物理光学 学习课件
合集下载
2024版物理光学ppt课件

产生条件
光波通过偏振片或反射、 折射等过程。
应用举例
偏振片的应用、偏振光的 干涉等。
光的波动理论
光的波动说
认为光是一种波动的ห้องสมุดไป่ตู้ 质,具有干涉、衍射等
波动特性。
光的电磁理论
认为光是一种电磁波, 具有电场和磁场交替变
化的特点。
光的量子理论
认为光是由一份份能量 子组成的,即光子,具
有粒子性。
光的波粒二象性
光学仪器的主要性能指标及其评价方法,包括分辨率、放大率、视 场、像质等。
光学仪器的使用与维护
光学仪器的正确使用方法、保养维护及故障排除技巧。
04 光的量子性质
光的粒子性表现
光的直线传播 光在同种均匀介质中沿直线传播,这是光的粒子性的表现 之一。
光的反射和折射
光在传播过程中遇到不同介质的分界面时,会发生反射和 折射现象,这些现象也可以用光的粒子性来解释。
光的散射
当光通过不均匀介质时,部分光束将偏离原来方向而分散 传播,从侧面看到光亮的物体,这种现象称为光的散射, 也是光的粒子性的一种表现。
光电效应实验
• 实验原理:光电效应是指光照射到物质表面时,引起物质电性质发生变化的现象。爱因斯坦提出了著名的光电 效应方程,成功地解释了光电效应现象。
• 实验装置:光电效应实验装置包括光源、滤光片、光电管、微电流计和电源等部分。 • 实验步骤:首先选择合适的光源和滤光片,调整光源和光电管之间的距离和角度,使光束能够照射到光电管的
05 现代光学技术
激光技术及应用
激光产生原理
介绍激光产生的物理过程,包括粒子数反转、受激辐射等概念。
激光器种类
列举不同类型的激光器,如气体激光器、固体激光器、半导体激 光器等,并简述其工作原理和应用领域。
《初中物理光学》课件

光电效应与爱因斯坦方程
光电效应
当光照射到物质上时,会使得物质吸收光能并释放出电子,这种现象被称为光 电效应。
爱因斯坦方程
为了解释光电效应的实验结果,爱因斯坦在1905年提出了一个方程,即爱因斯 坦方程。该方程描述了光子的能量、频率与逸出电子的动能之间的关系,从而 成功地解释了光电效应现象。
康普顿效应与德布罗意波
光通过一个小缝隙时,会在屏幕上形成衍射条纹,这是光波绕过 小障碍物继续传播的结果。
光的栅衍射
光通过多个等间距的小缝隙时,会在屏幕上形成衍射条纹,这是 多个单缝衍射的叠加。
圆盘衍射
光通过一个小圆盘时,会在屏幕上形成衍射环,这是光波绕过大 障碍物继续传播的结果。
光的偏振现象
偏振光的产生
光在某些物质表面反射或折射时,会产生偏振光, 即光的振动方向只限于某一特定方向。
当光垂直射入介质表面时,传播方向不改 变。
折射光线和入射光线分居法线两侧。
当光从空气斜射入水或其他介质中时,折 射角小于入射角;反之,折射角大于入射 角。
03 透镜及其应用
透镜的种类与性质
凸透镜
中间厚,边缘薄,对光线有会聚作 用。
凹透镜
中间薄,边缘厚,对光线有发散作 用。
透镜成像规律
凸透镜成像规律
远视眼的成因与矫正 远视眼是由于晶状体太薄或眼球前后径过短,使 得近处物体的像成在视网膜后,需要用凸透镜矫 正。
显微镜与望远镜
显微镜的构造与原理
包括物镜、目镜、载物台等部分,利用凸透镜成像规律放大微小物体。
望远镜的构造与原理
包括物镜、目镜、寻星镜等部分,利用凸透镜和凹透镜的组合观察远处物体。
显微镜与望远镜的使用方法和注意事项
马吕斯定律
《高三物理光学》课件

