2012年考研数学二真题及答案

合集下载

2012年全国硕士研究生入学统一考试数学二试题及答案解析

2012年全国硕士研究生入学统一考试数学二试题及答案解析

2 0 0 1
2
故选(B)。 二、填空题:9−14 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
(9)设 y = y(x) 是由方程 x2 − y +1 =ey 所确定的隐函数,则
【答案】:1
________。
更多考研资料分享+qq810958634
更多考研资料分享+qq810958634
(10)计算
lim
x→∞
n

1
1 + n2
+
22
1 +
n2
+…+
n2
1 +
n2

= ________。
π
【答案】:
4
【解析= 】:原式
∑ lim
n→∞
1 n
n i=1
1+= 1ni 2
∫= 1 dx
0 1+ x2
arc= tan x 1 0

(A)


2

1
1

(B)


1

2
2

(C)


1
2
2

(D)


2
1
【答案】:(B)
1 0 0
1 0 0
【解析】:
Q
=
P

1
1
0

,则
Q
−1
=

−1
1
0

P
−1

0 0 1

2012研究生考试数学二真题及答案

2012研究生考试数学二真题及答案

2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的(A)充分必要条件.(B)充分非必要条件. (C )必要非充分条件.(D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0n a >,则1n n a ∞=∑为正项级数,S n =a 1+a 2+…a n 为正项级数1n n a ∞=∑的前n 项和。

正项级数前n 项和有界与正向级数1n n a ∞=∑收敛是充要条件。

故选A(4)设2k x k e I e =⎰ sin x d x (k=1,2,3),则有D(A )I 1< I 2 I 3.(B) I 2< I 2< I 3. (C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D)【解析】:2sin k x k e I e xdx =⎰看为以k 为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k e I e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f (x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2.(B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x ∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。

2012考研数学二真题及参考答案

2012考研数学二真题及参考答案

2012考研数学二真题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()xxnx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn -- (C )1(1)!n n --(D )(1)!nn - 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的 (A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0na >,则1n n a ∞=∑为正项级数,S n=a 1+a 2+…a n为正项级数1n n a ∞=∑的前n 项和。

正项级数前n 项和有界与正向级数1nn a∞=∑收敛是充要条件。

故选A(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D) 【解析】::2sin kx k eI e xdx=⎰看为以k为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。

2012考研数学二答案真题解析

2012考研数学二答案真题解析

∫ = 16
πθ sin
cos θ
(2 cos 2
θ
− 1) cos8
θ

022
2
22
π
π
∫ ∫ = 32 2 sin t cos11 tdt − 16 2 sin t cos9 tdt
0
0
=8−8 35
= 16 15
(19)(本题满分 11 分)已知函数 f (x) 满足方程 f '' (x) + f ' (x) − 2 f (x) = 0 及 f ' (x) + f (x) = 2ex
2
故选(B)。 二、填空题:9−14 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
(9)设 y = y(x) 是由方程 x2 − y +1 =ey 所确定的隐函数,则
【答案】:1
________。
第 3 页,共 11 页
梦想不会辜负每一个努力的人
(10)计算ຫໍສະໝຸດ limx→∞∂z ∂x
+
y2
∂z ∂y
= ________。
【答案】: 0 .
【解析】:因为 ∂z = ∂x
f ′ ⋅ 1 , ∂z = x ∂y
f



1 y2
,所以
x
∂z ∂x
+
y2
∂z ∂y
= 0.
(12)微分方程 ydx + (x − 3y2 )dy = 0 满足初始条件 y |x=1=1 的解为________。
【答案】: x = y2
【解析】: ydx + (x − 3y2 )dy =0 ⇒ dx =3y − 1 x ⇒ dx + 1 x = 3y 为一阶线性微分方程,

