紫外可见分光光度法的原理及应用
UV-Vis原理及应用概述

lnT
微分后除以上式可得浓度的相对误差为:
C
C
T T lnT
当溶液的透光率为36.8%或吸光度为0.434时, 浓度的相对误差最小。
T值在65~20%或A值在0.2~0.7之间,浓度相对 误差较小,是测量的适宜范围。
§3 分析条件的选择
仪器测量条件的选择 显色反应条件的选择 参比溶液的选择
A 分子中电子能级、振动能级和转动能级示意图
2. 电子跃迁主要类型
按照价电子性质不同讨论不同的紫外-可 见吸收光谱。 以甲醛分子为例: 存在σ电子,π电子,n(p)电子。
分子轨道理论:
σ成键轨道< π成键轨道< n 非键轨道<π*反键轨道<σ*反键 轨道
分子中外层电子能级及跃迁类型示意图
2.1 σ→σ*跃迁
1. 仪器测量条件的选择
1.1 适宜的吸光度范围
即当A=0.434时,吸光度测量误差最小。 最适宜的测量范围为0.2~0.7之间。
1.2 入射光波长的选择
通常是根据被测组分的吸收光谱,选择最 强吸收带的最大吸收波长(λmax )为入射波 长。当最强吸收峰的峰形比较尖锐时,往往 选用吸收稍低,峰形稍平坦的次强峰进行测 定。
1.3 狭缝宽度的选择
为了选择合适的狭缝宽度,应以减少狭缝 宽度时试样的吸光度不再增加为准。一般来 说,狭缝宽度大约是试样吸收峰半宽度的十 分之一。
2. 显色反应条件的选择
可见分光光度法一般用来测定能吸收可见光 的有色溶液。对某些无色或浅色物质进行测 定,常利用显色反应将被测组分转变为在可 见波长范围有吸收的物质。常见的显色反应 有配位反应、氧化还原反应等。
测定试样溶液的吸光度,需先用参比溶液调 节T为100% (A为0) ,以消除其它成分及 吸收池和溶剂等对光的反射和吸收带来的测 定误差。
紫外可见分光光度法在食品检测中的应用

工作中直线经常发生弯曲,这称为朗伯-比
尔定律旳偏离。
原因:
吸光物质浓度较高;非单色光引起;介质
不均匀引起;吸光物质不稳定引起。
摩尔吸收系数ε:
1mol/L浓度旳溶液,液层厚度为1cm时旳吸
收度。
强吸收:ε>104;
中档强度吸收:102 < ε < 104;
度。(吸收池厚度为10.0mm)。
c.
4、紫外-可见分光光度计旳构成、类型和使用
(1)构成:光源、单色器、吸收池、检测器、
信号处理器、显示屏
可见光源:碘钨灯、钨灯:320-2500nm
紫外光源:氢灯、氘灯、汞灯:150-400nm
玻璃吸收池:仅用于可见光区
石英池:可用于紫外光区和可见光区
选择原则:
能完全溶解样品;
在所用旳波长范围内有很好旳透光性;
纯度为“光谱纯”或经检验其空白符合要求。
处理措施:
蒸馏水煮沸清除气泡;
乙醇清除醛类、苯等杂质;
环己烷、正己烷清除苯;
氯仿预防光和空气破坏;
乙醚清除过氧化物;
烃类吸附除杂
(3)参比溶液旳选择
1). 溶剂参比:试样构成简朴、共存组份少(基体
注意事项:
粗酶液制备时根据目旳酶旳性质选择缓冲液、温度、
时间等条件;
酶和底物旳反应条件也要恰当;
一般以检测产物变化量居多。
二、紫外-可见分光光度法
在食品检测中旳应用
(一)、食品酶分析
1、-半乳糖苷酶(乳糖酶)
以ONPG(邻硝基苯β-D-半乳吡喃糖苷)为
底物测定-半乳糖苷酶活力。
紫外可见分光光度法

光子能量与它的频率成正比,与波长成 反比,与光强度无关。光的波长越短
(频率越高),其能量越大。
单色光: 同一波长的光称为单色光; 复合光: 不同波长的光组成的光称为复合光; 可见光: 凡是被肉眼感受到的光称为可见光; 波长范围为400-780nm
