系数的关系,理解最值的意义是解题的关键.7.D【详解】分析:证明△ABP ≌△DAF 可判断AP 与DF 的位置关系与数量关系;延长AP 与DC 的延长线交于点G ,用EC 是斜边DG 上的中线证明;过点C 作CH ⊥EG 于点H ,可证PH =EF ,则EP =EF =EH ,比较EH 与EC 的关系.详解:A .易证△ABP ≌△DAF (SAS )得,AP =DF ;B .由△ABP ≌△DAF (SAS )得,∠BAP =∠ADF ,因为∠ADF +∠AFD =90°,所以∠BAP +∠AFD =90°,所以∠AEF =90°,所以AP ⊥DF ;C.延长AP与DC的延长线交于点G,易证△ABP≌△GCP(ASA),所以CG=AB,又AB=CD,所以CG=CD,因为∠DEG=90°,所以CE=CD;D.过点C作CH⊥EG于点H,易证△AEF≌△CHP(ASA),所以EF=HP,所以EP+EF=EP+PH=EH<EC,即EP+EF<CD.故选D.点睛:正方形中如果有中点,一般采用倍中线法,构建全等三角形,把已知条件和要解决的问题集中在一起.8.C【分析】根据题意,连接CF,由正方形的性质,可以得到△ABF≌△CBF,则AF=CF,∠BAF=∠BCF,由∠BAF=∠FGC=∠BCF,得到AF=CF=FG,故①正确;连接AC,与BD 相交于点O,由正方形性质和等腰直角三角形性质,证明△AOF≌△FHG,即可得到EH=AO,则③正确;把△ADE顺时针旋转90°,得到△ABM,则证明△MAG≌△EAG,得到MG=EG,即可得到EG=DE+BG,故④正确;②无法证明成立,即可得到答案.【详解】解:连接CF,在正方形ABCD 中,AB=BC ,∠ABF=∠CBF=45°,在△ABF 和△CBF 中,45AB BC ABF CBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),∴AF=CF ,∠BAF=∠BCF ,∵FG ⊥AE ,∴在四边形ABGF 中,∠BAF+∠BGF=360°-90°-90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF ,∴∠CGF=∠BCF∴CF=FG ,∴AF=FG ;①正确;连接AC 交BD 于O.∵四边形ABCD 是正方形,HG ⊥BD ,∴∠AOF=∠FHG=90°,∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°,∴∠OAF=∠GFH ,∵FA=FG ,∴△AOF ≌△FHG ,∴FH=OA=定值,③正确;如图,把△ADE 顺时针旋转90°,得到△ABM,∴AM=AE ,BM=DE ,∠BAM=∠DAE ,∵AF=FG ,AF ⊥FG ,∴△AFG 是等腰直角三角形,∴∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△AMG 和△AEG 中,45AM AE EAG MAG AG AG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AMG ≌△AEG ,∴MG=EG ,∵MG=MB+BG=DE+BG ,∴GE=DE+BG ,故④正确;如图,△ADE 顺时针旋转90°,得到△ABM ,记F 的对应点为P ,连接BP 、PN ,则有BP=DF ,∠ABP=∠ADB=45°,∵∠ABD=45°,∴∠PBN=90°,∴BP 2+BN 2=PN 2,由上可知△AFG 是等腰直角三角形,∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△ANP 和△ANF 中,45AP AF EAG MAG AN AN =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ANP ≌△ANF ,∴PN=NF ,∴BP 2+BN 2=NF 2,即DF 2+BN 2=NF 2,故⑤正确;根据题意,无法证明②正确,∴真命题有四个,故选C.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,解题的关键是作辅助线构造出等腰三角形和全等三角形.9.25°.【详解】∵a ∥b ,∴∠FDE =∠2=65°.∵EF ⊥CD ,∴∠EFD =90°.∴∠1=180°-∠EFD -∠FDE =180°-90°-65°=25°.10.()3,2--【分析】直接利用二次函数的顶点式解析式读取即可.【详解】解:∵()2432y x =+-,∴顶点坐标为()3,2--,故答案为:()3,2--.【点睛】本题考查了二次函数的顶点式解析式,解题关键是掌握()()20y a x h k a =++≠的顶点坐标为(),h k -.11.26【详解】解:①若M 接近A ,如图1,此时∠BNC =90°,但∠BNM =∠A =90°,∴M 、N 、C 共线,由面积法S △BMC =12MC •BN =12×13×5,∵BN =AB =5,∴MC =13,由勾股定理得:DM =12,AM =1.②若M 在AD 上,但使∠ABM >45°,如图2,此时∠BNC >∠BNM =∠A =90°,∴△BCN 不可能是直角三角形.③若M 在AD 的延长线上,如图3,要使∠BNC =∠BNM =∠A =90°,则M 、C 、N 共线.设MD =x ,则,AM =13+x ,MN =13+x .∵CN =12,∴MC =13+x -12=x +1.在R t △CDM 中,由勾股定理得:2225(1)x x +=+,解得:x =12,∴AM =25.综上所述:所有MA 的和=1+25=26.故答案为26.【点睛】本题是矩形与折叠问题.解题的关键是分三种情况讨论.难度比较大.12.9【分析】设小红所用的1元纸币为x 张,小红所用的5元纸币为y 张,根据“买书需用48元,用了1元和5元的纸币共12张”列方程组,解方程组即可得.【详解】解:设小红所用的1元纸币为x 张,小红所用的5元纸币为y 张,54812x y x y +=⎧⎨+=⎩解得:39x y =⎧⎨=⎩∴小红所用的1元纸币为3张,5元纸币为9张,故答案为:9.【点睛】本题考查了二元一次方程组的应用,理解题意得出等量关系是列方程组求解的关键.13.2【分析】根据点到直线的距离公式,列出方程即可解决问题.【详解】解:∵51126y x =-,∴51220x y --=,∴求点1(0,2)P 到直线51220x y --=的距离为:26213d ===;故答案为:2.【点睛】本题考查一次函数图象上点的坐标特征,点到直线的距离公式的知识,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题.14.AC BD =或ABC DCB ∠=∠或A D ∠=∠或ABO DCO∠=∠【分析】由已知可知有两条边对应相等,据此结合全等三角形的判定定理,针对边角进行分析判断即可得到答案.【详解】解:由题意,∵AB CD =,BC 为公共边,∴当AC BD =,满足SSS ,符合题意;当ABC DCB ∠=∠,满足SAS ,符合题意;当A D ∠=∠,先证明△ABO ≌△DCO ,然后得到ABC DCB ∠=∠,符合题意;当ABO DCO ∠=∠,先证明△ABO ≌△DCO ,然后得到ABC DCB ∠=∠,符合题意;故答案为:AC BD =或ABC DCB ∠=∠或A D ∠=∠或ABO DCO ∠=∠.【点睛】本题考查了全等三角形的判定定理,熟练掌握SSS ,SAS ,ASA ,AAS 证明三角形全等的方法是解题的关键.15.(2+或(2【分析】分两种情况,当A ∠为锐角时,当A ∠为钝角时,利用勾股定理求解.【详解】解: BD 为等腰三角形ABC 的腰上的高,=1BD ,tan ABD ∠=,当A ∠为锐角时,如图1,当=AB AC 时,tan AD ABD BD∠==,∴AD =2AB ∴=,2AC AB ∴==,2CD AC AD ∴=-=-;如图2,当=AC BC 时,tan AD ABD BD∠==,∴AD =设=CD x ,则AC AD CD x BC =--=,)2221x x ∴=+,解得3x =,即3CD =;当A ∠为钝角时,如图3,当=AB AC 时,tan AD ABD BD ∠==,∴AD =2AB ∴=,2CD AC AD ∴=+=+综上所述,CD 的长度为(2+或(2或3.【点睛】本题主要考查了等腰三角形的性质,勾股定理,分类讨论是解答本题的关键.16.【详解】试题解析:当x=0时,y=1,则B (0,1),当y=0时,x=A 0),∴OB=1,∵tan ∠OAB=3OB OA ==,∴∠OAB=30°,∵△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠AB2A1=∠AB3A2=30°,∴OB1=OA=,A1B2=AA1,A2B3=AA2,则OA1=OB1A1B2=AA1∴A1A2=A1B2=AA1=2OA1同理:A2A3=A2B3=2A1A2A3A4=2A2A3A4A5=2A3A4A5A6=2A4A5∴A6A7=2A5A6∴△A6B7A7的周长是:17.见解析【分析】根据平行四边形的性质,证得△CFD≌△AEB,即可得证结论.【详解】证:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ACD=∠CAB.∵CF=AE,∴△CFD≌△AEB(SAS),∴∠F=∠E,∴BE∥DF.【点睛】此题考查了平行四边形的性质和全等三角形的证明,熟练掌握平行四边形的有关性质和全等三角形的证明是解题的关键.18.(1)共有12种等可能结果;(2)12【分析】(1)用A、B、C、D分别表示石林风景区;香格里拉普达措国家公园;腾冲火山地质公园;玉龙雪山景区四个景区,然后画树状图展示所有12种等可能的结果数;(2)在12种等可能的结果中找出玉龙风景区被选中的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:由树状图知,共有12种等可能结果;(2)∵抽到玉龙雪山风景区的结果数为6,∴抽到玉龙雪山风景区的概率为12.【点睛】本题考查利用列举法求概率,学生们要熟练掌握画树状图法和列表法,是解本题的关键.19.325075701510x y x y +=⎧⎨+=⎩【分析】因为求两个未知量,因此可设两个未知数,设租住三人间x 间,两人间y 间,根据题意可列二元一次方程组即可.【详解】解:根据题意可得三人间每间住宿费为25×3=75元;两人间每间住宿费为:35×2=70元;设租住三人间x 间,两人间y 间,可列方程:325075701510x y x y +=⎧⎨+=⎩20.21x -£<,数轴见解析【分析】分别计算出各不等式的解集,再求出其公共解集即可.【详解】解:123214x x x +<⎧⎪⎨--≥-⎪⎩①②由①得,1x <由②得,2x ≥-在数轴上表示为:,故原不等式组的解集为:21x -£<.【点睛】本题考查解一元一次不等式组,掌握不等式组取解集的方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.21.∠2=22°.【分析】根据平行线的性质求得∠1=∠QPA=50°,由于∠2+∠QPA=90°,即可求得∠2的度数.【详解】解:∵AB ∥CD ,∠1=68°,∴∠1=∠QPA=68°.∵PM ⊥EF ,∴∠2+∠QPA=90°.∴∠2+68°=90°,∴∠2=22°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是本题的关键.22.(1)80m =;200n =;15%;(2)255万人;(3)14【分析】(1)总人数=A 组人数÷所占百分比,m =总人数×所占百分比,n =总人数-80-m -120-60,E 组的百分比=E 组的人数除以总人数;(2)算出D 组所占的百分比,然后用850乘以D 组所占的百分几即可求解;(3)根据概率公式计算即可.【详解】解:(1)总人数为16020%800÷=(人),80010%80m =⨯=,80016080240120200n =----=,E 组所占的百分比为120100%15%800⨯=;(2)240850255800⨯=(万人);(3)P (持C 组观点)20018004==.【点睛】本题考查扇形统计图,以及用样本来估计总体,掌握扇形统计图的统计意义是解题的关键.23.(1)点B 的坐标为(5,0),点D 的坐标为(52,256)(2)(52,103)(3)()228333y x =--+【分析】(1)设点B 的坐标为(m ,0),经过A 、B 、O 三点的二次函数解析式为2y ax bx c =++,先根据OB =AB ,利用勾股定理求出点B 的坐标,然后用待定系数法求出二次函数解析式即可求出点D 的坐标;(2)先求出直线AB 的解析式,再根据(1)所求得到抛物线对称轴,即可求出点E 的坐标;(3)只需要求出平移后的抛物线顶点坐标即可得到答案.(1)解:设点B 的坐标为(m ,0),经过A 、B 、O 三点的二次函数解析式为2y ax bx c =++,∵OB =AB ,∴()22224m m =-+,∴5m =,∴点B 的坐标为(5,0),∴42425500a b c a b c c ++=⎧⎪++=⎨⎪=⎩,∴231030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴二次函数解析式为22210252533326y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴点D 的坐标为(52,256);(2)解:设直线AB 的解析式为1y kx b =+,∴112450k b k b +=⎧⎨+=⎩,∴143203k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为42033=-+y x ,∵二次函数解析式为22210252533326y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴二次函数的对称轴为直线52x =,当52x =时,4520103233y =-⨯+=,∴点E 的坐标为(52,103);(3)解:∵二次函数的图像经过平移后,点A 落在原二次函数图像的对称轴上,∴点A 向右平移了51222-=个单位长度;∴平移后抛物线的顶点的横坐标为51322+=,当3x =时,42083333y =-⨯+=,∴平移后的抛物线顶点坐标为(3,83),∴平移后的抛物线解析式为()228333y x =--+.【点睛】本题主要考查了勾股定理,一次函数与二次函数综合,待定系数法求函数解析式,二次函数图象的平移等等,熟知二次函数的相关知识是解题的关键.24.(1)直线AC 的函数解析式是y=﹣x ﹣1;(2)S △ACE =278;(3)存在4个符合条件的F 点.【分析】(1)将A 、B 坐标代入y=x 2+bx+c ,利用待定系数法可求得二次函数解析式,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入,利用待定系数法即可求得直线AC 的解析式;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),由S △ACE =12PE•|x C ﹣x A |,而|x C ﹣x A |的值是确定的,因此只要求得PE 的最大值即可;(3)分CG 与AF 平行、CF 与AG 平行,分别画出符合题意的图形,分别进行求解即可得.【详解】(1)将A (﹣1,0),B (3,0)代入y=x 2+bx+c ,得01093b c b c =-+⎧⎨=++⎩,解得:23b c =-⎧⎨=-⎩,∴y=x 2﹣2x ﹣3,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入得032m n m n =-+⎧⎨-=+⎩,解得:11m n =-⎧⎨=-⎩,∴直线AC 的函数解析式是y=﹣x ﹣1;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),∵点P 在点E 的上方,∴PE=(﹣x ﹣1)﹣(x 2﹣2x ﹣3)=﹣x 2+x+2=﹣(x ﹣12)2+94,∴当x=12时,PE 的最大值为94,∴S △ACE =12PE•|x C ﹣x A |=12×94×3=278;(3)①如图,连接C 与抛物线和y 轴的交点,∵C (2,﹣3),G (0,﹣3)∴CG ∥X 轴,此时AF=CG=2,∴F 点的坐标是(﹣3,0);②如图,AF=CG=2,A 点的坐标为(﹣1,0),因此F 点的坐标为(1,0);③如图,此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(73),由于直线GF的斜率与直线AC的相同,因此可设直线GF 的解析式为y=﹣x+h,将G点代入后可得出直线的解析式为y=﹣7.因此直线GF与x轴的交点F的坐标为(70);④如图,同③可求出F的坐标为(47,0);综合四种情况可得出,存在4个这样的点F ,分别是F 1(1,0),F 2(﹣3,0),F 3(7,0),F 4(47,0).【点睛】本题考查了待定系数法求抛物线解析式、一次函数解析式,二次函数的性质,平行四边形的性质等,综合性较强,熟练掌握待定系数法是解题的关键.25.(1)2142y x =-+;(2)2<m <22;(3)m =6或m 173.【分析】(1)由题意抛物线的顶点C (0,4),A (220),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题;(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (220),设抛物线的解析式为24y ax =+,把A(0)代入可得a =12-,∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m﹣3﹣3(舍弃),∴m﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m ﹣3时,四边形PMP ′N 是正方形.。

