DSP技术及应用 第2章

合集下载

DSP技术及应用课后部分习题答案

DSP技术及应用课后部分习题答案

第二章3.简述TI公司C2000/C5000/C6000系列DSP的特点及主要用途?1.C2000系列DSP控制器,具有良好的性能集成Flosh存储器,高速A/D 转换器以及可靠的CAN模块,主要应用于数字化控制.用途:工业驱动,供电、OPS。

2.C5000系列杰出的性能和优良的性能价格比,广泛应用,尤其在通信领域.IP电话机和IP电话网关.3.C6000系列采用指令集以及流水应用,使许多指令得以运行,推出三个系列.用途:数字通信和图像处理.5.TMS320C54X芯片的CPU主要由哪些部分构成?①先进的多总线结构(1条程序总线、3条数据总线、4条地址总线)②40位算术逻辑运算单元(ALU),包括1个40位桶形移位寄存器和2个独立的40位累加器③17x17位并行乘法器,与40位专用加法器相连,用于非流水线式单周期乘法/累加(MAC)运算④比较、选择、存储单元(CSSU),用于加法/比较选择⑤指数编码器,可以在单个周期内计算40位累加器中数值的指数⑥双地址生成器,包括8个辅助寄存器和2个辅助寄存器算术运算单元(ARAU)6.简述TMS320C54X芯片的程序空间7.简述TMS320C54X芯片的中断系统(P42)答:2.中断处理步骤(1) 接受中断请求;(2)应答中断;(3)执行中断服务程序(ISR)9.TMS320C54x 有哪几种基本的数据寻址方式①立即寻址②绝对寻址③累加器寻址④直接寻址⑤间接寻址⑥存储器映像寄存器寻址⑦堆栈寻址10.使用循环寻址时,必须遵循的3个原则是什么?试举例说明循环寻址的用法。

(P60)答:1.把循环缓冲区的首地址放在符合上述算法的N的边界地址上2、使用一个小于或等于缓冲区大小的步长3、在开始寻址前,辅助寄存器必须指向循环缓冲区内的一个元素举例:LD * +AR1(8)a%, ASTL A,*+AR1(8)%;11。

TMS320C54x的指令集包含了哪几种基本类型的操作?答:数据传送指令、算术运算指令、逻辑运算指令、程序控制指令、并行操作指令和重复操作指令12.汇编语句格式包含哪几种部分?编写汇编语句需要注意哪些问题?答: [标号][:]空格[助记符]空格[操作数]空格[;注释]1、所有的语句必须以一个标号、空格、星号或分号开始。

DSP技术原理及应用教程

DSP技术原理及应用教程
跨学科融合
加强与数学、物理学、生物学等其他学科的交叉融合,以开拓DSP技 术在更多领域的应用。
注重实际应用
在研究过程中,注重与实际应用的结合,以提高DSP技术的实用性和 市场竞争力。
THANKS
感谢观看
应用前景
通信领域
DSP技术将在通信领域发挥重 要作用,如调制解调、信号编
解码等。
音频处理
DSP技术在音频信号处理方面 具有天然优势,如音频编解码 、音频效果处理等。
图像处理
DSP技术也可应用于图像信号 处理,如图像增强、目标检测 等。
工业控制
DSP技术将应用于工业控制领 域,实现智能化、高精度的信
号处理。
06
结论
主要观点总结
DSP技术原理
数字信号处理(DSP)是一门跨学科的综合性技术,涉及数学、电路、计算机等多个领域。其主要原理是将模拟信号转换 为数字信号,然后通过计算机进行运算处理,以达到改善信号质量或提取有用信息的目的。
应用领域
DSP技术在通信、雷达、声呐、图像处理、语音识别、生物医学工程等领域有着广泛的应用。通过DSP技术,可以实 现信号的滤波、频谱分析、参数估计、模式识别等功能。
FFT算法将DFT的计算复杂度从 $O(N^2)$降低到$O(Nlog N)$,大 大提高了计算效率。
03
DSP技术的应用领域
通信领域
调制解调
频谱分析
信道均衡
语音压缩
在数字通信中,调制解调是 将基带信号转换为频带信号 的过程,反之亦然。DSP技 术可以快速实现各种调制解 调算法,如QPSK、QAM等 ,提高通信速率和抗干扰能 力。
DSP芯片采用先进的制程技术,具有低功耗 的特点,延长了设备的待机时间。

