哈工大2013结构力学课件02-5 结构静力分析篇(组合)@@
结构力学(I)结构静力分析篇(位移法)@@

EI
正对称
q q q
h
反对称
q
哈工大 土木工程学院
29 / 65
q
q
q
对称结构在对称荷载作 用下内力、反力和变形皆对 称,故取半结构计算。由半 结构特点采用位移法较好。
哈工大 土木工程学院
30 / 65
q
q
q
对称结构在反对称荷载 作用下内力、反力和变形皆 反对称,故取半结构计算。 而此半结构仍具有对称结构 特点。继续分解。
A 2EI
l
B
EI c
l
C
原始结构
C
A
Z1
B c
基本结构 基本体系
k R 0 1Z 11 1 C
哈工大 土木工程学院
基本方程
33 / 65
4i
Z1 1
3i
8i
k 11
3i
8i
12 i l 12 i l
M1
1 2 i l
k i 1111
R 1C
3i l
c
3i l
MC
9i R1C c l
哈工大 土木工程学院
15 / 65
3i
Z1 1
k 11
4i
3i
1 Z1 FPl 56i
2i
1 FPl 8 1 FPl 8
M1
4i k i 117
R1P
1 FPl 8
M Z M M 1 1 P
3 FPl 56 8 FPl 56 9 FPl 56
FP
MP
1 R 1P F Pl 8
哈工大 土木工程学院
21 / 65
Z1 1
哈工大结构力学精品课件

结构力学张金生绪论§1 . 结构力学的内容和任务一.对象结构分为:杆系结构,板壳结构,实体结构三.内容 结构组成;内力,位移,临界力计算.二.任务 研究结构的刚度,强度,稳定性的 计算原理和计算方法结构:承受并传递荷载的骨架部分确定计算简图的原则: 1.能反映实际结构的主要力学特性;2.分析计算尽可能简便§2 . 杆件结构的计算简图计算简图:在结构分析当中用来代替实际结构的计算模型(图形)简化内容:1.杆件的简化: 杆件 杆件的轴线2.结点的简化: 刚结点 铰结点 半铰结点(组合结点)半铰结点铰结点刚结点确定计算简图的原则:1.能反映实际结构的主要力学特性;2.分析计算尽可能简便§2 . 杆件结构的计算简图计算简图:在结构分析当中用来代替实际结构的计算模型(图形)简化内容: 1.杆件的简化: 杆件 杆件的轴线2.结点的简化: 刚结点 铰结点 半铰结点(组合结点)3.支座的简化: 固定铰支座 可动较支座 固定端支座 滑动支座(定向支座)确定计算简图的原则:1.能反映实际结构的主要力学特性;2.分析计算尽可能简便§2 . 杆件结构的计算简图计算简图:在结构分析当中用来代替实际结构的计算模型(图形)简化内容: 1.杆件的简化: 杆件 杆件的轴线2.结点的简化: 刚结点 铰结点 半铰结点(组合结点)3.支座的简化: 固定铰支座 可动较支座 固定端支座 滑动支座(定向支座)4.体系的简化: 空间结构 平面结构确定计算简图的原则:1.能反映实际结构的主要力学特性;2.分析计算尽可能简便§2 . 杆件结构的计算简图计算简图:在结构分析当中用来代替实际结构的计算模型(图形)简化内容: 1.杆件的简化: 杆件 杆件的轴线2.结点的简化: 刚结点 铰结点 半铰结点(组合结点)3.支座的简化: 固定铰支座 可动较支座 固定端支座 滑动支座(定向支座)4.体系的简化: 空间结构 平面结构5.荷载的简化: 集中力、集中力偶、分布荷载§3 . 杆件结构的类型1.梁2.拱3.桁架4.刚架5.组合结构第一章杆件体系的几何组成分析(Geometric construction analysis)§1. 几何组成分析本章假定:所有杆件均为刚体§1-1 基本概念一. 几何不变体系几何可变体系几何可变体系不能作为建筑结构结构必须是几何不变体系本章目的:判定一个体系是否能作为结构结构是如何构造的几何形状不能变化的平面物体几何不变体系的自由度一定等于零几何可变体系的自由度一定大于零§1. 