复合光
单色光
物质颜色的产生
固体
反射蓝色光 吸收黄色光
互补色
液体
透过紫色光 吸收绿色光
二、 物质对光的选择性吸收
M + h 基态 E0 (△E) M* 激发态 E1
E1
激发态
E2
E = E1 - E0 = h =h c/λ λ=hc/ E
物质对光选择性吸收
E0
基态
E
例题
某分子中两个电子能级之间的能级差为1eV, 若要电子在两个能级之间发生跃迁,需要
是指分子中的一些带有非成键电子对的基团本身在紫外-可 见光区不产生吸收,但是当它与生色团连接后,增强生色团的 生色能力,使生色团的吸收带向长波移动,且吸收强度增大。 助色团为含有未共用电子对的杂原子基团:-OH、-Cl、-Br
C.红移与蓝移
有机化合物的吸收谱带常
常因引入取代基或改变溶剂使
最大吸收波长λmax和吸收强度 发生变化:
π→π*跃迁的λmax为170nm 。
(4)n→π*跃迁:分子中孤对电子和π键同 时存在时发生n→π* 跃迁。丙酮n→π* 跃迁的λmax为275nm。
(5)电荷迁移跃迁:分子本身具有电子给予
体和电子接受部分,外来辐射照射,电子从
具有给予体特性的部分转移到具有电子接受
体特性的部分所发生的跃迁。其谱带较宽,
思考
1、庚烷、环己烷等烷烃在200-400nm内有无吸收?
第十章 紫外可见分光光度法

如果用△ E电子,△ E振动以及△E转动表示各能级 差,则:
E电 E振 E转
能级差 E h h c
由分子中的电子能级、振动能级和转动能级跃迁产 生的光谱称分子吸收光谱。
2.分子吸收光谱的分类: 分子内运动涉及电子能级、振动能级和转动
能级三种跃迁能级,
E电 E振 E转
对应的波谱区范围如下:
吸收曲线与最大吸收波长 max
①同一种物质对不同波长光的吸光度 不同。如KMnO4在400nm吸收少, 在525nm吸收最大,吸光度最大处 对应的波长称为最大吸收波长λmax ②不同浓度的同一种物质,其吸收曲 线形状相似,λmax不变。而对于不同 物质,它们的吸收曲线形状和λmax 则不同。 ③吸收曲线可以提供物质的结构信息,
电子的基团。 例: C=C;C=O;C=N;—N=N— 注:当出现几个生色团共轭,则几个生色团所产生的
吸收带将消失,代之出现新的共轭吸收带,其波 长将比单个生色团的吸收波长长,强度也增强。
下面为某些常见生色团的吸收光谱
生色团 烯 炔 羧基 酰胺基 羰基 偶氮基 硝基 亚硝基 硝酸酯
溶剂 正庚烷 正庚烷 乙醇 水 正己烷 乙醇 异辛酯 乙醚
称最小吸收波长(λmin) 。
3.肩峰:在一个吸收峰旁边 产生的一个曲折。 4.末端吸收:只在图谱短波 呈现强吸收而不成峰形的
部分。
5. 生色团
所谓生色团,是指有机化合物分子结构中含有p -
p*和n-p*中跃迁的基团,即能在紫外-可见光范围内产 生吸收的原子团。 对有机化合物:主要为具有不饱和键和未成对
概述
一、紫外-可见分光光度法:是研究物质在紫外可见光区(200 ~ 800 nm)分子吸收光谱的分析方 法。
可见光区 400~760nm;紫外光区200~400nm。 二.紫外—可见分光光度法的特点 (1)灵敏度较高:灵敏度可达10-5~10-7g/mL (2)选择性较好:多组分共存溶液中,无需化学
紫外可见分光光度计范围

紫外可见分光光度计范围紫外可见分光光度计是一种常用的光谱分析仪器,用于测量物质在紫外可见光波段的吸收和透过性质。
它能够提供物质吸收光谱的信息,帮助我们了解物质的组成和结构。