DSP芯片技术及应用

DSP芯片技术及应用

DSP总结:以下总结仅针对宁波大学DSP芯片技术及应用(通信类非控制类)这门课,个人根据重点、考点总结的,用于期末复习(请结合课本以及PPT的例子),不足之处请见谅,基本能过就是,如若其中有错请联系QQ:493288964。

还是建议您平时学点,理解为先!!!将该文章用于百度等兑换积分的行为是可耻的!第一章绪论(简介)1、DSP芯片特点:采用哈佛结构;多总线结构;流水线技术;专用的硬件乘法器;特殊的DSP指令;快速的指令周期;硬件配置强;支持多处理器结构1)CPU是冯.诺伊曼结构;DSP是数据和地址空间分开的哈佛结构。

冯.诺依曼结构:单存储空间;统一的程序和数据空间;共享的程序和数据总线;程序指令只能串行执行单指令周期:100ns,现在单指令周期为:10ns哈佛结构:双存储空间;程序存储器和数据存储器分开;程序总线和数据总线分开;独立编址、独立访问改进型哈佛结构:双存储空间、多条总线;多条数据总线;高速缓冲器(重复指令,只需读入一次)2)采用多总线结构:TMS320C54X:4组总线;单机器周期内可完成的操作;3)流水线操作4)专用的硬件乘法器硬件乘法累加器是DSP区别于通用微处理器的一个重要标志MAC(乘累加)单元(独立的乘法器和加法器;单周期内完成一次乘法和一次加法运算;MPY,MAC,MACA, MACSU等指令)分类:工作时钟和指令类型:静态和一致性DSP芯片;用途分:通用和专用型;数据格式分:定点和浮点型2、DSP按数据格式分为定点型和浮点型定点DSP芯片:数据长度16位/24位TMS320C2000/5000/6000价格便宜、功耗较低、但运算精度稍低。

浮点DSP芯片:数据长度32位/40位MS320C3X/4X/VC33/C67X/C8X价格稍贵、功耗较大、但运算精度高。

3、芯片简介TMS320VC5416PGE160 主处理器芯片的性能:频率:160MHz 速度:160MIPS 周期:6.25ns第二章:TMS320C54X的硬件结构1、C54X:为低功耗,高性能而专门设计的16位定点DSP芯片C54基本结构:中央处理器(CPU)、内部总线结构、存储器、片内外设。

dsp2

dsp2
功能:一个单指令周期内完成17×17bit的二进制补码运算; 用途:卷积、相关、滤波(LMS)、欧氏距离等运算;
DSP技术及应用
20
图2.8 乘法器/加法器单元功能框图
DSP技术及应用
21
2.3
中央处理单元(CPU)
(5)比较、选择和存储单元
功能 用途:在数据通信、模式识别等领域,经常要用到 Viterbi(维特比)算法。C54x DSP的CPU的比较、选择和 存储单元 (CSSU) 就是专门为 Viterbi 算法设计的进行加 法/比较/选择(ACS)运算的硬件单元。
DSP技术及应用
30
2.4
存储器和I/O空间
• C54x的总存储空间为192K字
存储器的组成(分为3个可选择的存储空间):
程序存储空间ROM 64K 16位:存放程序(要执行的指令) 单访问SARAM 数据存储空间RAM 64 K16位 保存执行指令所使用的数据( 双访问DARAM I / O存储空间64 K16位:提供与外部存储器映射的接口
DSP技术及应用
3
2.1
TMS320C54x硬件结构框图
TMS320C54x内部结构(3大块) (1)CPU 包 括 算 术 逻 辑 运 算 单 元 (ALU, Arithmetic Logic Unit) 、乘法器、累加器、移位寄存器、各种专门用途 的寄存器、地址生成器及内部总线。 (2)存储器系统 包括片内程序 ROM 、片内单访问的数据 RAM 和双访问 的数据RAM、外接存储器接口。 (3)片内外设与专用硬件电路 包括片内定时器、各种类型的串口、主机接口、片 内锁相环(PLL)、时钟发生器及各种控制电路。
第2章
2.1 2.2 2.3 2.4