几何组成分析§1-1 基本概念一. 几何不变体系几何可变体系二. 刚片几何形状不能变化的平面物体三. 自由度确定体系位置所需的独立坐标数四. 约束(联系) 能减少自由度的装置1. 链杆2. 单铰§1. 几何组成分析§1-1 基本概念一. 几何不变体系 几何可变体系二. 刚片 几何形状不能变化的平面物体 三. 自由度 确定体系位置所需的独立坐标数四. 约束(联系) 能减少自由度的装置1. 链杆 2. 单铰 3. 链杆与单铰的关系4. 虚铰3. 链杆与单铰的关系4. 虚铰§1. 几何组成分析2. 单铰 5. 复铰1. 链杆连接N 个刚片的复铰相当于N-1个单铰§1. 几何组成分析§1-1 基本概念一. 几何不变体系 几何可变体系二. 刚片 几何形状不能变化的平面物体 三. 自由度 确定体系位置所需的独立坐标数四. 约束(联系) 能减少自由度的装置五. 计算自由度0632=−×=W 02936=×−×=W 032333=−×−×=W§1. 几何组成分析五. 计算自由度0632=−×=W 08936=×−×=W 032333=−×−×=W 链杆数单铰数刚片数链杆数结点数−×−×=−×=232W W 计算自由度大于零一定可变;若等于零则一定不变吗§1. 几何组成分析五. 计算自由度链杆数单铰数刚片数链杆数结点数−×−×=−×=232W W 计算自由度大于零一定可变;若等于零则一定不变吗六. 多余约束 必要约束计算自由度小于零一定不变吗计算自由度小于零一定有多余约束§1. 几何组成分析§1-1 基本概念一. 几何不变体系几何可变体系二. 刚片三. 自由度四. 约束(联系) 链杆单铰复铰虚铰实铰五. 计算自由度六. 多余约束必要约束P N=构成无多余约束的几何不变体系构成无多余约束的几何不变体系.§1. 几何组成分析§1-2 无多余约束的几何不变体系的组成规则一. 三刚片规则二元体:在一个体系上用两个不共线的链杆连接一个新结点的装置.二. 两刚片规则在一个体系上加减二元体不影响原体系的机动性质.三. 二元体规则§1. 几何组成分析§1-1 基本概念§1-2 无多余约束的几何不变体系的组成规则§1-3 几何组成分析举例例1: 对图示体系作几何组成分析解: 三刚片三铰相连,三铰不共线,所以该体系为无多余约束的几何不变体系.§1. 几何组成分析§1-3 几何组成分析举例例2: 对图示体系作几何组成分析解:该体系为无多余约束的几何不变体系.方法1: 若基础与其它部分三杆相连,去掉基础只分析其它部分例3: 对图示体系作几何组成分析解: 该体系为无多余约束的几何不变体系.方法2: 利用规则将小刚片变成大刚片.例4: 对图示体系作几何组成分析解: 该体系为瞬变体系.方法3: 将只有两个铰与其它部分相连的刚片看成链杆.方法2: 利用规则将小刚片变成大刚片.例5:对图示体系作几何组成分析解: 该体系为常变体系.方法3: 将只有两个铰与其它部分相连的刚片看成链杆.方法2: 利用规则将小刚片变成大刚片.方法4: 去掉二元体.例6:对图示体系作几何组成分析解: 该体系为无多余约束几何不变体系.方法3: 将只有两个铰与其它部分相连的刚片看成链杆.方法2: 利用规则将小刚片变成大刚片.方法5: 从基础部分(几何不变部分)依次添加.方法4: 去掉二元体.例7: 对图示体系作几何组成分析方法3: 将只有两个铰与其它部分相连的刚片看成链杆.方法2: 利用规则将小刚片变成大刚片.方法5: 从基础部分(几何不变部分)依次添加.方法4: 去掉二元体.解: 该体系为有一个多余约束几何不变体系.练习: 对图示体系作几何组成分析方法3: 将只有两个铰与其它部分相连的刚片看成链杆.方法2: 利用规则将小刚片变成大刚片.方法5: 从基础部分(几何不变部分)依次添加.方法4: 去掉二元体.练习: 对图示体系作几何组成分析方法3: 将只有两个铰与其它部分相连的刚片看成链杆.