中考英语模拟试题及答案共七套

中考英语模拟试题及答案共七套

中考英语模拟试题及答案共七套中考英语模拟试题及答案共七套在备战中考英语的过程中,模拟试题的练习是非常重要的。

通过模拟试题,我们可以了解考试的题型、难度和时间分配,同时还可以检验自己的英语水平。

本文将提供七套中考英语模拟试题及答案,帮助大家更好地备考。

第一套模拟试题听力部分1、(1) A. shirt B. ship C. sheep D. shelf (2) A. bill B. bigC. filmD. climb (3) A. nose B. note C. code D. cloud笔试部分2、The _______ month is July. A. seaside B. seventh C. seawaterD. seven21、They are _______ a football match now. A. playing B. havingC. watchingD. reading答案及解析1、(1) A。

根据所听内容,选择正确的单词填空。

正确答案是A,因为“shirt”与录音中的“shirt”读音相同。

(2) C。

根据所听内容,选择正确的单词填空。

正确答案是C,“film”与录音中的“film”读音相同。

(3) D。

根据所听内容,选择正确的单词填空。

正确答案是D,“cloud”与录音中的“cloud”读音相同。

2、B。

根据句意和语境,选择正确的单词填空。

正确答案是B,“seventh”表示“第七个月”。

3、A。

根据句意和语境,选择正确的单词填空。

正确答案是A,“playing”表示“正在踢足球”。

第二套模拟试题听力部分1、A. life B. light C. like D. license2、A. grandpa B. grammar C. green D. great3、A. stomach B. ladder C. dollar D. doctor笔试部分2、My younger sister is _______ university student majoring in English. A. a B. an C. the D. /21、The music in the background makes me feel _______. A.peaceful B. peacefuls C. peacefully D. peace答案及解析1、C。

2023届吉林省长春市名校调研系列卷(市命题)中考五模英语试题含答案

2023届吉林省长春市名校调研系列卷(市命题)中考五模英语试题含答案

2023年中考英语模拟试卷考生须知:1. 全卷分选择题和非选择题两部分, 全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2. 请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁, 不要折叠, 不要弄破、弄皱, 在草稿纸、试题卷上答题无效。

Ⅰ.单项选择1.I hope everyone can care about ______ the environment and stop ______ things.A. protecting; wastingB. protecting; to wasteC. protect; wastingD. protect; to waste2.—How about raising some money for the people in the earthquake-hit area?—__________! They can buy some food and clothes with the money.A. I disagreeB. Not at allC. Good ideaD. I’m sorry3.Would you please make some ______for me? I must be together with my babyA. DecisionsB. roomC. excusesD. mistakes4.—.ha..reall.goo.weeken.a.m.uncle’s..... —________.A. Oh, that’s very nice of youB. CongratulationsC. It’s a pleasureD. Oh, I’m glad to hear that5.— How long have you the dictionary?— For three weeks.A. borrowedB. hadC. bought6.---What do you think we can do for our aged parents?---You don’t have to do __________except to be with them and be yourself.A. somethingB. anythingC. everythingD. nothing7、—Do you dream of being a doctor or a pilot?......wan.t.wor.fo.people’.health.A. A pilotB. Yes, I doC. No, I’m notD. A doctor8、In our school library there _________ a number of books on science and the number of the books _________ growing.A. are; isB. is; areC. is; isD. are; are9、He has too much homework, and it is kind of difficult, so he _________ finish it on time.A. can’tB. mustn’tC. shouldn’tD. needn’t10、—Haidian All Stars have won most of the matches.—Wrong.Al.o.th.matches!____.Tony.You'v.go.n.chance!A. Face the truthB. Nice workC. Have a nice tripD. Let me have a lookⅡ.完形填空11.. es.childre.kno.they’l.hav....exam.an.th.schoo.yea.wil.en.soon.Boy.an.girl.wil.hav..nearl.tw.months.holiday.an.they’l.leav.schoo.. .. trai.o.b.ca.t.. ..t.se.thei.father.an.mothers.Th.summe.holiday.ar.th.. uall.good.s.on.ca....mos.o.hi.tim.playin.outside.I.on.live.i.th.country.h.ca.. .. int.th.wood.(森林uall.g.t..par.t.play.Th.bes.plac.fo..summe.holida.i.th.. .. .Som.childre.ar.....enoug.t.liv.nea.th.sea.Bu.fo.th.other.wh.d.not.i.the.hav.chanc. t.sta.a.on.o.th.bi.seasid.town.fo..wee.o.two.the.wil.tal.abou.i.al.th.followin.schoo.year.Now.... make.childre.lik.th.seasid.s.much..thin.it’.th.sands(沙滩).th.se.an.th.sun.no.anythin.else.O.course.ther.ar..1...ne.thing.t.see.nic.thing.t.eat.an.interestin.thing.t.do.Bu.th.feelin.o. san.unde.thei.feet.o.sal.wate.o.thei.skin.an.th.feelin.o.th.war.su.o.thei.back.mak.the.happier.1. A. they B. them C. their D. theirs2. A. on B. by C. in D. with3. A. go to town B. leave home C. return home D. stay at home4. A. best B. better C. worst D. worse5. A. take B. use C. pay D. spend6. A. go out B. go back C. go off D. go for7. A. village B. seaside C. city D. town8. A. lucky B. sad C. quiet D. comfortable9. A. that B. who C. what D. where10. A. little B. much C. a little D. lots ofⅢ.语法填空.whe.yo.ar.studying.iPad.1.books.Her.i..surve.abou.it.Som.student.thin.tha.iPad.are2.(good)rmatio.i.a.iPa.easil.instea.o.3.(look.everythin.u.i.differen.books.A.th.sam.time.student.ca.sen.picture.directl.t..printe.t.photocopy 4. (they).An.homewor.wil.no.be5. (forget)easil.becaus.teacher.ca.sen.al.th.homewor.t.thei.iPads.Wit.6.iPads.the.ca.d.al.thei.wor.i.them.Bu.7. (other.thin.tha.book.ar.more8.(help.fo.learning.9. .readin.book.won’.hur.eyes.Second.wha.the.rea.i.book.ca.leav..deepe.impressio.o.them.What’.iPad.t.pla.game.a.school.whic.i.ba.10.thei.study.S.the.prefe..books.Ⅳ.阅读理解A13.Dear Mr/Ms,1. William Taylor and Manager James Rogers will arrive in Beijing on _____.A. SundayB. MondayC. Tuesday2. They will _____ at 4:30 am on May 14.A. have a discussionB. have a partyC. have a visit3. Their group discussion will last _______ hours.A. 4B. 5C. 14. They will go to Shanghai by ______ on Wednesday.A. carB. trainC. air5. The letter is mainly about _______.A. a plan of a journeyB. a business meetingC. an important discussionB14、1. (小题1)Diamond House was built_____.A. about twenty years agoB. hundreds of years agoC. in 1984D. about ten years ago2. (小题2)Seaview is_____ more expensive than Sunshine Apartment.A. thirty-four thousand dollarsB. twelve thousand dollarsC. five thousand dollarsD. twenty-two thousand dollars3. (小题3)Which of the following is true?A. Seaview has got 3 bedrooms and two kitchens.B. Diamond House has got a garden and a garage.C. Diamond House is cheaper than Sunshine Apartment.D. Sunshine Apartment has got a small garden.4. (小题4)If I like doing shopping in the city center every day, I should buy _____.A. SeaviewB. Sunshine ApartmentC. Diamond HouseD. None of them5.(小题5)Th.Smith.wan.t.bu..hous.wit..bedrooms..bathroom..livin.roo.an..garage.Whic.on.d.the.choose?A. SeaviewB. Sunshine ApartmentC. Diamond HouseD. None of themC15.Whe.yo.wer.ver.young.yo.like.t.pla.wit.you.friends.Di.yo.fin.tha.playtim.wa.alway.mor.fu.whe.every on.share.th.toys.Everyon.go..turn.N.on.wa.lef.out.That’..lif.lesso.tha.change.a.yo.ge.older.A.yo.gro.up.yo.begi.t.understan.tha.other.hav.les.tha.yo.d..i.Chin.an.i.th.world. An.tha.thos.o.u.wh.“have.thing.shoul.hel.thos.wh..hav.less.tha.w.do.Th.ide.o.sharing____________.At your age, you can “share” with people in need in three wa ys.1.Yo.ca.giv.the..par.o.you.money.Man.adult.d.tha.regularly.e.suc.a.clothin.an.toys.Yo.ca.pas.the.ont.other.wh.canno.bu.them.3.Yo.ca.hel.peopl.b.givin.you.tim.an.you.energy.s.on.i.als.calle.volunteering.Volunteerin.i.abou.givin.you.tim.t.tak.par.i.activitie.tha.wil.hel.others.Ever.year.man.th ousand.o.volunteer.i.th.worl.giv.th.mos.valuabl.gif.o.all.The.giv.thei.time.The.giv.thei.talent.The.giv.o.themselves.An.the. ar.enjoyin.it.Volunteerin.isn’.jus.abou.work.It’.abou.fu.too.根据材料内容选择最佳答案, 将其标号填入题前括号内。