DSP应用技术-DSP及其应用概述

DSP应用技术-DSP及其应用概述
(1) 规格:
① C55xTM DSP内核可以为高达600 MIPS的性能提供300 MHz;
② 目前TMS320C5510 DSP已经开始投产,TMS320C5509 DSP 可提供样片;
③ 在整个C5000TM DSP平台上可实现软件兼容。
(2) 应用:功能丰富的便携产品,2G、2.5G、3G手机与基站, 数字音频播放器,数码相机,电子图书,语音识别,GPS接收器, 指纹/模式识别,无线调制解调器,耳机,生物辨识。
③ 高达7 MB的片上内存;
④ 两个多通道缓冲串行端口(McBSP)(三个用于C6202与 C6203 DSP的McBSP);
⑤ 16位主机端口接口(HPI)(32位用于C6202、C6203与C6204 DSP的扩展总线);
⑥ 两个32位定时器;
⑦ 300 MHz时速率高达2400 MIPS(C6203 DSP)。
(6) 具有软、硬件等待功能,能与各种存取速度的存储器接 口。
(7) 针对滤波、相关和矩阵运算等需要大量乘法累加运算的 特点,DSP芯片大多配有独立的乘法器和加法器,使得在同一 时钟周期内可以完成乘、累加两个运算。
(8) 低功耗,DSP一般为0.5~4 W,而采用低功耗技术的 DSP芯片只有0.1 W,可用电池供电。
(2) 特性:OMAP5910双内核处理器同时包括。 ① 150 MHz的TI增强ARM925微处理器: * 16 KB指令高速缓冲存储器以及8 KB数据缓冲器; * 数据与指令MMU; * 32位与16位指令集。
② 150 MHz TMS320C55xTM DSP内核: * 24 KB指令高速缓冲存储器; * 160 KB SRAM; * 用于视频算法的硬件加速器。
(3) 特性:高级自动电源管理;可配置的空闲域,以延长电 池寿命;缩短调制过程,从而加快产品上市进程。

DSP技术及应用陈金鹰

DSP技术及应用陈金鹰

噪声
干扰影响大
电磁场等
数字系统
只要能判决 就能复原信号
可靠性好 可重复性好
12
第13页/共39页
可靠性和可重复性的典型例子
信号 信号
放大器A 放大器B
计算机A 计算机B
A、B结果 可能不同
A、B结结 果相同
13
第14页/共39页
4.大规模集成
模拟系统: 有一些模拟集成电路 品种较少 集成度不高 价格较高
使FFT、卷积等运算中的寻址、排序及计算速 度大大提高。1024点FFT的时间已小于1ms。
29
第30页/共39页
5. 硬件配置能力强
多通道缓冲串行口(McBSP)

主机接口(HPI)

DMA控制器
具 有
软件控制等待状态发生器
锁相环时钟发生器
JTAG边界扫描逻辑电路
30
第31页/共39页
6. 耗电省
26
第27页/共39页
2. 多流水线操作技术(Pipeline)
取指 译码 寻址 取数 运算 存储 取指 译码 寻址 取数 运算 存储 取指 译码 寻址 取数 运算 存储
流水线深度可达8级
27
第28页/共39页
3. 独立的硬件乘法器
DSP利用硬件乘法器 通过MAC指令在单周期内完成 A(k)B(n—k) 这类运算的取数、乘法、累加
模拟处理系统升级
修改硬件设计 调整硬件参数
数字处理系统的升滤波器