方法2: 利用规则将小刚片变成大刚片.方法5: 从基础部分(几何不变部分)依次添加.方法4: 去掉二元体.方法1: 若基础与其它部分三杆相连,去掉基础只分析其它部分练习: 对图示体系作几何组成分析方法3: 将只有两个铰与其它部分相连的刚片看成链杆.方法2: 利用规则将小刚片变成大刚片.方法5: 从基础部分(几何不变部分)依次添加.方法4: 去掉二元体.几何组成思考题§几何组成分析的假定和目的是什麽?§何谓自由度?系统自由度与几何可变性有何联系?§不变体系有多余联系时,使其变成无多余联系几何不变体系是否唯一?§瞬变体系有何特点?可变体系时如何区分瞬变还是常变?§瞬铰和实际铰有何异同?§无多余联系几何不变体系组成规则各有什麽限制条件?不满足条件时可变性如何?§按组成规则建立结构有哪些组装格式?组装格式和受力分析有无联系?§如何确定计算自由度?§对体系进行组成分析的步骤如何?几何组成作业题§1-1 b c§1-2 a d g h i j k l §交作业时间:本周 5§1. 几何组成分析作业:1-1 (1-1 (b)b)试计算图示体系的计算自由度 解:由结果不能判定其是否能作为结构1321138−=−×−×=W 110222531−=−×−×+×=W 或:§1. 几何组成分析作业:1-1 (c)试计算图示体系的计算自由度解:由结果可判定其不能作为结构131216=−×=W 13240328=−×−×=W 或:§1. 几何组成分析作业:1-2 (a)试分析图示体系的几何组成从上到下依次去掉二元体或从基础开始依次加二元体.几何不变无多余约束§1. 几何组成分析作业:1-2 (d)试分析图示体系的几何组成依次去掉二元体.几何常变体系§1. 几何组成分析作业:1-2 (f)试分析图示体系的几何组成有一个多余约束的几何不变体系§1. 几何组成分析作业:1-2 (h)( i)试分析图示体系的几何组成瞬变体系几何不变无多余约束作业:试分析图示体系的几何组成有一个无穷远铰:四杆不平行不变平行且各自等长常变平行不等长瞬变§1. 几何组成分析作业:1-2 (j)试分析图示体系的几何组成瞬变体系§1. 几何组成分析L)试分析图示体系的几何组成1-2 (L)作业:1-2 (几何不变无多余约束§1. 几何组成分析例:试分析图示体系的几何组成瞬变体系§1. 几何组成分析练习:试分析图示体系的几何组成几何不变无多余约束一个单刚结点相当于三个约束.单刚结点与其它约束的关系:复刚结点:刚片复刚结点相当于练习:试分析图示体系的几何组成无多余约束几何不变体系有两个多余约束的几何不变体系练习:试分析图示体系的几何组成无多余约束几何不变体系无多余约束的几何不变体系。
哈尔滨工业大学 05 结构力学——平面有限元幻灯片PPT

哈工大 土木工程学院
11 / 59
第五章 平面问题有限元分析
4、两类座标系之间导数的变换关系
x
x
y
y
x
x
y
y
xx yyyx
哈工大 土木工程学院
12 / 59
第五章 平面问题有限元分析
由
ii 8 81 1 N N ii x xii ii 8 81 1 N N ii y yii y x
2、计算低阶母元形函数在新增结点处的值。
哈工大 土木工程学院
18 / 59
第五章 平面问题有限元分析
3、对低阶母元角顶结点形函数进行“它点为零” 的修正。
哈工大 土木工程学院
19 / 59
第五章 平面问题有限元分析
图形变换
位移场
哈工大 土木工程学院
20 / 59
第五章 平面问题有限元分析
1、6结点三角形等参元
利用母单元形函数和单元结点位移建立子单元的 位移场。
进而利用势能原理进行一定的数学推导,建立 等参元的单元刚度方程
哈工大 土木工程学院
3 / 59
第五章 平面问题有限元分析
5-5-1 基本概念
1、实际单元几何形状的描述-图形变换
以任意四边形为例来说明概念
4
3
4(x4,y4)
3(x3,y3)