2023年中考语文模拟测试卷8((有答案)

荆州市2023初中毕业生学业水平检测命题大赛(语文)试卷一、基础与运用(22分)1.下列词语中加点字的读音,全部正确的一项是()A. 恐吓.(xià)稽.(qǐ)首妥帖.(tiē)吹毛求疵.(cī)B. 盘桓.(huán)叱咄.(duō)两栖.(qī)间.不容发(jiàn)C. 驾驭.(yù)诘.难(jié)濒.临(bīn)混.为一谈(hùn)D. 惩.戒(chéng)荫.庇(yìn)炽.热 (zhì) 拈.轻怕重(niān)2.下列词语中,没有错别字的一项是()A. 推祟劝戒取义成仁不屑置辩B. 要诀雷霆身临奇境哗众取宠C. 涉猎隐匿如座针毡无精打采D. 寂寥诡谲味同嚼蜡铢两悉称3.下列加点成语使用正确的一项是( )A. 国际马拉松比赛首次在荆门激情开跑。

在这场万众瞩目....的比赛中,荆门人以奔跑的姿势跑进春天,拥抱春天。

B. 撒贝宁主持的《开讲啦》节目鲜为人知....,在此节目中,其青春活泼的主持风格深受广大青少年朋友的青睐。

C. 近期在东洲岛举行的焰火表演晚会中,璀璨夺目的焰火以及具有衡阳地方特色的民俗表演让人们拍手称快....。

D. 在建国70周年即将到来之际,我们深情缅怀革命前辈,虽然他们早已离开人世,但他们的恩情我们一直铭记于心,耿耿于怀....。

4.按顺序排列下面的语句,组成语意连贯的一段话。

排序正确的一项是()①一夜枕上听雨,辗转不能成寐,清晨推窗望去,雨却停了。

②院子中,一丛绿树被染得浓阴如墨。

③初到江南,就碰上了梅雨季节。

④朦胧的墨绿中,清晰地闪着点点火红的花朵,给这雨后空朗的清晨增添了不少的生气。

⑤浓云尚未散开,低低压着房檐。

⑥空中还飘着若有若无的雨丝,天地间弥漫着一层层湿漉漉、静悄悄青黛色雾霭。

A.③①②④⑤⑥B.②④⑤⑥①③C.③①⑤⑥②④D.⑤⑥③①②④5.下列有关文学、文化常识表述不正确的一项是()A.《关雎》《子衿》都是古老的恋歌,出自我国第一部诗歌总集《诗经》。

2023年中考语文模拟测试卷3((有答案)

荆州市2023年初中毕业生学业水平检测命题大赛(语文)试卷一、基础与运用(22分)1.下列各组词语中,加点字的读音全部正确....的一组是()(2分)A. 星宿.(sù) 门框.(kuàng) 贮.蓄(chǔ) 屏.息凝神(bǐng)B. 确凿.(záo) 翘.首(qiǎo) 烟囱.(cōng) 潜.滋暗长(qiǎn)C. 矩.形(jù) 矗.立(chù) 擦.拭(chā) 强.聒不舍(qiǎng)D. 殷.红(yān) 遒劲. (jìng) 勾当.(dàng) 不屑.置辩(xiè)2. 各组词语中汉字书写全部正确....的一组是( ) (2分)A .帐篷辐射鸠占鹊巢大庭广众B. 璧门泄气矫揉造做喜出望外C. 独裁狼藉无精打彩眼花缭乱D. 取缔决别望眼欲穿断章取意3.下列句子中,加点成语使用正确..的一项是 ( )(2分)A.“唐诗崇情”,在如雷贯耳....的唐诗背后,有大唐风范,有那个时代特有的风流与热情。

B.横跨在洨河上的赵州桥非常雄伟,桥的设计完全合乎科学原理,施工技术更是美轮美奂....。

C.改造后的北湖公园,水更清澈,路更规整,夜晚灯光更璀璨,前往参观的人不绝如缕....。

D.延安,曾经是中共中央的所在地,是“延安精神”的发源地,也是无数人魂牵梦萦....的地方。

4. 依次填入下面横线处的句子,最恰当...的一项是( )(2分)水墨画中的意境是一个值得关注的话题。

____________________。

_____________________。

____________________。

_______________________。

①王国维的“境界说”确立了意境在美学中的重要地位②到了唐代,王昌龄提出诗有“三境”:物境、情境、意境,首次提出“意境”③后来司空图提出的“思与境偕”将意境引入美学范畴④“意境”最早源于《诗经》中的“兴”,意指通过描绘客观情感,使人回味无穷A.②①③④B.②③④①C.①②③④D.④②③①5. 下面关于文学文化常识的表述,正确..的一项是( )(2分)A.2022年北京冬奥会开幕式,以二十四节气倒计时的方式惊艳开场。