高三物理光学
• 光的性质 • 光的折射与反射 • 光学仪器 • 光的干涉与衍射 • 光的辐射与吸收 • 光学实验与探究
目录
01
光的性质
光的波动性
光的干涉
当两束或多束相干光波在空间某 一点叠加时,光强并不是简单叠 加,而是出现加强或减弱的现象 ,这种现象称为光的干涉。
光的衍射
光绕过障碍物继续传播的现象称 为光的衍射。衍射时,光波的强 度在障碍物的边缘附近出现加强 或减弱的现象。
06
光学实验与探究
光的干涉实验
干涉现象
干涉条件
光的干涉是指两束或多束相干光波在 空间某些区域相遇时,相互叠加产生 明暗相间的干涉条纹的现象。
要产生光的干涉现象,需要满足相干 光源、相同波长、相同方向和相同振 动情况等条件。
双缝干涉实验
通过双缝干涉实验可以观察到明暗相 间的干涉条纹,从而验证光的波动性 质。
光谱吸收
不同波长的光被不同介质吸收的程度不同,这种现象称为光谱吸收。通过研究光 谱吸收,可以了解介质对不同波长光的吸收特性,进而应用于光学仪器、光谱分 析等领域。
光的散射
光的散射现象
光在传播过程中,遇到微小颗粒或气 体分子时,会发生散射现象。散射现 象是造成天空呈蓝色的原因之一。
米氏-摩雷森散射
当光源发出的光波长较长时,散射程 度与波长的四次方成反比,这种现象 称为米氏-摩雷森散射。在气象学、环 保等领域,米氏-摩雷森散射理论有重 要应用。
光的衍射实验
衍射现象
光的衍射是指光在传播过程中遇到障碍物或孔洞时,发生偏离直 线传播的现象。
单缝衍射实验
通过单缝衍射实验可以观察到明暗相间的衍射条纹,从而验证光的 波动性质。
衍射条件
要产生光的衍射现象,需要满足障碍物或孔洞的大小与光的波长相 当或更小。
• 光的性质 • 光的折射与反射 • 光学仪器 • 光的干涉与衍射 • 光的辐射与吸收 • 光学实验与探究
目录
01
光的性质
光的波动性
光的干涉
当两束或多束相干光波在空间某 一点叠加时,光强并不是简单叠 加,而是出现加强或减弱的现象 ,这种现象称为光的干涉。
光的衍射
光绕过障碍物继续传播的现象称 为光的衍射。衍射时,光波的强 度在障碍物的边缘附近出现加强 或减弱的现象。
06
光学实验与探究
光的干涉实验
干涉现象
干涉条件
光的干涉是指两束或多束相干光波在 空间某些区域相遇时,相互叠加产生 明暗相间的干涉条纹的现象。
要产生光的干涉现象,需要满足相干 光源、相同波长、相同方向和相同振 动情况等条件。
双缝干涉实验
通过双缝干涉实验可以观察到明暗相 间的干涉条纹,从而验证光的波动性 质。
光谱吸收
不同波长的光被不同介质吸收的程度不同,这种现象称为光谱吸收。通过研究光 谱吸收,可以了解介质对不同波长光的吸收特性,进而应用于光学仪器、光谱分 析等领域。
光的散射
光的散射现象
光在传播过程中,遇到微小颗粒或气 体分子时,会发生散射现象。散射现 象是造成天空呈蓝色的原因之一。
米氏-摩雷森散射
当光源发出的光波长较长时,散射程 度与波长的四次方成反比,这种现象 称为米氏-摩雷森散射。在气象学、环 保等领域,米氏-摩雷森散射理论有重 要应用。
光的衍射实验
衍射现象
光的衍射是指光在传播过程中遇到障碍物或孔洞时,发生偏离直 线传播的现象。
单缝衍射实验
通过单缝衍射实验可以观察到明暗相间的衍射条纹,从而验证光的 波动性质。
衍射条件
要产生光的衍射现象,需要满足障碍物或孔洞的大小与光的波长相 当或更小。
物理光学PPT课件