1
1
11
第五章 平面问题有限元分析
哈尔滨工业大学 05 结构 力学——平面有限元幻灯
片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
结构力学ppt课件

目录
• 结构力学简介 • 结构力学的基本原理 • 结构分析的方法 • 结构力学的应用 • 结构力学的挑战与未来发展 • 结构力学案例分析
01
结构力学简介
什么是结构力学
01
结构力学是研究工程结构在各种外力作用下产生的响
应的一门学科。
02
它主要涉及结构的强度、刚度和稳定性等方面的分析
04
有限元法
有限元法是一种将结构分解为有限个小 的单元,并对每个单元进行力学分析的 方法。
有限元法具有适用范围广、精度较高等 优点,但也存在计算量大、需要较强的 计算机能力等缺点。
通过对所有单元的力学行为进行组合, 可以得到结构的整体力学行为。
它适用于对复杂结构进行分析,例如板 壳结构、三维实体等。
结构力学的历史与发展
结构力学起源于19世纪中叶,随着土木工程和机械工程的发展而逐渐形成。
早期的结构力学主。
目前,结构力学已经广泛应用于各个工程领域,包括建筑、桥梁、机械、航空航天等。同时,结构力学 的研究也在不断深入和发展,以适应各种复杂工程结构的需要。
案例一:桥梁的力学分析
总结词
桥梁结构是力学分析的重要案例,涉及到多种力学因素,包括静载、动载、应 力、应变等。
详细描述
桥梁的力学分析需要考虑多种因素,包括桥梁的跨度、桥墩的支撑方式、桥梁 的材料性质等。在分析过程中,需要建立力学模型,进行静载和动载测试,并 运用结构力学的基本原理进行优化设计。
案例二:航空发动机的力学设计
强度理论
01
强度理论是研究结构在外力作用下达到破坏时的强度条件的科学。
02
强度理论的基本方程包括最大正应力理论、最大剪切应力理论、形状改变比能 理论和最大拉应力理论,用于描述结构在不同外力作用下达到破坏时的条件。
结构力学(I)-结构静力分析篇-

正确区分基本结构和附属结构
熟练掌握单跨静定梁的绘制方法
哈工大 土木工程学院
10
第三章 静定结构受力分析
例题1
40kN/m 8m
120kN
K 2m 3m 3m
120kN
40kN/m
60kN
60kN
145kN
235kN
哈工大 土木工程学院
11
第三章 静定结构受力分析
M图(kN·m)
120
180 263
简支型
悬臂型
三铰型
由简单刚架可组成复杂的多层多跨的复合静定刚架 Nhomakorabea
哈工大 土木工程学院
18
第三章 静定结构受力分析
刚架的受力特点
从变形角度看,刚结各杆不发生相对转动 从受力角度看,刚结点承受和传递弯矩,因而弯
矩是它的主要内力
哈工大 土木工程学院
19
第三章 静定结构受力分析
刚架的反力计算
静定刚架计算原则上与计算静定梁相同。当刚 架与基础按两刚片规则连接时,支座只有三个 约束,易求; 当刚架与基础按三刚片规则连接时,支座将有 四个约束,除考虑整体平衡外,尚须取局部建 立一个补充方程; 当刚架按主从方式组成时,应循先附属部分, 后基本部分的计算顺序。
AD 跨最大正弯距: MAD18ql x2
B 处最大负弯距: M BD q(l2 x)x1 2qx 2
BC 跨最大正弯距: Mmax 1 8qlx2
由以上三处的弯矩整理得:
q(lx)x1q2x1qlx2
2 28
x0.17l 2 M 负 ma x 0.0 q28 lM 6正 max
哈工大 土木工程学院
7
哈工大版理论力学课件第一章静力学PPT精品课件

即受力图一定要画在分离体上。
2021/3/1
32
5、受力图上只画外力,不画内力。 一个力,属于外力还是内力,因研究对象的不同,有 可能不同。当物体系统拆开来分析时,原系统的部分 内力,就成为新研究对象的外力。