2022年中考全真模拟考试《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共12小题)1.下列实数中,比1大的数是()A. B.12- C. 12D. 22.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A. B.C. D.3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为( )A. 2B. 3C. 6D. 544.如图,AD是O的直径,若40B︒∠=,则DAC∠的度数为()A. 30°B. 40°C. 50°D. 60°5.下列命题为真命题的是()A. 直角三角形的两个锐角互余B. 任意多边形的内角和为360°C. 任意三角形的外角中最多有一个钝角D. 一个三角形中最多有一个锐角6.估计3(32)218-的值应在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间7.我国元朝数学家朱世杰的数学著作《四元玉鉴》中有一个”二果问价”问题,原题如下:”九百九十九文钱,甜果、苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个;”其大意为:用999文钱,可以买甜果和苦果共1000个,买9个甜果需要11文钱,买7个苦果需要4文钱,问买甜果和苦果的数量各多少个?设买甜果、苦果的数量分别为个、个,则可列方程组为( ) A. 999114100097x y x y +=⎧⎪⎨+=⎪⎩ B. 999971000114x y x y +=⎧⎪⎨+=⎪⎩ C. 100011499997x y x y +=⎧⎪⎨+=⎪⎩ D. 100097999114x y x y +=⎧⎪⎨+=⎪⎩ 8.根据如图所示的程序计算函数的值,若输入的值为43,则输出的值为( )A. 173B. 133C. 103D. 539.如图,菱形OABC 在第一象限内,60AOC ∠=︒,反比例函数(0)k y x x=>的图象经过点,交BC 边于点,若AOD ∆的面积为23,则的值为( )A. 43B. 33C. 23D. 410.如图,某建筑物CE 上挂着”巴山渝水,魅力重庆”宣传条幅CD ,王同学利用测倾器在斜坡的底部处测得条幅底部的仰角为60°,沿斜坡AB 走到B 处测得条幅顶部C 的仰角为50°.已知斜坡AB 的坡度1:2.4,13i AB ==米,12AE =米(点A B C D E 、、、、在同平面内,CD AE ⊥,测倾器的高度忽略不计),则条幅CD 的长度约为(参考数据:sin 500.77,cos500.64,tan 50 1.19,︒︒︒≈≈≈3 1.73≈)A. 12.5米B. 12.8米C. 13.1米D. 13.4米11.若数使关于的分式方程2311a x x x --=--有正数解,且使关于的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数的个数为( )A. 1B. 2C. 3D. 412.如图,在等腰三角形纸片ABC 中,120,6ABC BC ︒∠==,点D E 、分别在边AC BC 、上,连接DE ,将CDE △沿DE 翻折使得点恰好落在点处,则AE 的长为( )A. 37B. 152C. 37D. 67二.填空题(共6小题)13.计算:0()1|5|5π-+-=_______.14.重庆市组织开展依法打击陆生野生动物违法犯罪活动专项行动.截至2月27日,全市林业系统共出动执法检查人员12583人次,查办案件69件(其中刑事案件24件),涉案野生动物37369只.将数据37369用科学记数法表示为________.15.现有5张除正面数字外完全相同的卡片,正面数字分别为1,2,3,4,5,将卡片背面朝上洗匀,从中随机抽出一张记下数字后放回,洗匀后再次随机抽出一张,则抽出的两张卡片上所写数字相同的概率______.16.如图,正方形ABCD 的边长为4,分别以AD DC 、为直径作半圆,则图中阴影部分的面积为____.17.疫情之下,中华儿女共抗时艰.重庆和湖北同饮长江水,为更好地驰援武汉,打赢防疫攻坚战,我市某公益组织收集社会捐献物资.甲、乙两人先后从地沿相同路线出发徒步前往地进行物资捐献,甲出发1分钟后乙再出发,一段时间后乙追上甲,这时甲发现有东西落在地,于是原路原速返回地去取(甲取东西的时间忽略不计),而乙继续前行,甲乙两人到达B 地后原地帮忙.已知在整个过程中,甲乙均保持各自的速度匀速行走,甲、乙两人相距的路程 (米)与甲出发的时间 (分钟)之间的函数关系如图所示,则当乙到达地时,甲距地的路程是_______米.18.如图,在矩形ABCD 中,AB =3,BC =1,将△ABD 沿射线DB 平移得到△A 'B 'D ',连接B ′C ,D ′C ,则B 'C +D 'C 最小值是_____.三.解答题(共8小题)19.计算:(1)2()()()a b a b a b +---; (2)22222b a b a b a b a ab b a b-++÷--+-. 20.如图,△ABC 为⊙O 内接三角形,∠ABC 的角平分线交⊙O 于点D ,过点D 作DE ∥AC 交BC 的延长线于点E .(1)求证:DE 为⊙O 的切线;(2)若DE =12AC ,求∠ACB 的大小.21.为了让学生掌握知识更加牢固,某校九年级物理组老师们将物理实验的教学方式由之前的理论教学改进为理论+实践,一段时间后,从九年级随机抽取15名学生,对他们在教学方式改进前后的物理实验成绩(百分制)进行整理、描述和分析(成绩用表示,共分成4组:A .6070x <,B .7080x <,C .8090x <,D .90100x ),下面给出部分信息:教学方式改进前抽取的学生的成绩在组中的数据为:80,83,85,87,89.教学方式改进后抽取的学生成绩为:72,70,76,100,98,100,82,86,95,90,100,86,84,93,88. 教学方式改进前抽取的学生成绩频数分布直方图教学方式改进前后抽取的学生成绩对比统计表 统计量改进前 改进后 平均数88 88 中位数众数98根据以上信息,解答下列问题:(1)直接写出上述图表中,,a b c 的值;(2)根据以上数据,你认为该校九年级学生物理实验成绩在教学方式改进前好,还是改进后好?请说明理由(一条理由即可);(3)若该校九年级有300名学生,规定物理实验成绩在90分及以上为优秀,估计教学方式改进后成绩为优秀的学生人数是多少?22.定义:将一个大于0的自然数,去掉其个位数字,再把剩下的数加上原数个位数字的4倍,如果得到的和能被13整除,则称这个数是”一刀两断”数,如果和太大无法直接观察出来,就再次重复这个过程继续计算,例如552635526125538,553855332585,585582078,78136→+=→+=→+=÷=,所以55263是”一刀两断”数.324732428352,35843,431334→+=+=÷=,所以3247不是”一刀两断”数.(1)判断5928是否为”一刀两断”数:_____(填是或否),并证明任意一个能被13整除的数是”一刀两断”数;(2)对于一个”一刀两断”数100010010(19,09,09,09,,,,m a b c d a b c d a b c d =+++均为正整数),规定()G m =2b c a d--.若的千位数字满是14a ,千位数字与十位数字相同,且能被65整除,求出所有满足条件的四位数中,()G m 的最大值.23.在初中阶段的函数学习中,我们经历了”确定函数的表达式——利用函数图象研究其性质——应用函数解决问题”的学习过程.在画函数图象时,我们可以通过描点或平移的方法画出一个函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数|2|(0)y x b kx k =++≠中,当0x =时,1y =;当1x =-时,3y =.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数112y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式1|2|12x b kx x ++-的解集.24.新型冠状病毒肺炎是一种急性感染性肺炎,其病原体是一种先前未在人体中发现的新型冠状病毒.市民出于防疫的需求,持续抢购防护用品.某药店口罩每袋售价20元,医用酒精每瓶售价15元.(1)该药店第一周口罩的销售袋数比医用酒精的销售瓶数多100,且第一周这两种防护用品的总销售额为9000元,求该药店第一周销售口罩多少袋?(2)由于疫情紧张,该药店为了帮助大家共渡难关,第二周口罩售价降低了1%2a ,销量比第一周增加了2%a ,医用酒精的售价保持不变,销量比第一周增加了%a ,结果口罩和医用酒精第二周的总销售额比第一周增加了65%a ,求的值. 25.如图,已知抛物线2:(0)L y ax bx c a =++≠与轴交于A B 、两点,与轴交于点,且(1,0),3A OB OC OA -==.(1)求抛物线的函数表达式;(2)连接AC BC 、,在抛物线上是否存在一点,使2ABC OCN S S =△△?若存在,求出点的坐标;若不存在,请说明理由.26.如图①,在Rt OAB ∆中,90,,AOB OA OB D ∠=︒=为OB 边上一点,过点作DC AB ⊥交AB 于点,连接AD ,为AD 的中点,连接,OE CE . 【观察猜想】(1)①,OE CE 的数量关系是___________②,OEC OAB ∠∠的数量关系是______________【类比探究】(2)将图①中BCD ∆绕点逆时针旋转45︒,如图②所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;拓展迁移】(3)将BCD ∆绕点旋转任意角度,若2,3BD OB ==,请直接写出点,,O C B 在同一直线上时OE 的长.答案与解析一.选择题(共12小题)1.下列实数中,比1大的数是()A. B.12C. 12D. 2【答案】D【解析】【分析】根据实数的大小比较,进行判断即可.【详解】根据实数的大小比较,负数都小于0,正数都大于0,比1大的是2,故选:D.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.2.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A. B.C. D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是3个小正方形,第二层左边一个小正方形.故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为( )A. 2B. 3C. 6D. 54【答案】C【解析】【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【详解】解:∵△ABC∽△DEF,相似比为3:1∴△ABC的周长:△DEF的周长=3:1∵△ABC的周长为18∴△DEF的周长为6.故选:C.【点睛】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.∠的度数为()4.如图,AD是O的直径,若40B︒∠=,则DACA. 30°B. 40°C. 50°D. 60°【答案】C【解析】【分析】连接CD,根据同弧所对圆周角相等,得出∠D=∠B,再利用直径所对的圆周角等于90°即可得出∠DAC 的度数.【详解】连接CD,由题意可得:∠D=∠B=40°,AD是O的直径,∴∠ACD=90°,∠DAC=90°-∠D=90°-40°=50°,故选:C.【点睛】本题考查了圆的基本性质,同弧所对的圆周角相等,直径所对的圆周角等于90°,掌握圆的基本性质是解题的关键.5.下列命题为真命题的是()A. 直角三角形的两个锐角互余B. 任意多边形的内角和为360°C. 任意三角形的外角中最多有一个钝角D. 一个三角形中最多有一个锐角【答案】A【解析】【分析】根据三角形的性质,对照选项逐一分析即可.【详解】A.直角三角形的两个锐角互余,故此选项正确;B.任意多边形的内角和(n-2)×180°,故此选项错误;C.在锐角三角形中,三个外角都是钝角,故此选项错误;D.一个三角形中至少有两个锐角,故此选项错误,故选:A.【点睛】本题考查了三角形角的性质,掌握三角形角的性质是解题的关键.-的值应在()6.估计3(32)218A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】B【解析】【分析】化简二次根式,然后合并二次根式,利用无理数的大小估算判断即可.-,33=27【详解】原式=33+66=33<252736∴527<<6, 故选:B . 【点睛】本题考查了二次根式的化简计算,无理数的大小估算,掌握无理数的估算是解题的关键. 7.我国元朝数学家朱世杰的数学著作《四元玉鉴》中有一个”二果问价”问题,原题如下:”九百九十九文钱,甜果、苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个;”其大意为:用999文钱,可以买甜果和苦果共1000个,买9个甜果需要11文钱,买7个苦果需要4文钱,问买甜果和苦果的数量各多少个?设买甜果、苦果的数量分别为个、个,则可列方程组为( )A. 999114100097x y x y +=⎧⎪⎨+=⎪⎩ B. 999971000114x y x y +=⎧⎪⎨+=⎪⎩ C. 100011499997x y x y +=⎧⎪⎨+=⎪⎩ D. 100097999114x y x y +=⎧⎪⎨+=⎪⎩ 【答案】C【解析】【分析】 根据甜果和苦果的总数量是1000个,总费用是999文钱,找到等量关系列出方程式即可.【详解】根据题意,设买甜果、苦果的数量分别为个、个,则可得:100011499997x y x y +=⎧⎪⎨+=⎪⎩, 故选:C .【点睛】本题考查了二元一次方程组的列式问题,掌握找题目中的等量关系是解题的关键.8.根据如图所示的程序计算函数的值,若输入的值为43,则输出的值为( )A. 173B. 133C. 103D. 53【答案】A【解析】【分析】根据程序框图,把x=43>1,代入代数式152y x =+求解即可. 【详解】由题意知,x=43>1,代入152y x =+, ∴14217552333y =⨯+=+=, 故选:A .【点睛】本题考查了程序框图的判断求解,代数式的的求值,掌握程序框图的判断是解题的关键.9.如图,菱形OABC 在第一象限内,60AOC ∠=︒,反比例函数(0)k y x x=>的图象经过点,交BC 边于点,若AOD ∆的面积为23,则的值为( )A. 43B. 33C. 23D. 4【答案】C【解析】【分析】 过A 作AE ⊥x 轴于E ,设OE=,则AE=3a ,OA=2a ,即菱形边长为2a ,再根据△AOD 的面积等于菱形面积的一半建立方程可求出2a ,利用点A 的横纵坐标之积等于k 即可求解.【详解】如图,过A 作AE ⊥x 轴于E ,设OE=,在Rt △AOE 中,∠AOE=60°∴AE=OE tan 60=3⋅︒a ,OA=OE =2cos 60︒a ∴A (),3a a ,菱形边长为2a由图可知S 菱形AOCB =2S △AOD ∴OC AE=223⋅⨯,即23=43⋅a a∴2=2a∴23323=⋅==k a a a故选C.【点睛】本题考查了反比例函数与几何综合问题,利用特殊角度的三角函数值表示出菱形边长及A 点坐标是解决本题的关键.10.如图,某建筑物CE 上挂着”巴山渝水,魅力重庆”的宣传条幅CD ,王同学利用测倾器在斜坡的底部处测得条幅底部的仰角为60°,沿斜坡AB 走到B 处测得条幅顶部C 的仰角为50°.已知斜坡AB 的坡度1:2.4,13i AB ==米,12AE =米(点A B C D E 、、、、在同平面内,CD AE ⊥,测倾器的高度忽略不计),则条幅CD 的长度约为(参考数据:sin 500.77,cos500.64,tan 50 1.19,︒︒︒≈≈≈3 1.73≈)A. 12.5米B. 12.8米C. 13.1米D. 13.4米【答案】B【解析】【分析】 过点B 作BF ⊥AE 于点F ,BH ⊥DE 于点H ,在Rt △AFB 中,由坡度和勾股定理可以求出BF 、AF 的长度,在Rt△BHC 中,利用三角函数求出CH ,再求出DH ,最后用CH-DH 求出CD 即可.【详解】如图所示:过点B 作BF ⊥AE 于点F ,BH ⊥DE 于点H ,∵AB 的坡度1:2.4,13i AB ==m ,∴1:2.4BF AF=,222BF AF AB +=, ∴222(2.4)13BF BF +=,BF 为边长,∴解得BF=5,则AF=12m ,∵AE=12m ,∴EF=AF+AE=24(m ),∵∠BHE=∠HEF=∠BFE=90°,∴四边形BFEH 是矩形,∴EH=BF=5m ,BH=EF=24m ,在Rt △BHC 中,∠CBH=50°,∴CH=BH tan50⋅︒24×1.19=28.56(m ),在Rt △ADE 中,∠DAE=60°,∴DE=AE tan60⋅︒=12×320.76(m ),∴CD=CH-DH=28.56-(20.76-5)=12.8(m ),∴条幅CD 的长度约为12.8m ,故选:B .