2012年考研数学二真题及答案解析

2012年考研数学二真题及答案解析

数学(二)试题 第 5 页 (共 11 页)
(23)(本题满分 11 分)已知
1)求 a 的(k=1,2,3),则有()
0
(A)I1< I2 <I3.
(B) I3< I2< I1.
(C) I2< I3 <I1,
(D) I2< I1< I3.
(5)设函数 f (x,y) 可微,且对任意 x,y 都 有 f (x, y) x
f (x, y) >0, y <0,f(x1,y1)<f
(A) (1)n1(n 1)!
(B) (1)n (n 1)!
(C) (1)n1n!
(D) (1)n n!
(3)设 an>0(n=1,2,…),Sn=a1+a2+…an,则数列(sn)有界是数列(an)收敛的
(A)充分必要条件.
(B)充分非必要条件.
(C)必要非充分条件.
(D)既非充分也非必要条件.
已知函数 f (x) 1 x 1 ,记 a lim f (x)
sin x x,
x0
(1)求 a 的值
(2)若当 x 0 时, f (x) a 是 xk 的同阶无穷小,求 k
(16)(本题满分 10 分)
( ) -x2+y2
求函数 f x, y = xe 2 的极值。
(17)(本题满分 10 分)
(2)记(1)中的实根为
xn
,证明
lim
n
xn
存在,并求此极限。
(22)(本题满分 11 分)
1 a 0 0
1

A


0
1
a

2012年全国硕士研究生入学考试数学二试题及解析

2012年全国硕士研究生入学考试数学二试题及解析

2012年全国硕士研究生入学考试数学二试题及解析D2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上. (1)曲线221x xy x +=-渐进线的条数________(A )0 (B )1 (C )2 (D )3(2)设函数2()(1)(2)()xx nx f x e e e n =---,其中n 为正整数,则(0)________f '= (A )1(1)(1)!n n --- (B )(1)(1)!nn -- (C )1(1)!n n --(D )(1)!nn -(3)设0(1,2,3)nan >=,123nnSa a a a =++++,则数列{}nS 有界是数列{}na 收敛的_______.(A )充分必要条件 (B )充分非必要条件 (C )必要非充分条件 (D )非充分也非必要 (4)设2sin (1,2,3)k x kI e xdx k π==⎰,则有______(A )123I I I << (B )321I I I <<(C )231I I I <<(D )213I I I <<二、填空题:9-14小题,每小题4分。

请将答案写在答题纸指定位置上。

(9)设()y y x =是由方程21yx y e -+=所确定的隐函数,则22x d y dx ==____________(10)22222111lim ()12n n nn n n →∞+++=+++____________(11)设1(ln )z f x y =+,其中函数()f n 可微,则2z z xy x y∂∂+=∂∂____________(12)微分方程2(3)0ydx x y dy +-=满足条件11x y ==的解为____________ (13)曲线2(0)y xx x =+<2的点的坐标是____________(14)设A 为3阶矩阵,3A =,*A 为A 的伴随矩阵,若交换A 的第一行与第二行得到矩阵B ,则*BA =____________三、解答题:15-23,共94分。

2012年考研数学二试题及答案

2012年考研数学二试题及答案

2012年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】C【考点】函数图形的渐近线 【难易度】★★【详解】本题涉及到的主要知识点:(i )当曲线上一点M 沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。

(ii )渐近线分为水平渐近线(lim()x f x b →∞=,b 为常数)、垂直渐近线(0lim ()x x f x →=∞)和斜渐近线(lim[()()]0x f x ax b →∞-+=,,a b 为常数)。

(iii )注意:如果(1)()limx f x x→∞不存在;(2)()lim x f x a x→∞=,但lim[()]x f x ax →∞-不存在,可断定()f x 不存在斜渐近线。