6 、同一系统的受力图必须整体与局部保持一致(包括符号) 相互协调,不能相互矛盾。 对于某一处的约束反力的方向一旦设定,在整体、局 部或单个物体的受力图上要与之保持一致。
F RF 1F 2
2021/3/1
9
推论2:三力平衡汇交定理 刚体受三力作用而平衡,若其中两力作用线汇交于一点,则 另一力的作用线必汇交于同一点,且三力的作用线共面。 (必共面,在特殊情况下,力在无穷远处汇交——平行力系)
证明:∵ F1,F2,F3为平衡力系,
∴ R ,F1 也为平衡力系。
F1
2、不要多画力
要注意力是物体之间的相互机械作用。因此对 于受力体所受的每一个力,都应能明确地指出 它是哪一个施力体施加的。
2021/3/1
31
3、不要画错力的方向 约束反力的方向必须严格地按照约束的类型来画,不 能单凭直观或根据主动力的方向来简单推想。在分析 两物体之间的作用力与反作用力时,要注意,作用力 的方向一旦确定,反作用力的方向一定要与之相反, 不要把箭头方向画错。
F A, xF A, yF Az
22
③ 固定端约束
限制所有自由度(所有的位移)。
2021/3/1
23
④球铰链 通过圆球和球壳将两个构件连接在一起的约束。
特点:球心不能有任何位移,但构件可绕球心任意转动。其约束
反力应是通过接触点与球心,但方向不能预先确定的一个空间法
向约20束21/力3/1 ,可用三个正交分力表示。
结构力学静定结构的受力分析课件

利用计算机辅助设计软件,如AutoCAD、Revit等,进行结构的优 化设计。
感谢您的观看
THANKS
01
拓扑优化
在给定荷载和约束条件下,寻求 最优的材料分布和结构形状,以 实现结构的轻量化和高效化。
02
03
04
形状优化
通过改变结构的形状,以实现结 构的性能提升和重量减轻。
计算机辅助优化设计
有限元分析
利用数学方法将结构离散化为有限个单元,通过对单元进行分析, 得到结构的整体性能。
最优化算法
利用最优化算法,如遗传算法、粒子群算法等,对结构进行自动优 化设计。
结构力学静定结构的受力 分析课件
目录
• 静定结构概述 • 静定结构的受力分析 • 静定结构的稳定性分析 • 静定结构的弹性分析 • 静定结构的强度分析 • 静定结构的优化设计
01
静定结构概述
定义与特点
定义
静定结构是指支座或结点位移不 引起内力,仅由外力作用而平衡 的结构。
特点
静定结构的内力只由外力决定, 与结点或支座的位移无关。因此, 静定结构不会有内力产生的次应 力,结构的安全性更高。
静定结构在承受外力时具有较好的稳定性, 因此对于需要承受较大荷载的工程结构,采 用静定结构是较为安全的选择。
02
静定结构的受力分析
力的平衡方程
静力平衡
静定结构在任意平衡位置都满足 力的平衡条件。
力的平衡方程
对于一个具有n个自由度的静定结 构,存在n个独立的力的平衡方程。
独立平衡方程
静定结构中与静力平衡条件对应的 独立方程。
用内力图表示结构内部各点的内 力情况。
03
静定结构的稳定性分析
结构力学静定结构受力分析PPT课件

4kN·m
4kN
8kN·m
2kN/m
3m
3m
(1)集中荷载作用下
3m
3m
(1)悬臂段分布荷载作用下
2kN·m
4kN·m
6kN·m
(2)集中力偶作用下
4kN·m
2kN·m
(3)叠加得弯矩图
4kN·m
(2)跨中集中力偶作用下
4kN·m
4kN·m
(3)叠加得弯矩图
6kN·m
4kN·m
4kN·m
第9页/共97页 2kN·m
反力求出后,进行附属部分的内力分析、画内力图,然后将支座 C 的反力反
向加在基本部分AC 的C 端作为荷载,再进行基本部分的内力分析和画内力图,
将两部分的弯矩图和剪力图分别相第连12即页得/共整97个页梁的弯矩图和剪力图 。
分析下列多跨连续梁结构几何构造关系,并确定内力计算顺序。
F
q
AB
CD
F
AB
例:利用叠加法求作图示梁结构的内力图。