【点睛】本题考查了坡度的应用, 勾股定理的应用,直角三角形中三角函数定义的应用,掌握直角三角形中的三角函数的定义是解题的关键.11.若数使关于的分式方程2311a x x x --=--有正数解,且使关于的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数的个数为( )A. 1B. 2C. 3D. 4【答案】B【解析】根据分式方程的解为正数即可得出a>-1且a1,根据不等式组有解,即可得:a<3,找出所有的整数a 的个数为2. 【详解】解方程2311a x x x--=--,得: 12a x +=, ∵分式方程的解为正数, ∴1a +>0,即a>-1, 又1x ≠,∴12a +1,a1, ∴a>-1且a1,∵关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解, ∴a-1<y8-2a ,即a-1<8-2a ,解得:a<3,综上所述,a 的取值范围是-1<a<3,且a1,则符合题意的整数a 的值有0、2,有2个,故选:B .【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.12.如图,在等腰三角形纸片ABC 中,120,6ABC BC ︒∠==,点D E 、分别在边AC BC 、上,连接DE ,将CDE △沿DE 翻折使得点恰好落在点处,则AE 的长为( )37 B. 152 C. 37 D. 67【答案】C【分析】过点E 作EH ⊥AB ,交AB 的延长线于点H ,由等腰△ABC,点C 与点B 关于直线DE 对称,可以推出BE=CE=12BC ,在Rt △BEH 中,∠EBH=60°,利用三角函数求得EH 、BH ,然后由勾股定理求出AE 即可. 【详解】过点E 作EH ⊥AB ,交AB 的延长线于点H ,如图,∴∠H=90°,∵△ABC 是等腰三角形,∠ABC=120°,∴AB=BC=6,∵点C 与点B 关于直线DE 对称,∴BE=CE=12BC=12×6=3, 在Rt △BEH 中,∠EBH=180°-∠ABC=180°-120°=60°, ∴BH=BE cos EBH ⋅∠=3cos60°=3×12=32, EH=BE sin EBH ⋅∠=3sin60°=3×32=332, ∴AH=AB+BH=6+31522=, 在Rt △AEH 中,AE=22221533()()3722AH EH +=+=, 故选:C .【点睛】本题考查了对称的性质,三角函数的应用,勾股定理的应用,等腰三角形的性质,掌握等腰三角形的性质和三角函数的应用是解题的关键.二.填空题(共6小题)13.计算:0()1|5|5π-+-=_______.【答案】6【解析】根据0(15)π-=1,|5|-=5相加计算即可.【详解】原式=1+5=6,故答案为:6.【点睛】本题考查了非零数的零次幂等于1,绝对值的性质,注意任何非零数的零次幂都等于1. 14.重庆市组织开展依法打击陆生野生动物违法犯罪活动专项行动.截至2月27日,全市林业系统共出动执法检查人员12583人次,查办案件69件(其中刑事案件24件),涉案野生动物37369只.将数据37369用科学记数法表示为________.【答案】43.736910⨯【解析】【分析】根据大数的科学记数法的一般形式10,110n a a ⨯≤<,n 为正整数表示出来即可.【详解】根据大数的科学记数法的一般形式10,110n a a ⨯≤<,n 为正整数,用科学记数法表示37369=43.736910⨯,故答案为:43.736910⨯.【点睛】本题考查了大数的科学记数法的表示形式,掌握科学记数法的表示形式是解题的关键. 15.现有5张除正面数字外完全相同的卡片,正面数字分别为1,2,3,4,5,将卡片背面朝上洗匀,从中随机抽出一张记下数字后放回,洗匀后再次随机抽出一张,则抽出的两张卡片上所写数字相同的概率______. 【答案】15【解析】【分析】根据列举法,把两次抽取的所有结果都列出来,从中找出两张卡片上所写数字相同的结果,计算出概率即可.【详解】放回抽取,抽取的所有结果有(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(2,1)(2,2)、(2,3)、(2,4)、(2,5)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(5,1)、(5,2)、(5,3)、(5,4)、(5,5),共有25种,其中两张卡片数字相同的结果为5种,所以抽出的两张卡片上所写数字相同的概率为51255=, 故答案为:15. 【点睛】本题考查了列举法计算基本事件数以及求事件发生的概率问题,掌握列举法计算事件发生的概率是解题的关键.16.如图,正方形ABCD 的边长为4,分别以AD DC 、为直径作半圆,则图中阴影部分的面积为____.【答案】122π-【解析】【分析】【详解】解:如解图,设两半圆交点为,两半圆的圆心分别为E F 、,连接EO OF ,,易证四边形EOFD 为正方形,2OE OF ==,由解图可得,214422216421222ABCD EOFD S S S S πππ=--=⨯-⨯-⨯⨯=--=-阴影正方形正方形半圆. 故答案为:12-2π17.疫情之下,中华儿女共抗时艰.重庆和湖北同饮长江水,为更好地驰援武汉,打赢防疫攻坚战,我市某公益组织收集社会捐献物资.甲、乙两人先后从地沿相同路线出发徒步前往地进行物资捐献,甲出发1分钟后乙再出发,一段时间后乙追上甲,这时甲发现有东西落在地,于是原路原速返回地去取(甲取东西的时间忽略不计),而乙继续前行,甲乙两人到达B 地后原地帮忙.已知在整个过程中,甲乙均保持各自的速度匀速行走,甲、乙两人相距的路程 (米)与甲出发的时间 (分钟)之间的函数关系如图所示,则当乙到达地时,甲距地的路程是_______米.【答案】160【解析】【分析】根据题意和函数图象中的数据可以求得甲、乙的速度,从而可以解答本题.【详解】由题意得,甲的速度为:80÷1=80(米/分钟),乙的速度为:(80×5-16)÷(5-1)=96(米/分钟),甲乙到达C地的时间为第t分钟,则80t=96(t-1),得t=6,乙从C地到B地用的时间为:(864-80×6)÷96=4(分钟),∴乙到达B地时,甲与A地相距的路程是:80×(6-4)=160(米),故答案:160米.【点睛】本题考查了一次函数图象和追及问题的应用,掌握函数图象的应用是解题的关键.18.如图,在矩形ABCD中,AB=3,BC=1,将△ABD沿射线DB平移得到△A'B'D',连接B′C,D′C,则B'C+D'C的最小值是_____.7【解析】【分析】根据矩形的性质和勾股定理可得BD=2,即为B′D′的长,作点C关于BD的对称点G,连接CG交BD于E,连接D′G,如图,则有CD′=GD′,CE⊥BD,CG=2CE,利用三角形的面积可求得CG3B′D′,GD′为邻边作平行四边形B′D′GH,可得B′H=D′G=CD′,于是当C,B′,H在同一条直线上时,CB′+B′H最短,且B'C+D'C的最小值=CH,再根据勾股定理即可求出结果.【详解】解:∵四边形ABCD 是矩形,∴AD =BC =1,∠A =90°, ∴222BD AB AD =+=,∵将△ABD 沿射线DB 平移得到△A 'B 'D ',∴B ′D ′=BD =2, 作点C 关于BD 的对称点G ,连接CG 交BD 于E ,连接D ′G ,如图,则CD ′=GD ′,CE ⊥BD ,CG =2CE ,∵CE =133BC CD BD ⋅⨯==CG 3 以B ′D ′,GD ′为邻边作平行四边形B ′D ′GH ,则B ′H =D ′G =CD ′,∴当C ,B ′,H 在同一条直线上时,CB ′+B ′H 最短,则B 'C +D 'C 的最小值=CH ,∵四边形B ′D ′GH 是平行四边形,∴HG =B ′D ′=2,HG ∥B ′D ′,∴HG ⊥CG ,∴CH 227HG CG +.7【点睛】本题考查了矩形的性质、轴对称的性质、平移的性质、平行四边形的性质和勾股定理等知识,具有一定的难度,利用轴对称和平移的思想把所求B 'C +D 'C 的最小值转化为求CB ′+B ′H 的最小值是解题的关键.三.解答题(共8小题)19.计算:(1)2()()()a b a b a b +---;(2)22222b a b a b a b a ab b a b-++÷--+-. 【答案】(1)222ab b -;(2)a a b-. 【解析】【分析】(1)根据平方差公式,完全平方公式展开后相加减即可;(2)根据分式混合运算的法则进行计算即可.【详解】(1)原式2222(2)a b a b ab =--+- 222ab b =-,故答案为:222ab b -;(2)原式2()()()b a b a b a b a b a b a b+--=+⋅--+ 1b a b=+- b a b a b+-=- a a b=-, 故答案为:a ab -. 【点睛】本题考查了整式的乘法,整式的加减计算,分式除法,分式加减计算问题,掌握整式和分式的运算法则是解题的关键.20.如图,△ABC 为⊙O 的内接三角形,∠ABC 的角平分线交⊙O 于点D ,过点D 作DE ∥AC 交BC 的延长线于点E .(1)求证:DE 为⊙O 的切线;(2)若DE =12AC ,求∠ACB 的大小.【答案】(1)见解析;(2)90°【解析】【分析】(1)连接OD交AC于H,因为∠ABC的角平分线交⊙O于点D,所以∠ABD=∠CBD,即AD CD=,可得OD⊥AC,由DE∥AC,得OD⊥DE,进而得出DE为⊙O的切线;(2)证明四边形CHDE为矩形,可得∠ACB=∠E=90°.【详解】(1)如图,连接OD交AC于H,∵∠ABC角平分线交⊙O于点D,∴∠ABD=∠CBD,∴AD CD=,∴OD⊥AC,∵DE∥AC,∴OD⊥DE,∴DE为⊙O的切线;(2)∵OD⊥AC,∴CH=12 AC,∵DE=12 AC,∴CH=DE,∵DE∥AC,∴四边形CHDE为平行四边形,∵∠ODE=90°,∴四边形CHDE为矩形,∴∠ACB =∠E =90°.【点睛】本题考查了圆的基本性质,切线的判定,矩形的判定和性质.掌握切线的判定方法是解题的关键. 21.为了让学生掌握知识更加牢固,某校九年级物理组老师们将物理实验的教学方式由之前的理论教学改进为理论+实践,一段时间后,从九年级随机抽取15名学生,对他们在教学方式改进前后的物理实验成绩(百分制)进行整理、描述和分析(成绩用表示,共分成4组:A .6070x <,B .7080x <,C .8090x <,D .90100x ),下面给出部分信息:教学方式改进前抽取的学生的成绩在组中的数据为:80,83,85,87,89.教学方式改进后抽取的学生成绩为:72,70,76,100,98,100,82,86,95,90,100,86,84,93,88. 教学方式改进前抽取的学生成绩频数分布直方图教学方式改进前后抽取的学生成绩对比统计表 统计量改进前 改进后 平均数88 88 中位数众数98根据以上信息,解答下列问题:(1)直接写出上述图表中,,a b c 的值;(2)根据以上数据,你认为该校九年级学生的物理实验成绩在教学方式改进前好,还是改进后好?请说明理由(一条理由即可);(3)若该校九年级有300名学生,规定物理实验成绩在90分及以上为优秀,估计教学方式改进后成绩为优秀的学生人数是多少?【答案】(1)87,88,100a b c ===;(2)教学方式改进后学生成绩好,理由:①教学方式改进前后成绩的平均数一样,而改进后的中位数高于改进前,说明改进后成绩好;②教学方式改进前后成绩的平均数一样,而改进后的众数高于改进前,说明改进后成绩好;(3)估计教学方式改进后成绩为优秀的学生有140人.【解析】分析】(1)根据题意可知,抽取15人,中位数是第八个,从频数分布直方图和统计表分析即可得出结果,从改进后的所有成绩可以得出众数;(2)①教学方式改进前后成绩的平均数一样,而改进后的中位数高于改进前,说明改进后成绩好;②教学方式改进前后成绩的平均数一样,而改进后的众数高于改进前,说明改进后成绩好;(3)根据教学方式改进后成绩为优秀的学生人数占抽取人数的比,乘以总人数300即可得.【详解】(1)根据题意,可得:87,88,100a b c ===,故答案为:87;88;100;(2)教学方式改进后学生成绩好,理由如下(写出其中一条即可):理由:①教学方式改进前后成绩的平均数一样,而改进后的中位数高于改进前,说明改进后成绩好; ②教学方式改进前后成绩的平均数一样,而改进后的众数高于改进前,说明改进后成绩好,故答案为:教学方式改进后学生成绩好;(3)730014015⨯=(人), 答:估计教学方式改进后成绩为优秀的学生有140人,故答案为:140.【点睛】本题考查了中位数,众数的定义,依据数据的计算结果分析前后的优势,利用样本估计总体的思想,掌握中位数,众数的定义是解题的关键.22.定义:将一个大于0的自然数,去掉其个位数字,再把剩下的数加上原数个位数字的4倍,如果得到的和能被13整除,则称这个数是”一刀两断”数,如果和太大无法直接观察出来,就再次重复这个过程继续计算,例如552635526125538,553855332585,585582078,78136→+=→+=→+=÷=,所以55263是”一刀两断”数.324732428352,35843,431334→+=+=÷=,所以3247不是”一刀两断”数.(1)判断5928是否为”一刀两断”数:_____(填是或否),并证明任意一个能被13整除的数是”一刀两断”数;(2)对于一个”一刀两断”数100010010(19,09,09,09,,,,m a b c d a b c d a b c d =+++均为正整数),规定()G m =2b c a d--.若的千位数字满是14a ,千位数字与十位数字相同,且能被65整除,求出所有满足条件的四位数中,()G m 的最大值.【答案】(1)是;证明见解析;(2)()G m 的最大值为45.【解析】【分析】(1)根据”一刀两断”数的定义,计算即可得,设任意一个能被13整除的位数前1n -位数字为,个位数字为Q ,则这个位数可表示为1013P Q k +=,根据定义进行推理即可证得;(2)由m 能被65整除,得出m 是13的倍数也是5的倍数,可得d=0或5,分情况讨论,分别求出满足条件的所有的m 的值,代入()G m 中计算即可判断出.【详解】(1)592859232624,624621678,78136→+=→+=÷=,所以5928是”一刀两断”数 证明:设任意一个能被13整除的位数前1n -位数字为,个位数字为Q ,则这个位数可表示为1013P Q k +=(为正整数),1310Q k P ∴=-,1044(1310)523913(43)P Q P Q P k P k P k P ∴+→+=+-=-=-,10P Q ∴+是”一刀两断”数;∴任意一个能被13整除的数是”一刀两断”数,故答案为:是;(2)100010010,m a b c d m =+++能被65整除,且a=c ,m ∴既能被13整除又能被5整除.0d ∴=或5d =.当0d =时,100104100101011010()713131313a b c d a b a a b a b a +++++++===+, a b ∴+是13的倍数.19,09a b ,13a b ∴+=.又14a ,49a b =⎧∴⎨=⎩. 4940m ∴=.当5d =时,1001041001020101102010(2)713131313a b c d a b a a b a b a ++++++++++===+, 2a b ∴++是13的倍数,213a b ∴++=,11a b +=∴.14a ,29a b =⎧∴⎨=⎩或38a b =⎧⎨=⎩或47a b =⎧⎨=⎩. 2925m ∴=或3835m =或4745m =.776179(4940),(4745)45,(3835),(2925)423G G G G ∴====. ()G m ∴的最大值为45,故答案为:45.【点睛】本题考查了”一刀两断”数的新定义,分类讨论的思想,5的倍数的特征数,代数式求值,理解”一刀两断”数的新定义是解题的关键.23.在初中阶段的函数学习中,我们经历了”确定函数的表达式——利用函数图象研究其性质——应用函数解决问题”的学习过程.在画函数图象时,我们可以通过描点或平移的方法画出一个函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数|2|(0)y x b kx k =++≠中,当0x =时,1y =;当1x =-时,3y =.。