本文将介绍紫外可见分光光度计的基本原理、应用范围以及其在科学研究和工业生产中的重要意义。
一、紫外可见分光光度计的基本原理紫外可见分光光度计的基本原理是利用物质对特定波长光的吸收和透过性质来测量其浓度或含量。
它通过光源产生的连续光束,经过样品后,被光电传感器接收并转换为电信号。
根据样品的吸收特性,我们可以得到样品的吸光度,从而推算出其浓度或含量。
二、紫外可见分光光度计的应用范围紫外可见分光光度计广泛应用于医药、化学、生物、环境科学等领域。
它可以用于测定药品的纯度和含量,监测水质和空气质量,分析生物样品中的成分等。
以下是几个具体的应用范例:1.药物分析:紫外可见分光光度计可用于测定药物的纯度、含量和稳定性。
通过测量药物在特定波长下的吸收光谱,我们可以判断药物的质量,并及时调整生产工艺,确保药品的安全性和有效性。
2.环境监测:紫外可见分光光度计可用于监测水体和大气中的污染物含量。
例如,我们可以通过测量水体中溶解有机物的吸光度来评估水质状况,或者通过测量大气中气体的吸光度来监测空气污染物的浓度。
3.生物分析:紫外可见分光光度计可用于测定生物样品中的蛋白质、核酸和其他生物分子的浓度。
通过测量这些分子在紫外可见光波段的吸收光谱,我们可以了解其结构和功能,并进一步研究生物过程和疾病机制。
4.食品安全:紫外可见分光光度计可用于检测食品中的添加剂、污染物和有害物质。
例如,我们可以通过测量食品中色素的吸光度来判断其是否合格,或者通过测量食品中残留农药的吸光度来评估其安全性。
三、紫外可见分光光度计的重要意义紫外可见分光光度计在科学研究和工业生产中具有重要的意义。
它不仅为我们提供了分析物质的工具,还为我们研究物质的性质和反应机制提供了重要的信息。
以下是紫外可见分光光度计的几个重要意义:1.质量控制:紫外可见分光光度计可以用于药品、食品、化妆品等产品的质量控制。
紫外可见分光光度法的应用现状及发展

紫外可见分光光度法的应用现状及发展紫外可见分光光度法是一种常用的分析技术,广泛应用于化学、生物、环境等领域。
本文将深入探讨紫外可见分光光度法的应用现状以及未来的发展趋势。
一、紫外可见分光光度法的基本原理紫外可见分光光度法基于物质对可见光和紫外光的吸收特性进行分析。
它利用紫外可见分光光度计,将样品溶液或气体暴露于特定波长的光源下,测量经过样品后的光强变化,从而得出样品的吸光度值。
吸光度值与样品中被测试化合物的浓度成正比,可以通过比较吸光度值与标准曲线来确定样品中的化合物浓度。
二、紫外可见分光光度法在化学分析中的应用1. 无机化学分析:紫外可见分光光度法广泛应用于金属离子的测定、配位化合物稳定常数的测定等方面。
通过测量在一定波长下溶液中金属离子的吸光度,可以确定金属离子的含量。
2. 有机化学分析:紫外可见分光光度法在有机化合物的分析中也有重要应用。
可以用来测定有机色素的含量、有机酸的浓度等。
紫外可见分光光度法还可以用于有机物质的结构表征和质量控制分析。
3. 药物分析:药物分析常常依赖于紫外可见分光光度法,用于药物的含量测定、药物溶解度的研究、药代动力学的研究等。
紫外可见分光光度法具有快速、准确、灵敏度高等优点,对于药物分析具有重要意义。
4. 环境监测:紫外可见分光光度法在环境监测中也发挥了重要作用。
可以用来检测水质中各种有害物质的浓度,如重金属离子、有机污染物等。
紫外可见分光光度法还可以用于大气污染物的检测、土壤分析等。
三、紫外可见分光光度法的发展趋势1. 多重检测器的应用:为了提高紫外可见分光光度法的分析灵敏度和选择性,将多重检测器(如二极管阵列检测器)引入紫外可见分光光度法成为一种趋势。