在本题中,函数221x x y x +=-的间断点只有1x =±.由于1lim x y →=∞,故1x =是垂直渐近线.(而11(1)1lim lim(1)(1)2x x x x y x x →-→-+==+-,故1x =-不是渐近线).又211lim lim111x x x y x→∞→∞+==-,故1y =是水平渐近线.(无斜渐近线) 综上可知,渐近线的条数是2.故选C. (2) 设函数2()(1)(2)()xxnx f x e ee n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -【答案】A【考点】导数的概念 【难易度】★★【详解一】本题涉及到的主要知识点:00000()()()limlimx x f x x f x yf x x x→→+-'==. 在本题中,按定义1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--.故选A.【详解二】本题涉及到的主要知识点:()[()()]()()()()f x u x v x u x v x u x v x ''''==+.在本题中,用乘积求导公式.含因子1xe -项在0x =为0,故只留下一项.于是 故选(A ).(3) 设0(1,2,)n a n >=,123n n S a a a a =++++,则数列{}n S 有界是数列{}n a 收敛的( )(A )充分必要条件 (B )充分非必要条件 (C )必要非充分条件 (D )既非充分也非必要条件 【答案】B 【考点】数列极限 【难易度】★★★ 【详解】因0(1,2,)n a n >=,所以123n n S a a a a =++++单调上升.若数列{}n S 有界,则lim n n S →∞存在,于是反之,若数列{}n a 收敛,则数列{}n S 不一定有界.例如,取1n a =(1,2,)n =,则n S n =是无界的.因此,数列{}n S 有界是数列{}n a 收敛的充分非必要条件.故选(B ). (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I << 【答案】D【考点】定积分的基本性质 【难易度】★★★【详解】本题涉及到的主要知识点: 设a c b <<,则()()()bcbaacf x dx f x dx f x dx =+⎰⎰⎰.在本题中,210sin x I e xdx π=⎰,2220sin x I e xdx π=⎰,2330sin x I e xdx π=⎰222121sin 0x I I e xdx I I ππ-=<⇒<⎰,2332322sin 0x I I e xdx I I ππ-=>⇒>⎰,因此213I I I <<.故选D.(5)设函数(,)f x y 可微,且对任意的,x y 都有(,)0f x y x∂>∂,(,)0f x y y ∂<∂,则使不等式1122(,)(,)f x y f x y <成立的一个充分条件是( )(A )12x x >,12y y < (B )12x x >,12y y > (C )12x x <,12y y < (D )12x x <,12y y > 【答案】D【考点】多元函数的偏导数;函数单调性的判别 【难易度】★★★【详解】本题涉及到的主要知识点:函数单调性的判定法 设函数()y f x =在[,]a b 上连续,在(,)a b 内可导. ①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少. 在本题中,因(,)0f x y x∂>∂,当y 固定时对x 单调上升,故当12x x <时1121(,)(,)f x y f x y < 又因(,)0f x y y∂<∂,当x 固定时对y 单调下降,故当12y y >时2122(,)(,)f x y f x y < 因此,当12x x <,12y y >时112122(,)(,)(,)f x y f x y f x y << 故选D.(6)设区域D 由曲线sin y x =,2x π=±,1y =围成,则5(1)Dxy dxdy -=⎰⎰( )(A )π (B )2 (C )-2(D )π-【答案】D【考点】二重积分的计算 【难易度】★★★【详解】本题涉及到的主要知识点:在本题中,11555222sin sin 221(1)(1)()2x x Dx y dxdy dx x y dy x y y dx ππππ---=-=-⎰⎰⎰⎰⎰其中521(1sin )2x x -,sin x 均为奇函数,所以 52221(1sin )02x x dx ππ--=⎰,22sin 0xdx ππ-=⎰故选(D )(7)设1100c α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201c α⎛⎫⎪= ⎪⎪⎝⎭,3311c α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411c α-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα 【答案】C【考点】向量组的线性相关与线性无关 【难易度】★★【详解】本题涉及到的主要知识点:n 个n 维向量相关12,,,0n ααα⇔=在本题中,显然134123011,,0110c c c ααα-=-=, 所以134,,ααα必线性相关.故选C.(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫ ⎪ ⎪ ⎪⎝⎭【答案】B【考点】矩阵的初等变换;初等矩阵 【难易度】★★★【详解】本题涉及到的主要知识点:设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵.在本题中,由于P 经列变换为Q ,有12100110(1)001Q P PE ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,那么111112121212[(1)][(1)](1)()(1)Q AQ PE A PE E P AP E ----== 故选B. 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21yx y e -+=所确定的隐函数,则22x d y dx == .【答案】1【考点】隐函数的微分 【难易度】★★【详解】本题涉及到的主要知识点: 隐函数求导的常用方法有:1. 利用复合函数求导法,将每个方程两边对指定的自变量求偏导数(或导数),此时一定要注意谁是自变量,谁是因变量,对中间变量的求导不要漏项。