2024年北京市人大附中中考数学模拟试卷及答案解析

2024年北京市人大附中中考数学模拟试卷一、选择题(共16分,每题2分)1.(2分)港珠澳大桥是世界上总体跨度最长的跨海大桥,全长55000米,其中海底隧道部分全长6700米,是世界最长的公路沉管隧道和唯一的深埋沉管隧道,也是我国第一条外海沉管隧道,将数字55000用科学记数法表示为()A.5.5×104B.55×103C.5.5×103D.0.55×105 2.(2分)下列图形中,既不是轴对称也不是中心对称图形的是()A.B.C.D.3.(2分)已知某几何体的三视图如图所示,则该几何体是()A.三棱柱B.长方体C.三棱锥D.圆锥4.(2分)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a+2>0B.|a|>b C.a+b>0D.ab>05.(2分)实数a,b,c在数轴上对应点的位置如图所示,如果|a|=|b|,下列结论中错误的是()A.a+c>0B.a﹣b>0C.b+c>0D.ac<06.(2分)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.7.(2分)下列命题中的假命题是()A.对角线互相平分的四边形是中心对称图形B.有一个角是直角的平行四边形是轴对称图形C.对角线互相垂直的平行四边形是中心对称图形D.等边三角形既是轴对称图形,又是中心对称图形8.(2分)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3B.2C.1D.0二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则实数x的取值范围是.10.(2分)在△ABC中,D,E,F分别为三边中点,若△DEF面积为2,则△ABC的面积是.11.(2分)解分式方程:=得.12.(2分)已知反比例函数与的图象如图所示,则k1、k2的大小关系是k1 k2.(填“>”,“<”或“=”)13.(2分)如图,PA,PB是⊙O的两条切线,切点分别为A,B,连接OA,AB,若∠OAB =35°,则∠ABP=°.14.(2分)在平面直角坐标系中,一次函数y=6x与反比例函数y=(k>0)的图象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是.15.(2分)魏晋时期,数学家刘徽利用如图所示的“青朱出入图”证明了勾股定理,其中四边形ABCD,AFIJ和BFGH都是正方形.如果图中△BCE与△FDE的面积比为,那么tan∠GFI的值为.16.(2分)有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母的位置,标注字母e的卡片写有数字.三、解答题(本题共68分,第17至22题,每小题5分,第23至26题,每小题5分,第27至28题,每小题5分)17.(5分)计算:+4sin60°.18.(5分)解不等式组:,并写出它的所有非负整数解.19.(5分)先化简,再求值:(﹣)÷,其中x=+1.20.(5分)如图,在四边形ABCD中,AB∥CD,在BD上取两点E,F,使DF=BE,连接AE,CF.(1)若AE∥CF,试说明△ABE≌△CDF;(2)在(1)的条件下,连接AF,CE,试判断AF与CE有怎样的数量关系,并说明理由.21.(5分)如图,矩形ABCD,延长CD至点E,使DE=CD,连接AC,AE,过点C作CF∥AE交AD的延长线于点F,连接EF.(1)求证:四边形ACFE是菱形;(2)连接BE交AD于点G.当AB=2,∠ACB=30°时,求BG的长.22.(5分)疫情期间某校学生积极观看网络直播课程,为了了解全校500名学生观看网络直播课程的情况,随机抽取50名学生,对他们观看网络直播课程的节数进行收集,并对数据进行了整理、描述和分析,下面给出了部分信息.观看直播课节数的频数分布表节数x频数频率0≤x<1080.1610≤x<20100.2020≤x<3016b30≤x<40a0.24x≥4040.08总数501其中,节数在20≤x<30这一组的数据是:20202122232323232526262627282829请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)随机抽取的50名学生观看直播课节数的中位数是;(4)请估计该校学生中观看网络直播课节数不低于30次的约有人.23.(6分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,连接CD,过点A作AG∥DC,过点C作CG∥DA,AG与CG相交于点G.(1)求证:四边形ADCG是菱形;(2)若AB=10,tan∠CAG=,求BC的长.24.(6分)如图,在矩形ABCD中,AB=6,BC=8,点A在直线l上,AD与直线l相交所得的锐角为60°.点F在直线l上,AF=8,EF⊥直线l,垂足为点F且EF=6,以EF为直径,在EF的左侧作半圆O,点M是半圆O上任一点.发现:AM的最小值为,AM的最大值为,OB与直线l的位置关系是.思考:矩形ABCD保持不动,半圆O沿直线l向左平移,当点E落在AD边上时,求半圆与矩形重合部分的周长和面积.25.(6分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校共有3000人,数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给的信息解答下列问题:(1)扇形统计图中C所对应的扇形圆心角度数为;估计全校非常了解交通法规的有人.(2)补全条形统计图;(3)学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求丙和丁两名同学同事被选中的概率.26.(6分)在平面直角坐标系xOy中,已知抛物线y=﹣x2+2mx﹣m2+m﹣2(m是常数).(1)求该抛物线的顶点坐标(用含m代数式表示);(2)如果该抛物线上有且只有两个点到直线y=1的距离为1,直接写出m的取值范围;(3)如果点A(a,y1),B(a+2,y2)都在该抛物线上,当它的顶点在第四象限运动时,总有y1>y2,求a的取值范围.27.(6分)如图,在△ABC中,∠ACB=90°,AC=BC,点D在线段AB上,连接CD,AE⊥CD于点E,以点A为圆心,CD长为半径画弧,交AE于点F,连接DF.(1)依题意补全图形:①设∠BCD=α,则∠DFA的度数为;(用含α的式子表示)②求证:DF∥BC;(2)探究DF、AF、BC之间的数量关系并证明.28.(8分)在平面直角坐标系xOy中,对于点A和线段MN,如果点A,O,M,N按逆时针方向排列构成菱形AOMN,且∠AOM=α,则称线段MN是点A的“α﹣相关线段”.例如,图1中线段MN是点A的“30°﹣相关线段”.(1)已知点A的坐标是(2,0).①在图2中画出点A的“30°﹣相关线段”MN,并直接写出点M和点N的坐标;②若点A的“α﹣相关线段”经过点,求α的值.(2)若存在α,β(α≠β)使得点P的“α﹣相关线段”和“β﹣相关线段”都经过点(0,4),记,求t的取值范围.2024年北京市人大附中中考数学模拟试卷参考答案与试题解析一、选择题(共16分,每题2分)1.【分析】用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.【解答】解:55000=5.5×104.故选:A.【点评】本题主要考查了科学记数法以及有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.2.【分析】轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合,根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、绕某一点旋转180°后,不能够与原图形重合,不是中心对称图形;沿一条直线折叠,直线两旁的部分能够互相重合,是轴对称图形,故此选项不符合题意;B、绕某一点旋转180°后,能够与原图形重合,是中心对称图形;沿一条直线折叠,直线两旁的部分能够互相重合,不是轴对称图形,故此选项不符合题意;C、绕某一点旋转180°后,能够与原图形重合,是中心对称图形;沿一条直线折叠,直线两旁的部分不能够互相重合,不是轴对称图形,故此选项不符合题意;D、绕某一点旋转180°后,不能够与原图形重合,不是中心对称图形;沿一条直线折叠,直线两旁的部分不能够互相重合,不是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查了中心对称图形与轴对称图形的知识,把一个图形绕某一点旋转180°后,能够与原图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,熟练掌握轴对称图形与中心对称图形的概念,是解题的关键.3.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【解答】解:根据几何体的三视图可知,则该几何体是三棱柱.故选:A.【点评】本题考查了由三视图判断几何体,由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.4.【分析】由题图知:﹣3<a<﹣2,0<b<1,进而解决此题.【解答】解:由题知:﹣3<a<﹣2,0<b<1.∴a+2<0,|a|>b,a+b<0,ab<0.∴选项B符合题意.故选:B.【点评】本题主要考查数轴上的点表示的实数以及绝对值,熟练掌握数轴上的点表示的实数以及绝对值是解决本题的关键.5.【分析】利用|a|=|b|,可知a与b互为相反数,从而a<0,b>0,c>0,|c|>|b|=|a|,进一步判断即可.【解答】解:∵|a|=|b|,且根据a,b在数轴上位置,∴a与b互为相反数,∴a<0,b>0,c>0,且|c|>|b|=|a|,A、a+c,异号两数和,取绝对值大的数的符号,故a+c>0,是正确的;B、a﹣b,左边的数减去右边的数,是小于0的.故a﹣b>0,是错误的;C、b+c,两个正数相加,得正数,故b+c>0,是正确的;D、ac,异号两数积,同号得正,异号得负,故ac<0,是正确的;故选:B.【点评】本题考查的是有理数的简单运算,解题的关键是两个数的绝对值相等,这两个数相等或互为相反数.本题得看位置知两数互为相反数.6.【分析】先画树状图展示所有12种等可能的结果数,再找出两次都摸到白球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球都是的白色的结果共有2种,所以两次都摸到白球的概率是=,故选:D.【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率P(A)=是解题关键.7.【分析】根据轴对称图形、中心对称图形的概念以及平行四边形、矩形、菱形的判定定理判断即可.【解答】解:A、对角线互相平分的四边形是平行四边形,是中心对称图形,故本选项命题是真命题,不符合题意;B、有一个角是直角的平行四边形是矩形,是轴对称图形,故本选项命题是真命题,不符合题意;C、对角线互相垂直的平行四边形是菱形,是中心对称图形,故本选项命题是真命题,不符合题意;D、等边三角形既是轴对称图形,但不是中心对称图形,故本选项命题是假命题,符合题意;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.【分析】四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;由此进行分析即可.【解答】解:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲、乙、丙各胜2场,此时丁三场全败,也就是胜0场.答:甲、乙、丙各胜2场,此时丁三场全败,丁胜0场.故选:D.【点评】此题是推理论证题目,解答此题的关键是先根据题意,通过分析,进而得出两种可能性,继而分析即可.二、填空题(本题共16分,每小题2分)9.【分析】根据二次根式有意义的条件列不等式求解.【解答】解:由题意可得:1﹣x≥0,解得:x≤1,故答案为:x≤1.【点评】本题考查二次根式有意义的条件,掌握二次根式有意义的条件(被开方数为非负数)是解题关键.10.【分析】由于D,E,F分别为三边中点,可得△DEF与△ABC的对应边的比为,即其面积比为,进而可得结论.【解答】解:如图,∵D,E,F分别为三边中点,即=,=2,∴==,而S△DEF=8.∴S△ABC故答案为8.【点评】本题主要考查了三角形中位线的性质以及三角形对应边与对应面积的关系,能够掌握并熟练求解.11.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:x=﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.12.【分析】,“图象离坐标轴越远,|k|越大”.【解答】解:如图,因为反比例函数的图象离坐标轴比反比例函数的图象离坐标轴远,所以k2、>k1.故答案为:<.【点评】本题考查了反比例函数图象和反比例系数k的关系,“图象离坐标轴越远,|k|越大”.13.【分析】根据切线的性质得PA=PB,OA⊥PA,则∠OAP=90°,可得∠BAP=55°,从而得到∠ABP的度数.【解答】解:∵PA,PB是⊙O的两条切线,∴PA=PB,OA⊥PA,∵∠OAB=35°,∴∠BAP=90°﹣∠OAB=55°,∵PA=PB,∴∠ABP=∠BAP=55.故答案为:55.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了切线长定理和等腰三角形的性质,熟练掌握切线的性质是解题的关键.14.【分析】根据正比例函数的图象、反比例函数图象的性质得出交点A与交点B关于原点对称,进而得出其纵坐标互为相反数,得出答案.