自适应滤波器
10
第11页/共39页
2.更高的精度
模拟处理系统
依赖元器件精度
数字处理系统
取决于A/D的位数 计算机字长 先进的算法

DSP应用技术教程 部分习题答案

DSP应用技术教程 部分习题答案

《TMS320C54x DSP应用技术教程》部分习题答案注意:未提供的参考答案习题(因考试为开卷形式,部分在课堂讲过,部分需要自行思考归纳总结或编程),请参考PPT和书上示例,自行解答。

第1章绪论1.简述Digital Signal Processing 和Digital Signal Processor 之间的区别与联系。

答:前者指数字信号处理的理论和方法,后者则指用于数字信号处理的可编程微处理器,简称数字信号处理器。

数字信号处理器不仅具有可编程性,而且其数字运算的速度远远超过通用微处理器,是一种适合于数字信号处理的高性能微处理器。

数字信号处理器已成为数字信号处理技术和实际应用之间的桥梁,并进一步促进了数字信号处理技术的发展,也极大地拓展了数字信号处理技术的应用领域。

2.什么是DSP技术?答:DSP技术是指使用通用DSP处理器或基于DSP核的专用器件,来实现数字信号处理的方法和技术,完成有关的任务。

5.数字信号处理的实现方法有哪些?答:参见P3-4 1.1.3节。

6.DSP的结构特点有哪些?答:哈佛结构和改进的哈佛结构、多总线结构、流水线技术、多处理单元、特殊的DSP指令、指令周期短、运算精度高、硬件配置强。

7.什么是哈佛结构和冯洛伊曼结构?它们有什么区别?答:参见P5-6 1.2.2节。

8.什么是哈佛结构和冯.诺依曼结构?它们有什么区别?答:DSP处理器将程序代码和数据的存储空间分开,各空间有自己独立的地址总线和数据总线,可独立编址和独立访问,可对程序和数据进行独立传输,这就是哈佛结构。

以奔腾为代表的通用微处理器,其程序代码和数据共用一个公共的存储空间和单一的地址和数据总线,取指令和取操作数都是通过一条总线分时进行的,这样的结构称为冯·诺伊曼结构。