2012考研数学二真题答案(完整版)

2012考研数学二真题答案(完整版)

2012数二参考答案9、21xx e +; 10、4π; 11、0; 12、2x y =; 13、()1,0-; 14、27- 三、解答题15、解:(I )()00011sin lim limlim 011sin sin sin x x x x x x xa f x x x x x x→→→+-==-=+=+=(II )()00011sin sin lim lim 1lim sin sin sin x x x x x x x x f x a x x x xx →→→+--⎛⎫⎛⎫-=--=+⎡⎤⎪ ⎪⎣⎦⎝⎭⎝⎭ ()()3001sin 16lim lim sin sin x x x x x x x x x x →→-+⎛⎫== ⎪⎝⎭()300161sin lim lim 6x x x f x a x x x x →→-⎡⎤==⎢⎥⎣⎦,所以k=1 16、解:()()()()()2222222222222,10,0x yx y x y x y fx y e xex ex xf x y xe y y+++---+-⎧∂=+-=-=⎪∂⎪⎨∂⎪=-=⎪∂⎩得驻点()()121,0,1,0P P -()()()()()()()()22222222222222222222,21,1,1x y x y x y x y f x y xe e x x x f x y e x y x yf x y xe y y++--+-+-⎧∂=-+--⎪∂⎪⎪∂⎪=--⎨∂∂⎪⎪∂⎪=-∂⎪⎩ 根据判断极值的第二充分条件, 把()11,0,P -代入二阶偏导数B=0,A>0,C>0,所以()11,0,P -为极小值点,极小值为()121,0f e --=-把()21,0P 代入二阶偏导数B=0,A<0,C<0,所以()21,0P 为极大值点,极大值为()121,0f e-=(17)解:1y x '=,设切点坐标(),ln o o x x ,切线方程为()1ln o o oy x x x x -=- 又切线过点(0,1),所以2o x e =,故切线方程为211y x e =+ 切线与x 轴交点为B ()2,0e -所围面积()222011y A e e y dy e ⎡⎤=--=-⎣⎦⎰ 旋转体体积()()2222221122ln 333e V e e xdx e πππ⎡⎤=---=+⎣⎦⎰ (18)解:()()1cos 014401d cos sin 1116cos sin 1cos 14415Dxy d d d t t dt πθπσθρθρθρρθθθθ+-= =+=+=⎰⎰⎰⎰⎰⎰(19)解:(I )'''()()2()0f x f x f x +-=对应的特征方程为220r r +-=,r=-2,r=1所以()212xx f x C e C e -=+把()212xx f x C e C e -=+代入''()()2x f x f x e +=,得到()x f x e =(II )同理,当x<0时,0y ''<可知(0,0)点是曲线唯一的拐点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为(当x=1时,y=无穷,为垂直渐近线。

当x=无穷时,y=1,为水平渐近线。

)(A )0 (B )1 (C )2 (D )3 【答案】:(C )【解析】:221lim 1x x x x →+=∞-,所以1x =为垂直渐近线22lim 11x x xx →∞+=-,所以1y =为水平渐近线,没有斜渐近线,总共两条渐近线,选(C )。

(2)设函数2()(1)(2)()xxnx f x e e e n =--- ,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n -【答案】:(C )【解析】:''22()(2)()(1)(2)()x x nx x x nxf x e e e n e e e n ⎡⎤=--+---⎣⎦所以'(0)f =1(1)!n n --,故选(C )。