【解答】解:由正比例函数y=2x与反比例函数y=(k>0)的图象和性质可知,其交点A(x1,y1)与B(x2,y2)关于原点对称,∴y1+y2=0,故答案为:0.【点评】本题考查一次函数、反比例函数图象的交点,理解正比例函数、反比例函数图象的对称性是正确判断的前提.15.【分析】证明△BCE∽△FDE,可得,而△BCE与△FDE的面积比为,即得,设BC=4t=AD=AB,则DF=3t,在Rt△AFB中,有tan∠BFA==,又∠GFI=90°﹣∠AFG=∠FBA,从而推导出tan∠GFI=tan∠BFA=.【解答】解:∵ABCD都是正方形,∴∠FDC=90°=∠BCD,∵∠FED=∠CEB,∴△BCE∽△FDE,∴,∵△BCE与△FDE的面积比为,∴,设BC=4t=AD=AB,则DF=3t,∴AF=AD+DF=7t,在Rt△AFB中,tan∠BFA===,由“青朱出入图”可知:∠GFI=90°﹣∠AFG=∠FBA,∴tan∠GFI=tan∠BFA=.故答案为:.【点评】本题考查相似三角形的判定与性质,解题的关键是掌握正方形性质和相似三角形的判定定理.16.【分析】根据排列规则依次确定白1,白2,白3,白4的位置,即可得出答案.【解答】解:第一行中B与第二行中c肯定有一张为白1,若第二行中c为白1,则左边不可能有2张黑卡片,∴白卡片数字1摆在了标注字母B的位置,∴黑卡片数字1摆在了标注字母A的位置,;第一行中C与第二行中c肯定有一张为白2,若第二行中c为白2,则a,b只能是黑1,黑2,而A为黑1,矛盾,∴第一行中C为白2;第一行中F与第二行中c肯定有一张为白3,若第一行中F为白3,则D,E只能是黑2,黑3,此时黑2在白2右边,与规则②矛盾,∴第二行中c为白3,∴第二行中a为黑2,b为黑3;第一行中F与第二行中e肯定有一张为白4,若第一行中F为白4,则D,E只能是黑3,黑4,与b为黑3矛盾,∴第二行中e为白4.故答案为:B;4.【点评】本题考查图形类规律探索,解题的关键是理解题意,根据所给规则依次确定出白1,白2,白3,白4的位置.三、解答题(本题共68分,第17至22题,每小题5分,第23至26题,每小题5分,第27至28题,每小题5分)17.【分析】先把60°的正弦值代入算式,再根据负整数指数幂的性质、零指数幂的性质和绝对值的性质计算乘方和去绝对值符号,然后进行计算即可.【解答】解:原式=4﹣1+2﹣+4×==.【点评】本题主要考查了实数的运算,解题关键是熟练掌握负整数指数幂的性质、零指数幂的性质、绝对值的性质和特殊角的三角函数值.18.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:解不等式①得:x≥﹣2,解不等式②得:x<,所以不等式组的解集为:,所以不等式组的所有非负整数解为:0,1,2,3.【点评】本题考查了一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.19.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=+1时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.【分析】(1)由“ASA”可证△ABE≌△CDF;(2)由全等三角形的性质可得AB=CD,由“SAS”可证△ABE≌△CDF,可得结论.【解答】(1)证明:∵AB∥CD,∴∠ABD=∠CDF,∵AE∥CF,∴∠AEB=∠CFD,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)解:AF=CE,理由如下:如图:∵△ABE≌△CDF,∴AB=CD,AE=CF,在△ABF和△CDE中,,∴△ABE≌△CDF(SAS),∴AF=CE.【点评】本题考查了全等三角形的判定和性质,平行线的性质,掌握全等三角形的判定方法是解题的关键.21.【分析】(1)根据矩形的性质得到∠ADC=90°,求得AE=AC,EF=CF,根据平行线的性质得到∠EAD=∠AFC,求得AE=EF=AC=CF,于是得到结论;(2)如图,根据矩形的性质得到∠ABC=∠BCE=90°,CD=AB,根据直角三角形的性质得到BC=2,CE=4,由勾股定理得到BE==2,根据全等三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠ADC=90°,∴AF⊥CE,∵CD=DE,∴AE=AC,EF=CF,∴∠EAD=∠CAD,∵AE∥CF,∴∠EAD=∠AFC,∴∠CAD=∠CFA,∴AC=CF,∴AE=EF=AC=CF,∴四边形ACFE是菱形;(2)解:如图,∵四边形ABCD是矩形,∴∠ABC=∠BCE=90°,CD=AB,∵AB=2,CD=DE,∴BC=2,CE=4,∴BE==2,∵AB=CD=DE,∠BAE=∠EDG=90°,∠AGB=∠DGE,∴△ABG≌△DEG(AAS),∴BG=EG,∴BG=BE=.【点评】本题考查了菱形的判定,矩形的性质,全等三角形的判定和性质,勾股定理,线段垂直平分线的性质,正确的识别图形是解题的关键.22.【分析】(1)根据频数分布表即可求出a,b;(2)结合(1)根据频数分布表即可补全频数分布直方图;(3)根据节数在20≤x<30这一组的数据是:20202122232323232526 262627282829即可得观看直播课节数的中位数;(4)利用样本估计总体的方法即可估计该校学生中观看网络直播课节数不低于30次的人数.【解答】解:(1)a=50﹣8﹣10﹣16﹣4=12,b=1﹣0.16﹣0.20﹣0.24﹣0.08=0.32;故答案为:12,0.32;(2)补全的频数分布直方图如下:(3)∵节数在20≤x<30这一组的数据是:20202122232323232526262627282829∴随机抽取的50名学生观看直播课节数的中位数是(23+25)÷2=24,故答案为:24;(4)500×(0.24+0.08)=160(人).答:估计该校学生中观看网络直播课节数不低于30次的约有160人.故答案为:160.【点评】本题考查了频数分布直方图、用样本估计总体、频数分布表、中位数,解决本题的关键是综合掌握以上知识.23.【分析】(1)根据直角三角形的性质和菱形的判定定理即可得到结论;(2)根据平行线的性质得到∠BAC=∠ACG,设BC=3x,AC=4x,根据勾股定理即可得到结论.【解答】(1)证明:∵AG∥DC,CG∥DA,∴四边形ADCG是平行四边形,∵在Rt△ABC中,∠ACB=90°,D为AB边的中点,∴AD=CD=AB,∴四边形ADCG是菱形;(2)解:∵CG∥DA,∴∠BAC=∠ACG,∴tan∠CAG=tan∠BAC==,∴设BC=3x,AC=4x,∴AB=5x=10,∴x=2,∴BC=3x=6.【点评】本题考查了菱形的判定,三角函数的定义,直角三角形的性质,熟练掌握菱形的判定定理是解题的关键.24.【分析】发现:先依据勾股定理求得AO的长,然后由圆的性质可得到OM=3,当点M 在AO上时,AM有最小值,当点M与点E重合时,AM有最大值,然后过点B作BG⊥l,垂足为G,接下来求得BG的长,从而可证明四边形OBGF为平行四边形,于是可得到OB与直线l的位置关系.思考:连接OG,过点O作OH⊥EG,依据垂径定理可知GE=2HE,然后在△EOH中,依据特殊锐角三角函数值可求得HE的长,从而得到EG的长,接下来求得∠EOG得度数,依据扇形的面积公式即可得到结论.【解答】解:发现:由题意可知OM=OF=3,AF=8,EF⊥l,∴OA===.当点M在线段OA上时,AM有最小值,最小值为﹣3.当点M与点E重合时,AM有最大值,最大值==10.如图1所示:过点B作BG⊥l,垂足为G.∵∠DAF=60°,∠BAD=90°,∴∠BAG=30°.∴GB=AB=3.∴OF=BG=3,又∵GB∥OF,∴四边形OBGF为平行四边形,∴OB∥FG,即OB∥l.故答案为:﹣3;10;平行.思考:如图2所示:连接OG,过点O作OH⊥EG.∵∠DAF=60°,EF⊥AF,∴∠AEF=30°.∴∠GOE=120°.∴GE=2EH=2××3=3.∴半圆与矩形重合部分的周长=+3=2π+3;S重合部分=S扇形GOE﹣S△GOE=.【点评】本题主要考查的是切线的性质和判定、特殊锐角三角函数值的应用、切线长定理,依据题意画出符合题意的图形是解题的关键.25.【分析】(1)由A的人数及其所占百分比可得总人数,用360°乘以C人数所占比例,由总人数可求全校非常了解交通法规的人数即可得;(2)总人数乘以D的百分比求得其人数,再根据各类型人数之和等于总人数求得B的人数,据此补全图形即可得;(3)画树状图列出所有等可能结果,再利用概率公式计算可得.【解答】解:(1)本次调查的学生总人数为24÷40%=60(人),∴扇形统计图中C所对应扇形的圆心角度数是360°×=90°,全校非常了解交通法规的有:3000×40%=1200(人),故答案为:90°,1200;(2)D类别人数为60×5%=3,则B类别人数为60﹣(24+15+3)=18,补全条形图如下:(3)画树状图为:共有12种等可能的结果数,其中丙和丁两名学生同时被选中的结果数为2,所以丙和丁两名学生同时被选中的概率为=.【点评】本题主要考查条形统计图以及列表法与树状图法等知识;条形统计图能清楚地表示出每个项目的数据,熟知各项目数据个数之和等于总数.26.【分析】(1)将抛物线解析式化为顶点式求解.(2)由抛物线开口向下可得抛物线顶点在直线y=2与直线y=0之间,从而列不等式求解.(3)由顶点在第四象限可得m的取值范围,由抛物线开口向下,y1>y2,可得a与m之间的关系,进而求解.【解答】解:(1)∵y=﹣x2+2mx﹣m2+m﹣2=﹣(x﹣m)2+m﹣2,∴抛物线顶点坐标为(m,m﹣2).(2)∵抛物线开口向下,∴当抛物线与直线y=0有两个交点且与直线y=2无交点时满足题意,∵抛物线顶点坐标为(m,m﹣2),∴0<m﹣2<2,解得2<m<4.(3)∵抛物线顶点(m,m﹣2)在第四象限,∴,解得0<m<2,∵抛物线开口向下,∴x≥m时,y随x增大而减小,∴点A,B在对称轴右侧时,满足题意,即a≥m,当点A在对称轴左侧时,设点A(a,y1)关于对称轴对称点A'坐标为(2m﹣a,y1),∴点B在A'右侧时,满足题意,即2m﹣a<a+2,解得a>m﹣1,∴a>m﹣1,∵0<m<2,∴a≥1.【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.27.【分析】(1)①根据题意画出图形,连接CF并延长交AB于点G,首先根据题意证明出△ABC是等腰直角三角形,然后证明出△CAF≌△BCD(SAS),进而得到△AGC是等腰直角三角形,然后证明出△AGF≌△CGD(HL),得到FG=GD,∠AFG=∠CDG=∠BCD+∠B=α+45°,然后利用∠DFA=∠AFG+∠GFD求解即可;②由①得到∠FDG=45°,∠B=45°,然后利用同位角相等,两直线平行证明即可;(2)根据勾股定理和等腰直角三角形的性质得到,,然后利用勾股定理得到AG2+GF2=AF2,然后代入求解即可.【解答】(1)①解:如图所示,连接CF并延长交AB于点G,∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴∠CAB=∠B=45°,∵∠ACB=90°,∴∠ACE+∠BCD=90°,∵AE⊥CD,∴∠ACE+∠CAE=90°,∴∠CAE=∠BCD=α,∵AC=BC,AF=CD,∴△CAF≌△BCD(SAS),∴∠ACF=∠B=45°,∵∠CAB=45°,∴∠AGC=∠CGD=90°,∴△AGC是等腰直角三角形,∴AG=CG,又∵AF=CD,∴△AGF≌△CGD(HL),∴FG=GD,∠AFG=∠CDG=∠BCD+∠B=α+45°,∵∠FGD=90°,∴∠GFD=∠GDF=45°,∴∠DFA=∠AFG+∠GFD=α+45°+45°=α+90°,故答案为:α+90°;②证明:由①可得,∠FDG=45°,∵∠B=45°,∴∠B=∠FDG,∴DF∥BC;(2)解:BC2+DF2=2AF2.理由如下:∵△AGC是等腰直角三角形,∴AG2+CG2=AC2,AG=CG,∴2AG2=AC2,∴整理得,∵AB=AC,∴,∵△FGD是等腰直角三角形,∴同理可得,∵∠AGF=90°,∴AG2+GF2=AF2,∴,整理得AC2+FD2=2AF2,∴BC2+DF2=2AF2.【点评】此题考查了全等三角形的性质和判定,勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.28.【分析】(1)①如图所示,以点O为旋转中心,将线段AO顺时针旋转30°,得到线段OM,过点M作x轴的垂线段,交x轴于点F,沿x正方向作线段MN,使得MN∥x 轴,MN=OA,连接AN,线段MN即为所求.②因为点O到点的距离=,OA=2,所以点只能为点M或点N.(2)以点O圆心,以PO的长度为半径作⊙O,过点(0,4)作直线l,交⊙O于点M、点M′,将圆⊙O沿直线l移动,将圆心O移动至⊙O上的点P,点M、点M′的对应点分别为点N、点N′,当点M与点M′重合,且坐标为(0,4)时,PO=4,当点N 与点N′重合,且坐标为(0,4)时,.【解答】解:(1)①如图2.1所示,以点O为旋转中心,将线段OA顺时针旋转30°,得到线段OM,过点M作x轴的垂线段,交x轴于点F,沿x正方向作线段MN,使得MN∥x轴,MN=OA,连接AN,线段MN即为所求.MF=OM sin∠AOM=2×sin30°=1,.点M的坐标为,点N的坐标为.②∵点O到点的距离=,OA=2,∴点只能为点M或点N.当点M为时,如图2.2所示,根据题意可知,∴∠AOM=α=60°.当点N为时,如图2.3所示,设MN与y轴交于点F.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