多重检测器可以同时检测多个波长的吸光度信号,提高分析效率和准确性。
2. 微流控技术的应用:微流控技术结合紫外可见分光光度法可以实现样品预处理、反应和测量的集成,提高分析速度和样品处理容量。
3. 转向纳米材料的应用:纳米材料具有较大的比表面积和特殊的光学性质,可以用于增强样品的信号强度,提高分析的灵敏度。
紫外可见分光光度法在化学分析中的应用

紫外可见分光光度法在化学分析中的应用概述紫外可见分光光度法(UV-Vis)是一种重要的分析技术,广泛应用于化学分析领域。
通过测量物质在紫外和可见光区域的吸收和透射特性,可以得到目标物质的浓度、纯度以及反应动力学等相关信息。
本文将从理论背景、仪器原理、应用实例等方面探讨紫外可见分光光度法在化学分析中的应用。
一、理论背景紫外可见分光光度法基于光与物质相互作用的原理。
物质会吸收特定波长的光线,吸收光线的强度与物质的浓度成正比关系。
当物质溶液中有多种物质存在时,它们的光线吸收能力会相互影响,因此需要进行光谱分离和定量。
二、仪器原理紫外可见分光光度法的仪器主要由光源、光解析系统和光度计三部分组成。
1. 光源:常用光源包括汞灯、氘灯、钨灯等。
它们能发出紫外和可见光,提供光照射样品的能量。
2. 光解析系统:该部分包括进光设备(光栅、光纤等)和出光设备(单色器、滤光片等)。
进光设备用于区分不同波长的入射光,而出光设备用于选择特定波长的光作为检测信号。
3. 光度计:光度计是紫外可见分光光度法的核心组件,用于测量样品的吸收光强度。
常见的光度计包括双光束光度计和单光束光度计。
三、应用实例1. 离子浓度测定:紫外可见分光光度法常被用于测定溶液中金属离子的浓度。
通过比较标准曲线,可以确定待测溶液中金属离子的浓度,如钙、镁、铁等。
2. 有机物定量分析:紫外可见分光光度法在有机物定量分析中也得到广泛应用。
例如,通过测量有机物溶液的吸光度,可以确定有机物的浓度,如蛋白质浓度的测定、核酸浓度的测定等。
3. 反应动力学研究:紫外可见分光光度法可以用于研究化学反应的动力学过程。
通过测量反应溶液中吸光度的变化,可以获得反应速率常数等相关参数。
4. 药物分析:药物分析中,紫外可见分光光度法常被用于测定药物的含量和纯度。
通过把目标药物与特定试剂反应后,测量光谱吸光度的变化,可以计算出药物的含量和纯度。
四、优势与前景紫外可见分光光度法具有分析简便、操作方便、灵敏度高等优点,因此在化学分析中得到了广泛应用。
紫外-可见分光光度法 标准曲线相关系数 小木虫

紫外-可见分光光度法是一种广泛应用的分析化学技术,它通过测量物质在紫外-可见光波段的吸收或透射来确定样品中特定物质的浓度。
该方法具有灵敏度高、分辨率好、操作简便等优点,在化学、生物化学、环境监测等领域都有着重要的应用价值。
一、紫外-可见分光光度法的原理紫外-可见分光光度法是利用物质对紫外-可见光的吸收或透射特性来进行定量分析的一种方法。
当紫外-可见光照射到物质上时,如果物质吸收了部分光能,则其吸收的光强与物质浓度成正比。
根据比尔定律,可以得到吸光度与浓度的线性关系:A = εlc其中A为吸光度,ε为摩尔吸光系数,l为光程,c为物质浓度。
通过建立标准曲线,测定样品的吸光度,并根据标准曲线确定样品中特定物质的浓度。
二、标准曲线的建立标准曲线是指在已知条件下,一系列不同浓度物质对应的吸光度值所构成的曲线。
标准曲线的建立通常需要进行以下步骤:1.准备一系列不同浓度的标准溶液,通常从低浓度到高浓度逐渐增加;2.分别测定各标准溶液的吸光度,并绘制吸光度-浓度曲线;3.通过线性回归等方法,拟合出标准曲线的方程,确定吸光度与浓度的线性关系。