(3)设0,(1,2,...)n a n >=,1...n n s a a =++,则数列{}n s 有界是数列{}n a 收敛的 (A)充分必要条件.(B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件.【答案】:(B)【解析】:由于0n a >,{}n s 是单调递增的,可知当数列{}n s 有界时,{}n s 收敛,也即lim nn s →∞是存在的,此时有()11lim lim lim lim 0n n n n n n n n n a s s s s --→∞→∞→∞→∞=-=-=,也即{}n a 收敛。

反之,{}n a 收敛,{}n s 却不一定有界,例如令1n a =,显然有{}n a 收敛,但n s n =是无界的。

故数列{}n s 有界是数列{}n a 收敛的充分非必要条件,选(B)。

(4)设2sin k x k I e xdx π=⎰(k=1,2,3),则有D (画图应该能说明)(A )123I I I <<(B)321I I I << (C)231I I I <<(D)213I I I <<【答案】:(D)【解析】:由于当(,2)x ππ∈时sin 0x <,可知22sin 0x e xdx ππ<⎰,也即210I I -<,可知12I I >。

又由于2223232s i n s i n s i n x xx e x d x e x d x e x d xππππππ=+⎰⎰⎰,对232s i n x e x d xππ⎰做变量代换t x π=-得()()()()222232222sin sin sin sin t t x x exdx et dt etdt exdx ππππππππππππ+++=+=-=-⎰⎰⎰⎰,故()()22232sin sin x x x e xdx eexdxπππππ+=-⎰⎰由于当(,x ππ∈时()22sin 0,0x x x e eπ+<-<,可知23sin 0x e xdx ππ>⎰,也即310I I ->,可知31I I >。

综上所述有213I I I <<,故选(D).(5)设函数(,)f x y 可微,且对任意,x y 都 有(,)0f x y x ∂>∂,(,)0f x y y∂<∂,则使得1122(,)(,)f x y f x y <成立的一个充分条件是(A) 1212,x x y y ><(B) 1212,x x y y >> (C) 1212,x x y y <<(D) 1212,x x y y <>【答案】:(D) 【解析】:(,)0f x y x∂>∂(>说明了X 是单调递增吗?),(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。

因此,当1212,x x y y <>时,必有1122(,)(,)f x y f x y <,故选D(6)设区域D 由曲线,1,2,sin =±==y x x y π围成,则())(15⎰⎰=-dxdy y xππ--)(2)(2)()(D C B A【答案】:(D ) 【解析】:区域D 如图中阴影部分所示,为了便于讨论,再引入曲线sin y x =-将区域分为1234,,,D D D D 四部分。

由于12,D D 关于y 轴对称,可知在12D D 上关于x 的奇函数积分为零,故1250D D x ydxdy =⎰⎰;又由于34,D D 关于x 轴对称,可知在34D D 上关于y 的奇函数为零,故3450D D x ydxdy =⎰⎰。

因此()152sin 21xDDx y dxdy dxdy dx dy πππ--=-=-=-⎰⎰⎰⎰⎰⎰,故选(D )。

(7)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234,,,c c c c 为任意常数,则下列向量组线性相关的是( )(A )123,,ααα (B )124,,ααα (C )134,,ααα (D )234,,ααα 【答案】:(C )【解析】:由于()13411341111,,011011c c c c ααα--=-==-,可知134,,ααα线性相关。

故选(C )。

(8)设A 为3阶矩阵,P 为3阶可逆矩阵,且1112P AP -⎛⎫⎪= ⎪ ⎪⎝⎭,()123,,P ααα=,()1223,,Q αααα=+则1Q AQ -=( )(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )112⎛⎫⎪⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )221⎛⎫ ⎪⎪ ⎪⎝⎭【答案】:(B )【解析】:100110001Q P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则11100110001Q P --⎛⎫⎪=- ⎪ ⎪⎝⎭,故11100100100110011101101101110100100100120012Q AQ P AP --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪=-=-= ⎪ ⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选(B )。

二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21yx y e -+=所确定的隐函数,则22x d y dx ==(两次求导然后把x=0,y=0带入 )________。