语文 学科 九年级 年级 期末 册九年级毕业模拟考生注意: 语文试卷 1.考试时间120分钟一、知识积累及运用(第1—8题,共24分)1.下列词语中,每对加点字的读音都相同的一项是 (2分) A.沉淀.\绽.开 吝啬.\万恶不赦. B.洗濯.\污浊. 愕.然\怒不可遏. C.籍.贯\慰藉. 发窘.\迥.然不同 D.枯涸.\禁锢. 骨骼.\恪.尽职守2.下列词语中,没有..错别字的一项是 (2分) A.抽搐 一泄千里 葱茏 进退维谷 B.制裁 冥思遐想 辐射 莫衷一是 C.静谧 相形见绌 缀泣 廓然无累 D.骄奢 断壁残垣 诘难 左右逢缘3.下列句中加点的成语运用正确的一项是 (2分) A.在广州市“花城杯”作文比赛中,只有异想天开....,才能创作出独特的艺术作品。

B.我们对国家中医药管理局为预防H7N9禽流感开出的参考处方切不可妄自菲薄....。

C.面对困难,只要我们意气用事....,从不同角度去思考,解决的办法就会不一而足。

D.辩论赛上,他引经据典....,挥洒自如,气势夺人,为我校队夺冠立下了汗马功劳。

4.下列句子中,没有..语病的一项是 (2分) A.在学习中,我们应该注意培养自己观察问题、解决问题、分析问题的能力。

B.学校开展的“感恩·奋进”活动,掀起了同学间互帮、互助、互学、互进。

C.止咳祛痰片,它里面的主要成分是远志、桔梗、贝母、氯化铵等配制而成的。

D.专家提醒您:用耳机收听音乐,音量最好保持在40~60分贝且不要超过一小时。

5. 选出填写在横线上的语句排列顺序最恰当...的一项 (2分) 这一次来到黄山北海,早晨天还没有亮,就有人跑着、吵着去看日出。

我一骨碌爬起来,在凌晨的薄暗中摸索着爬上曙光亭,那里已经是黑鸦鸦的一团人。

我挤在后面,同大家一样向着东方翘首仰望。

天是晴的。

但在东方的日出处,却有一线烟云。

(摘自季羡林《登黄山记》)①一转眼间,它就涌了出来,顶端是深紫色,中间一段深红,下端一大段深黄。

②然而立刻就霞光万道,白云为霞光所照,成了金色,宛如万朵金莲飘悬空中。

③最初只显得比别处稍亮一点而已。

④须臾,彩云渐红,朝日露出了月牙似的一点。

A .①④③②B .②③④①C .③④①②D .④②①③ 6.古诗(词)文默写。

(10分) (1) ,在水一方。

(《诗经 · 蒹葭》) (2)乱花渐欲迷人眼, 。

(白居易《钱塘湖春行》)(3)苏轼在《江城子 · 密州出猎》中以魏尚自比,渴望得到朝庭重用的一句是“ , _______________________?” (4)《春望》一诗中写战火不断、家书难求的诗句是“ , 。

”(5)《论语十则》中“,。

”体现了儒家的推己及人、仁爱待人的思想。

(6)请写出带“鸟”字上下连续的两句古诗:,。

7.走进名著。

(4分)(1)《西游记》的作者是。

(1分)(2)请写出中《西游记》中与孙悟空有关的情节:。

(1分)(3)请说出猪八戒这个人物的性格特点:、。

(2分)二、口语交际与综合性学习(共11分)8、为了提高大家的环保意识,节约水资源,某校初三·一班举行演讲比赛。

该班班长收集了两则材料:材料一:去年上半年,全国2212万人因干旱而饮水困难,其中79%的人集中在江西、云南、贵州、广西等地。

今年上半年我国南方又持续干旱,其中以江西、湖北等几省市尤为严重。

材料二:我国属于缺水国之列,人均淡水资源仅为世界人均淡水量的1/4,居世界第109位。

在人均水资源方面,中国已被列入全世界13个贫水国家之一,而且水资源分布不均,大量淡水资源集中在南方,北方淡水资源只有南方淡水资源的1/4。

据统计,全国600多个城市中有一半以上城市不同程度缺水,沿海城市也不例外,甚至更为严重。

(1).请你根据材料,拟写一则有感染力的宣传用语。

(2分)答:(2).如果你是演讲比赛的组织者,请为本次比赛设计活动方案,至少列出四条。

(4分)答:(3).小明是本次演讲比赛的主持人,请你为他设计一段开场白。

(3分)答:(4).放学时,小红将喝剩半瓶的矿泉水随手扔掉,看到这种情景,你将如何对她说?(2分)答:三、阅读理解及分析(第10—25题,共35分)(一)阅读文言文,回答19—15题。

(共7分)【甲】水陆草木之花,可爱者甚番。

晋陶渊明独爱菊。

自李唐来,世人甚爱牡丹。

予独爱莲之出淤泥而不染,濯清涟而不妖,中通外直,不蔓不枝,香远益清,亭亭净植,可远观而不可亵玩焉。

(节选自周敦颐《爱莲说》)【乙】周敦颐字茂叔,道州营道人,为分宁主簿。

有狱久不决,敦颐至一讯立辨。

邑人惊曰:“老吏不如也。

”部使者荐之,调南安军司理参军。

有囚法不当死,转运使王逵欲深治之。

逵,酷悍吏也,众莫敢争,敦颐独与之辩,不听,乃委①手版②归,将弃官去,曰:“如此尚可仕③乎!杀人以媚④人,吾不为也。

”逵悟,囚得免。

(节选自《宋史》)【注释】①委:抛弃、丢掉。

②手版:笏,古代君臣在朝廷上相见时手中所拿的狭长板子,用玉、象牙或竹片制成,上面可以记事。

③仕:指做官。

④媚:取悦、巴结。

9.加点词语的解释完全相同的一项是()(2分)A.水陆草木之.花敦颐独与之.辩B. 吾不为.也因以为.号焉(《五柳先生传》)C.濯清涟而.不妖启窗而.观(《核舟记》)D.可爱者甚.番世人甚.爱牡丹10.翻译下列语句。

(4分)(1)香远益清,亭亭净植,可远观而不可亵玩焉。

__________________________________________________________________(2)杀人以媚人,吾不为也。

__________________________________________________________________11.用“/”画出【乙】段画线句子的一处朗读停顿。

(1分)敦颐至一讯立辨。

(二)阅读《最佳饮料——白开水》一文,回答12—16题。

(共12分)最佳饮料——白开水①【A】随着生活水平的提高,各种各样的饮料走进了人们的生活。

喝矿泉水、纯净水已是普遍现象,喝雪碧、可乐成了一种时尚,各种名目繁多的功能饮料更是赢得了青少年的青睐,而饮用白开水的人却越来越少。

【B】②众所周知,水是维持人体正常生理活动所必需的物质,只有保证机体有足够的水分,体内产生的废物才能及时地通过肾脏排出体外。

从医学角度上讲,任何饮料都不如白开水对生理健康有价值。

白开水最容易解渴,有调节体温、输送养分及清洁身体内部的功能。

而且,白开水具有较强的生物活性,对于促进细胞新陈代谢、能量转换、血液循环和维持电解质平衡,都大有益处。

白开水不含卡路里,在进入人体后,很容易透过细胞膜,增加血液中血红蛋白含量,增强人体自身免疫功能,提高机体抗病能力。

因此,白开水实在是人体最需要的天然“饮料”。

【C】③白开水是由自来水煮沸而来的,其主要成分是水,其中还包含多种矿物质和一些人体需要量极少的微量元素,如钠、钾、钙、镁、锌、铁、铜、铅、氟、碘和硒等。

矿物质和微量元素是人体必需的营养素,不能缺乏,但也不能过多。

自来水所含的矿物质为矿泉水的1/10,又是纯净水的10倍。

矿泉水的矿化度一般为200~300毫克/升,自来水为20~30毫克/升,而纯净水只有2~3毫克/升。

有关研究表明,自来水中的矿物质和微量元素的含量对人体来说是最适宜的。

④其他的饮料所含糖分和热量一般..都偏高,食欲旺盛且过量饮用的人,往往会因糖分和热量摄入过多引起肥胖,食欲不振的人则由于饮料影响正餐,可能导致热量摄入不足而渐趋瘦弱。

饮料中的人工色素、防腐剂在体内蓄积,会干扰多种酶的功能,引起消化不良。

再者,饮料中的大量电解质不容易很快从胃肠排空,而是较长时间存在于胃肠内,影响消化吸收,降低食欲,同时还加重了肾脏的负担。

另外,通过蒸馏和逆渗透技术加以净化后的纯净水会失去如镁、锌、铁、硒、碘等对人体有益的矿物质,长期饮用纯净水,人体便会缺少某些必要的元素而造成营养失衡,这对处于生长期的青少年来说尤为不利。

【D】⑤那么,如何科学地饮用白开水呢?首先要注意喝水时间。

饭前饭后半小时和餐中都不宜大量饮水,以免冲淡唾液、胃液,导致消化不良;最好在两顿饭中间适量饮用。

其次要掌握喝水的量。

成人每天需500~3000毫升,要一次性将一整杯水喝完,这样有利于身体真正吸收;最好每隔1~2小时喝一杯,不要等到有口渴感觉时才饮水。

再者要喝新鲜开水。

饮用水储存时间不宜太长,否则其中的亚硝酸盐含量就会上升,可转换为有致癌作用的亚硝胺。

将水加热到1000C并持续沸腾3分钟,等降温到300C以下后最适合安全饮用。

而生水、不开的水、重新煮开的水、千滚水(反复煮沸的水)、蒸锅水(蒸馒头等的剩锅水)和老化水(长时间贮存不动的水)等,是绝对不可饮用的。

12.本文的说明对象是__________,说明顺序是 ________________________。

(2分)13.为什么其他的饮料“对处于生长期的青少年来说尤为不利”?(3分)___________________________________________________________________________________________________________________________________14.第④段加点的词语能否删去,并简述理由。

(2分)_____________________________________________________________________15.第⑤段画线的句子运用了什么说明方法?有什么作用?(3分)__________________________________________________________________16.下面这句话是从原文抽取出来的,它所在的正确位置是()(从A、B、C、D处选择)(2分)其实,从科学的角度来看,任何其他的饮料都无法取代白开水。

(三)阅读《一只空瓶子的温暖》一文,回答17—20题。

(共8分)一只空瓶子的温暖①星期天,一家人购物回到小区,女儿把空的纯净水瓶子顺手放到了垃圾箱旁。

13岁的女儿是进步了,以前她可是随手乱扔。

但我没有表扬她,我想,这反倒是一个很好的教育机会。

②我不动声色,走过去把空瓶子又捡了起来,随手放进了我的手提袋里。

这是我的习惯,我不会把它们扔掉的,我家里不缺几个瓶子的钱,但瓶子问题折射出来的是一个人的素养。

今天,我更是要做给女儿看的。

③我知道女儿会不屑一顾,还会说我老土。

如今的孩子,把面子看得很重要,穿名牌,吃肯德宽容是一种爱①有一首小诗这样写道:“学会宽容/也学会爱/不要听信青蛙们嘲笑/蝌蚪那又黑又长的尾巴……/允许蝌蚪的存在/才会有夏夜的蛙声。

”②宽容是一种爱。

相关文档
最新文档