[分析] 该梁为简支梁,弯矩控制截 面为:C、D、F、G 叠加法求作弯矩图的关键是 计算控制截面位置的弯矩值
解: (1)先计算支座反力
(2)求控制截面弯矩值
A
FP=8kN
q=4 kN/m
CD E
m=16kN.m B
FG
1m 1m 2m 2m 1m 1m
RA 17kN
m
ql
l
2
m 2
l
ql 2
Fpl 4
1、集中荷载作用点 M图有一尖角,荷载向 下尖角亦向下; FQ 图有一突变,荷载 向下突变亦向下。
m 2
2、集中力矩作用点 M图有一突变,力矩 为顺时针向下突变; FQ 图没有变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HARBIN INSTITUTE OF TECHNOLOGY
结构力学
土木工程学院
工程力学学科组
哈工大 土木工程学院
1 / 16
第二章 静定结构受力分析 §2-6 静定组合结构受力分析
哈工大 土木工程学院
2 / 16
第二章 静定结构受力分析
1、组合结构的构成
组合结构是由链杆和受弯构件混合组成的结构。
D
M
FQ
哈工大 土木工程学院
FN
8 / 16
第二章 静定结构受力分析
5) 影响下承式五角形组合屋架内力状态的重要因素:
• 高跨比 f
l
FNDE
M
0 C
f
• f1 ~ f2 的关系(保持 f 等于常数时考察弯矩)
当坡度减小时,上弦正弯矩增大, f1 =0 时为 下承式平行弦组合结构,上弦全部为负弯矩; 当坡度增大时,上弦负弯矩增大, f2 =0 时为 带拉杆的三铰斜屋架,上弦全部为正弯矩; f1 f2 0 时,最大弯矩介于两者之间。
计算由几何组成分析入手
弄清结构的几何组成顺序,以便确定计算的先 后次序;
通常是先求联系杆轴力,然后计算其它二力 杆轴力,最后计算梁杆内力。
哈工大 土木工程学院
4 / 16
第二章 静定结构受力分析
例、对图示组合结构进行受力分析
q
FAx
A
FAy
F
C
G
D
a
a
E
a
a
f1
B
f
f2
FBy
1) 求支反力
FAx 0 FAy FBy 2qa
哈工大 土木工程学院
9 / 16
第二章 静定结构受力分析
练习. 绘制结构内力图
50kN
D
C
E
3m
8m
A
B
44 m
哈工大 土木工程学院
10 / 16
第二章 静定结构受力分析
练习. 绘制结构内力图
FP
E D
F
D
E
F
a a
A
BA
B
C
a
a
C FP
a
a
哈工大 土木工程学院
End
11 / 16
结构的特点是一部分杆件是以受弯为主的杆件, 称梁式杆;一部分杆件抗弯刚度较小,与桁架杆 相似,称链杆,这样的杆起着加强梁式杆的作用
FP
零杆?
桁架结点?
哈工大 土木工程学院
3 / 16
第二章 静定结构受力分析
注意分清各种杆件的受力性能
链杆只受轴力,是二力杆; 梁式构件受弯、剪和轴力作用。 联系着两类杆件的结点与桁架结点应予区别; 若截面切在梁式杆上,将暴露三个未知力,故 为减少隔离体上未知力个数,应使截面通过受 弯杆的端铰。
3) 求其它杆内力
FNDA
a f2
FNDF FNDE
DFxΒιβλιοθήκη 0FNDA4qa f
a2
f
2 2
Fy 0
4qa2 FNDF f2 f
a2
f
2 2
哈工大 土木工程学院
7 / 16
第二章 静定结构受力分析
4) 绘制梁杆内力图 F
q 4qa2 f
C
A
2qa
qa(2 1 -4 f1 ) 2f
FNDF FNDA
哈工大 土木工程学院
5 / 16
第二章 静定结构受力分析
2) 求联系杆DE内力及C点约束力
q FCy I
F A
FAya D
C FCx G
FNDE
aI
E
a
a
f1
B
f
f2
MC 0
FNDE
4qa 2 f
Fx 0 Fy 0
FCx
4qa 2 f
FCy 0
哈工大 土木工程学院
6 / 16
第二章 静定结构受力分析