采用哈佛结构,可同时取指令和取操作数,并行地进行指令和数据的处理,从而可以大大地提高运算的速度,非常适合于实时的数字信号处理。

而冯·诺伊曼结构当进行高速运算时,取指令和取操作数是分时操作的,这样很容易造成数据传输通道的瓶颈现象,其工作速度较慢。

多媒体技术及应用 数字音频技术02

多媒体技术及应用 数字音频技术02
音色Piano编号
00
60
8分音符编号
音符C3编号
2-35
多媒体 音频技术
2.4 MIDI与音乐合成
二、MIDI合成方式 1.调频合成法--FM 原理:MIDI合成器接收到MIDI音乐信息 后,利用傅立叶级数原理将其分解为若干个 不同频率的正弦波,然后生成MIDI音乐信息 中指定乐器的各个正弦波分量,最后将这些 分量合成起来送至扬声器播放。 特点:①系统开销小,声音清脆 ②声音音色少,音质较差
2.3 声卡与音箱
4.声卡的外部接口
2-22
多媒体 音频技术
2.3 声卡与音箱
用来连接外部音频设备以便进行录音,如 录音机、CD唱机和音响等 用来连接话筒,直接输入现场的声音信号 用来连接外部音频设备的输入口,也可连 接大功率有源音响等 用来连接扬声器,从声卡的内置功率放大 器向扬声器输出声音 用来连接游戏杆或MIDI设备。 用来连接CD-ROM驱动器,可以直接播放CD 音乐,而不占用CPU时间
压缩编码技术是指用某种方法使 数字化信息的编码率降低的技术
音频信号能压缩的基本依据: ① 声音信号中存在大量的冗余度; ② 人的听觉具有强音抑制弱音的现象; ③ 低频段敏感、高频段不敏感。
2-14
多媒体 音频技术
2.2 数字音频压缩标准
音频信号压缩编码的分类: ①无损压缩(熵编码) 霍夫曼编码、算术编码、行程编码 ②有损压缩 波形编码--PCM、DPCM、ADPCM 子带编码、矢量量化 参数编码--LPC 混合编码--MPLPC、CELP
多媒体 音频技术
2.3 声卡与音箱
(3)驻极体式传声器,利用驻极体材料 制作的电容传声器。 优点:简单、体积小、耐振动、价格低 (4)无线传声器,声音信号转变为电信 号,形成超高频信号。 无线传声器不是指传声器的结构原理,而 是指信号的传输方法。 优点:可随身携带、无需电缆 缺点:时远时近,影响拾音效果
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. (1) 具有192K字的可寻址空间: 64K字的程序空间, 64K 字的数据空间和64K字的I/O空间, 有的芯片内还具有多达 256K~8M (2) 片内存储器的结构和容量可根据芯片的型号有所不同。
3. (1) (2) (3) 片内的锁相环(PLL)时钟发生器, 可采用内部振荡器
(4) 外部总线关断控制电路可用来断开外部数据总线、 地 址总线和控制信号。
C54x的硬件结构基本上可分为三大块, (1) CPU部分包括算术逻辑单元、 累加器、 乘法器/加法 器、 桶形移位寄存器、 指数编码器、比较选择存储单元及各 种专门用途的寄存器、 地址生成器、 内部总线等。
(2) 存储器部分包括片内程序ROM、 片内单访问数据 RAM(SARAM)、 片内双访问数据RAM(DARAM)及外接存储
在C54x DSP中, 根据存储内容的需要, 可将片内ROM 和RAM存储器安排(也称映射)到程序存储器空间或数据存储器 空间。 一般将ROM映射到程序存储器空间, 也可以将其某段 存储器映射到数据存储器空间。
C54x有一个处理器模式寄存器(Processor Mode Status Register, PMST), 如图2.2所示, 其中有3个状态位(MP/MC 位、 OVLY位和DROM位)可以很方便地“使能”或“禁止” 片内存储器在程序和数据空间之间的映射。
(3) 可控制禁止CLKOUT信号。
8. 具有符合IEEE 1149.1标准的片内仿真接口, 可与主机连 接, 用于系统芯片的开发与应用。
2.2 总 线 结
C54x片内有8条16位总线: 1条程序总线、 3条数据总线 和4条地址总线, 这些总线的功能如下:
(1) 1条程序总线(PB)传送取自程序存储器的指令代码和立 即操作数。
第2章 TMS320C54x数字信号 处理器硬件结构
2.1 TMS320C54x的内部结构及主要特性 2.2 总线结构 2.3 存储系统 2.4 中央处理单元(CPU) 2.5 TMS320VC5416的引脚及说明