【答案】:1 【解析】:将0x =代入原方程可得0y = 方程21y x y e -+=两端对x 求导,有2y dy dy x e dx dx-=,将0x =、0y =代入可得,所以0x dydx==再次求导得222222y y d y dy d y e e dx dx dx ⎛⎫-=+ ⎪⎝⎭,再将0x =、0y =、00x dy dx ==代入可得221x d ydx ==。

(10)计算22222111lim 12x n n n n n →∞⎛⎫+++= ⎪+++⎝⎭…_____(制造处1/n 和i/n )___。

【答案】:4π【解析】:原式11220111lim arctan .141nn i dx x n x i n π0→∞=====+⎛⎫+ ⎪⎝⎭∑⎰(11)设1ln z f x y ⎛⎫=+ ⎪⎝⎭,其中函数()f u 可微,则2z zxy x y∂∂+=∂∂________。

【答案】:0.【解析】:因为211,z z f f x x y y ⎛⎫∂∂''=⋅=⋅- ⎪∂∂⎝⎭,所以20.z z x y x y ∂∂+=∂∂(12)微分方程2(3)0ydx x y dy +-=满足初始条件|1x y =1=的解为________。

【答案】:2xy =【解析】:21(3)03dx ydx x y dy y x dy y +-=⇒=-13dx x y dy y⇒+=为一阶线性微分方程,所以112133dy dy y y x e y e dy C y dy C y-⎡⎤⎰⎰⎡⎤=⋅+=+⎢⎥⎣⎦⎣⎦⎰⎰31()y C y =+ 又因为1y =时1x =,解得0C =,故2x y =.(13)曲线2(0)y x x x =+<上曲率为2的点的坐标是________。

(注五星)(曲率计算公式需记住) 【答案】:()1,0-【解析】:将21,2y x y =+=’”代入曲率计算公式,有323/222||2(1)1(21)y K y x ''==='+⎡⎤++⎣⎦整理有2(21)1x +=,解得01x =-或,又0x <,所以1x =-,这时0y =, 故该点坐标为()1,0-(14)设A 为3阶矩阵,3A =,*A 为A 的伴随矩阵,若交换A 的第一行与第二行得到矩阵B ,则*BA =________。

【答案】:27-【解析】:**BA B A =,其中31*3,9B A A A-=-=-==,可知*27BA =-。

三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)已知函数11()sin ,x f x x x +=-,记0lim ()x a f x →=(1)求a 的值(2)若当0x →时,()f x a -是kx 的同阶无穷小,求k 【解析】:(1)2000011sin lim ()lim lim lim 1sin sin sin x x x x x x x x f x x x x x x →→→→-⎛⎫=-+=+=⎪⎝⎭,即1a = (2),当0x →时,由11sin ()()1sin sin x xf x a f x x x x x--=-=-=又因为,当0x →时,sin x x -与316x 等价,故1()~6f x a x -,即1k =(16)(16)(本题满分10分) 求()222,x y f x y xe+-=的极值。

【解析】:()222,x y f x y xe +-=,先求函数的驻点:令()()()2222222,10,0x y x x y yf x y x ef x y xye +-+-⎧'=-=⎪⎪⎨⎪'=-=⎪⎩, 解得驻点为()()1,0,1,0-.又()()()222222222222311x y xx x y xy x y yy f x x ef y x e f x y e+-+-+-''=-''=--''=--对点()1,0,有()()()11221111,02,1,00,1,0xx xy yy A f e B f C f e--''''''==-====-所以,211110,0AC B A -><,故(),f x y 在点()1,0处取得极大值()121,0f e =. 对点()1,0-,有()()()11222221,02,1,00,1,0xx xy yy A f e B f C f e--''''''=-==-==-=所以,222220,0A C B A ->>,故(),f x y 在点()1,0处取得极小值()121,0f e -=-. (17)(本题满分11分)过点(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L与直线AB 及x 轴围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积。

相关文档
最新文档