三、标准曲线相关系数标准曲线相关系数是用来评价标准曲线拟合程度的指标。
相关系数越接近1,表示拟合效果越好,曲线与实际数据的吻合程度越高;而相关系数接近0,则表示拟合效果较差,曲线与实际数据的吻合程度较低。
在紫外-可见分光光度法中,标准曲线相关系数的计算通常是依靠计算吸光度与浓度的线性回归方程的确定系数R^2来实现。
R^2的取值范围在0~1之间,越接近1表示拟合效果越好,常用于评价标准曲线的可靠性和稳定性。
四、标准曲线相关系数的影响因素标准曲线相关系数的大小受多种因素影响,包括仪器精度、操作技术、环境条件等。
其中,标准曲线的线性范围和斜率对其相关系数影响较大。
线性范围如果选择不当,可能导致数据偏离线性区域,造成拟合效果不佳;而斜率的大小则直接影响到吸光度与浓度的线性关系,进而影响相关系数的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
紫外吸收光谱:200 ~ 400 nm 可见吸收光谱:400 ~ 800 nm
两者都属电子光谱:分子吸收紫外辐射能后引起 价电子跃迁所产生的。只是所用光源波段不同。
σ电子
价电子 π电子
n电子
紫外光谱法与可见分光光度法和红外光谱法统称 分子吸收光谱法。
一、分子吸收光谱 1.分子吸收光谱的产生—由能级间的跃迁引起
一切物质都会对可见和不可见光中的某些波长的光进 行吸收。
物质呈现各种各样颜色,就是它们对可见光 中某些特定波长的光线选择吸收的结果。
物质对光的选择性吸收
●物质的颜色由物质与光的相互作用方式决定。 ●人眼能感觉到的光称可见光,波长范围是:400~760nm。 ●让白光通过棱镜,能色散出红、橙、黄、绿、蓝、紫等各色光。 ●单色光:单一波长的光 ●复合光:由不同波长的光组合而成的光,如白光。 ●光的互补:若两种不同颜色的单色光按一定比例混合得到白光,
E分 E电 E振 E转
能级差 E h h c
能级:电子能级、振动能级、转动能级 跃迁:电子受激发,从低能级转移到高
能级的过程
❖分子选择性地吸收一定波长的光,从能量较低状 态跃迁到较高状态,使得透过的光谱中这些波长 光的强度减弱,这种光谱即称为分子吸收光谱。
❖Δ E 的大小是由物质的分子结构决定的,不同的 分子结构,Δ E 是不同的,吸收光的波长不同, 反映物质分子的结构不同,所以研究物质的分子 吸收光谱可以提供物质的分子结构的信息。
比耳定律实验
当一束平行的单色光通过液层厚度一定的溶液时,在入射光波长、
强度和溶液温度等不变时,吸光度A与溶液浓度 c 关系:A=k c
朗伯定律实验
当一束平行的单色光通过浓度一定的溶液时,在入射光波长、强度
和溶液温度等不变时,吸光度A与液层厚度L(b)关系:A=k L
1 3
1 2
2
λ 1、吸收峰 2、谷 3、肩峰 4、末端吸收
图2 紫外吸收光谱图
4、光的吸收定律
朗伯(Lambert)和比尔(Beer)分别于1760年和1852年研究吸 光度A与溶液厚度L和其浓度C的定量关系:
朗伯定律: 比尔定律:
A=k1 ×L A=k1 ×C
朗伯-比尔定律: A=k C L 液层
紫外-可见分光光度法的原理及应用
(Ultraviolet-Visible Spectrophotometry)
1. 紫外-可见吸收光谱法的基本原理 2. 紫外-可见分光光度计 3. 紫外-可见吸收光谱法的应用
紫外-可见分光光度法的原理
物质对光的选择吸收