2.1 TMS320C54x的内部结构及主要特性
2.1.1 TMS320C54x
TMS320C54x系列DSP芯片产品虽然很多, 但其体系 结构基本上是相同的, 特别是核心CPU部分, 各个型号间 的差别主要是片内存储器和片内外设的配置。 图2.1给出了 TMS320C54x的典型内部结构框图。
(2) 3条数据总线(CB、 DB和EB)将内部各单元(如CPU、 数据地址生成电路、 程序地址生成电路、 芯片外围电路以及 数据存储器)连接在一起。 其中, CB和DB传送来自数据存储 器的数据, EB传送写到存储器的数据。
(3) 4条地址总线(PAB、 CAB、 DAB和EAB)传送执行指 令所需的地址。
图 2.2 PMST结构框图
PMST中3个状态位MP/MC、 OVLY和DROM的功能如下。 (1) MP/MC: 微处理器/ 若MP/MC=0, 则片内ROM映射到程序存储器空间; 若 MP/MC=1, 则片内ROM不能访问, 若访问其对应地址, 则 需访问相应地址的外部程序存储器空间。
2) OVLY: RAM重复占用位。 OVLY=1, 片内RAM既可映射到程序存储器空间, 也 可映射到数据存储器空间, DSP根据映射地址分辨其中存储单 元的内容是程序代码还是数据。 若映射到程序存储器空间, 则看做程序代码, 若映射到数据存储器空间, 则看做数据。 开发人员在安排具体内容时, 两者地址不要重叠。 OVLY=0, 片内RAM只能映射到数据存储器空间而不能 映射到程序存储器空间。
4. 除TMS320C5420外, C54x系列所有的芯片都具有片内引 导功能, 能从片外的存储器或片内的串口将程序引导并装入 指定的存储器。
5. (1) (2) (3) 32 (4) 同时读入2个或3 (5) 并行存储和装入的算术指令。
(6) (7) (8) (9) 指令的执行采用指令预提取、 指令提取、 指令译码、 访问操作数、 读取操作数和执行6级流水线并行结构, 大大提 高了指令的执行速度。
PB能够将存放在程序空间中的操作数(如系数表)传送到乘 法器和加法器, 以便执行乘法/累加操作, 或通过数据传送 指令(MVPD和READA指令)传送到数据空间的目的地。 此种 功能, 连同双操作数的特性, 支持在一个周期内执行3操作数 指令(如FIRS指令)
2.3 存 储 系 统
Байду номын сангаас2.3.1 存储器空间
6. (1) 单指令周期时间分为25/20/15/12.5/10 ns; (2) 每秒指令数为40/50/66/80/100/200 MIPS(MIPS, 每秒 百万级指令数)。
7. (1) 可采用5V、 3.3V、 3V和1.8V(或2.5V)的超低电压 供电; 在型号中分别用C、 LC、 UC和VC指明, 如 TMS320C54x、 TMS320LC54x和TMS320UC54x (2) 可采用功耗下降指令IDLE1、 IDLE2和IDLE3控制芯片
(3) 片内外设部分包括定时器、 各种类型的串口、 主机接 口、 片内的锁相环(PLL)时钟发生器以及各种控制电路等。
此外, 芯片中还包含仿真功能及IEEE 1149.1标准接口,
图 2.1 TMS320C54x的典型内部结构框图
2.1.2 TMS320C54x
1. CPU (1) 先进的多总线结构, 具有1条程序总线、 3条数据总线 和4条地址总线。 (2) 40位算术逻辑单元(ALU), 包括40位的桶形移位寄存 器和2个独立的40位的累加器。
(3) 17位×l7位的并行乘法器与一个40位的专用加法器结 合在一起, 用于非流水线的单周期乘/
(4) 比较、 选择和存储单元(CSSU), 用于Viterbi操作(一 种通信的编码方式)中的求和/
(5) 指数编码器用于单周期内计算40位累加器的指数值。 (6) 2个地址生成器, 包括8个辅助寄存器和2个辅助寄存 器算术单元。
(5) (6) (7) 直接存储器访问(DMA) (8) 有可与主机直接连接的8位并行主机接口(HPI), 有些 产品还包括扩展的8位并行主机接口(HPI8)和16位并行主机接 口(HPI16) (9) 片内的串口根据型号不同可分为全双工的标准串口、 支持8位和16位数据传送的时分多路(TDM)串口、 缓冲串口 (BSP)以及多通道缓冲串口(McBSP)。
相关文档
最新文档