当一束光照射到某种物质的固态物或溶液上时,一部 分光会被吸收或被反射,不同的物质对于照射它们的光束 的吸收程度是不同的,对某个波长的光吸收强烈,对另外 波长的光吸收很小或不吸收,我们把这种现象称为光的选 择吸收。
2.分子吸收光谱的分类:
分子吸收光谱涉及三种跃迁能级,所需能量大小顺序
E电 E振 E转
E电 1 ~ 20ev 0.06 ~ 1.25m 紫外 可见吸收光谱 E振 0.05 ~ 1ev 25 ~ 1.25m 红外吸收光谱 E转 0.005 ~ 0.05ev 250 ~ 25m 远红外吸收光谱
用经过分光后的不同波长的光依次透过该物质,通过测 量物质对不同波长的光的吸收程度(吸光度),以波长为横 坐标,吸光度为纵坐标作图,就可以得到该物质在测量波长 范围内的吸收曲线。这种曲线体现了物质对不同波长的光的 吸收能力,称为吸收光谱。
吸收光谱
透射光 检测器
入射光 不同波长光
紫外-可见分光光度法的原理
称这两种单色光为互补色光,这种现象称为光的互补。
物质颜色和吸收光颜色的关系
物质颜色
黄绿 黄 橙 红
紫红 紫 蓝
绿蓝 蓝绿
吸
颜
色
紫 蓝 绿蓝 蓝绿 绿 黄绿 黄 绿 红
收 波
光 长(nm) 490 ~ 500 500 ~ 560 560 ~ 580 580 ~ 600 600 ~ 650 650 ~ 750
物质的颜色:是由于物质对不同波长的光具有选择性吸收而产生。 即物质的颜色是它所吸收光的互补色。
物质的本色
无色溶液:透过所有颜色的光 有色溶液:透过光的颜色 黑色: 吸收所有颜色的光 白色: 反射所有颜色的光
紫外-可见分光光度法的原理
物质的结构决定了物质在吸收光时只能吸收某些特定波 长的光。我们可以利用测量物质对某种波长的光的吸收来了 解物质的结构特性。
3.紫外-可见吸收光谱的产生 由于每个电子能级上耦合有许多的振-转能级,所以处
于紫外-可见光区的电子跃迁而产生的吸收光谱具有 “带状吸收” 的特点。
图1 分子中的电子(S)、振动(V)、转动(J)能级示意图
吸收光谱:又称吸收曲线,是以波长λ(nm)为横 坐标,以吸光度A为纵坐标所绘制的曲线。
A 4
紫外-可见分光光度法是利用物质对光的吸收光谱,对 物质进行定性分析或定量分析的方法。按所吸收光的波长 区域不同,分为紫外分光光度法和可见分光光度法,合称 为紫外-可见分光光度法。
波长
0.01nm 0.1nm 200nm
800nm 10µm 500µm 400nm 2.5µm 25µm
1cm 1m
光谱 区域
厚度
一束平行单色光通过吸系光数一均匀浓度、非散射的吸光物质溶液时,在入
射光的波长、强度以及溶液温度等保持不变时,该溶液的吸光度A
与其浓度C及液层厚度L的乘积成正比。
注意! 适用范围
①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。 ③吸光度A具有加和性。Aa+b+c= Aa + Ab + Ac
γ 射线
χ 射线
紫外光
可 见 光
红外光
微波
无线电波
分析 方法
γ 射线光谱法
χ 射线 光谱法
紫外分 光光度法
分光 光度
法
红外光谱法
核磁共振 微波光谱法 光谱法
基于物质对200-800 nm光谱区辐射的吸收特性建立起 来的分析测定方法称为紫外-可见吸收光谱法或紫外可见分光光度法。它具有如下特点: 1. 灵敏度高。可以测定10-7~10-4g·mL-1的微量组分。 2. 准确度较高。其相对误差一般在1%-5%之内。 3. 仪器价格较低,操作简便、快速。 4. 应用范围广。