• 例:
• 在可见光范围内,一般的光学玻璃,吸收都很小且不随波长而变, 它就是一般吸收。而有色玻璃则是在可见光范围内具有选择吸收 的媒质。例如,“红”玻璃是对红色微弱地吸收,而对绿色,蓝 色 及 紫 色 光 显 著 吸 收 的 玻第璃3页。/共若1有9页一 束 白 光 通 过 这 片 玻 璃 , 就 只
而变。散射光强度随波长而变的关系已不是与成反
比了,而是与波长较低级次成反比,因此散射光强
度与波长的关系就不很显著。与小质点的情况相比,
散射光颜色与入射光较相近,是白色而不是蓝色,
而散射光的偏振度也随增加而减小,式中r是散射粒
子的线度,是入射光的波长。而散射光强度的角分
布随的变化则更为显著,当散射粒子的线度与光波
• 吸收和气体的压力、温度、密度等均有密切的关系, 一般是气体密度愈大,它对光的吸收也就愈严重。 在实际工作中应考虑上述因素对吸收的影响,例如 在激光通讯中,讨论大气对激光束的吸收时,就要 考虑这些问题。 第11页/共19页
5-2-6 固体和液体的吸收
• 固体和液体(包括染料溶液)对光吸收的特点,主要是具有很宽的 吸收带(即吸收系数随波长变化的曲线比较平滑),当然也有吸收 带很窄的物质。
dI adl I
l 0 I I0
I I0ea1
l
1 a
I I0 I0 e 2.72
第2页/共19页
§5-2 介质的吸收与色散
• 一般吸收:有些媒质,在一定波长范围内,吸收系数不 随波长而变(严格说来是随波长的变化可以忽略不计), 这种吸收就称为一般吸收。
• 选择吸收:有些媒质,在一定波长范围内,吸收系数随 波长而变,这种吸收就称为选择吸收。
d
• 在实际工作中,选用光学材料时应注意其色散的大小,例如,同样
• 在可见光范围内,一般的光学玻璃,吸收都很小且不随波长而变, 它就是一般吸收。而有色玻璃则是在可见光范围内具有选择吸收 的媒质。例如,“红”玻璃是对红色微弱地吸收,而对绿色,蓝 色 及 紫 色 光 显 著 吸 收 的 玻第璃3页。/共若1有9页一 束 白 光 通 过 这 片 玻 璃 , 就 只
而变。散射光强度随波长而变的关系已不是与成反
比了,而是与波长较低级次成反比,因此散射光强
度与波长的关系就不很显著。与小质点的情况相比,
散射光颜色与入射光较相近,是白色而不是蓝色,
而散射光的偏振度也随增加而减小,式中r是散射粒
子的线度,是入射光的波长。而散射光强度的角分
布随的变化则更为显著,当散射粒子的线度与光波
• 吸收和气体的压力、温度、密度等均有密切的关系, 一般是气体密度愈大,它对光的吸收也就愈严重。 在实际工作中应考虑上述因素对吸收的影响,例如 在激光通讯中,讨论大气对激光束的吸收时,就要 考虑这些问题。 第11页/共19页
5-2-6 固体和液体的吸收
• 固体和液体(包括染料溶液)对光吸收的特点,主要是具有很宽的 吸收带(即吸收系数随波长变化的曲线比较平滑),当然也有吸收 带很窄的物质。
dI adl I
l 0 I I0
I I0ea1
l
1 a
I I0 I0 e 2.72
第2页/共19页
§5-2 介质的吸收与色散
• 一般吸收:有些媒质,在一定波长范围内,吸收系数不 随波长而变(严格说来是随波长的变化可以忽略不计), 这种吸收就称为一般吸收。
• 选择吸收:有些媒质,在一定波长范围内,吸收系数随 波长而变,这种吸收就称为选择吸收。
d
• 在实际工作中,选用光学材料时应注意其色散的大小,例如,同样
初中物理光学ppt课件

37
例16、在“研究凸透镜成像”的实验中,点燃的蜡烛分别 放在a、b、c、d、四个不同的位置,如图所示, 其中蜡烛放在________处所得到的实像最小;放 在_________处得到正立的虚像;在a_______处 的成像规律是幻灯机的原理
d
ab
c
d
· ··
···
·
·
o
ƒ
2ƒ
c
38
B
1.下列现象中,属于光的折射现象的是( ) A小孔成像 B用放大镜看地图 C湖边的景物,在湖中形成的“倒影” D太阳光照射下,地面上出现树的影子 2.在利用蜡烛研究凸透镜成像的实验中,凸透镜的焦距是10cm,点燃蜡烛放在 距凸透镜15cm处,在凸透镜另一侧上观察一了蜡烛清晰的像,这个像一定是 () A倒立、放大的实像 B倒立、缩小的实像 C正立、放大的虚像 D正立、放大的实像 A
C、倒立放大的虚像 D、倒立放大的实像
例8、李东从侧面透过球形玻璃鱼缸欣赏水中游动的金
鱼 ,他所看到的“金鱼”是(
)
A、放大了的金鱼实像 B、放大了的金鱼虚像
C、缩小了的金鱼实像 D、缩小了的金鱼虚像
B
32
例9、池水深2.5米,月球到水面的距离 为3.8×105千米,池边的人
看到池中月亮的像距水面
04
直线 3、光在均匀介质中沿_______传播3,×光10在8 真空中的传播速度是_____ m/s。
39
4、一束光射到平面镜上,如果入射角是330000,那么反射角是________.
5 5、一个人站在竖起放置的平面镜前5m处,他的像距离平面镜 ____m,这个人向平面镜前进2m,他在平面镜中像的大小______ (填“变大”“变小”不或变“不变”)
《大学物理光学》PPT课件

3
光学仪器的发展趋势 随着光学技术的不断发展,光学仪器正朝着高精 度、高灵敏度、高分辨率和自动化等方向发展。
03
波动光学基础
Chapter
波动方程与波动性质
波动方程
描述光波在空间中传播的数学模型,包括振幅、频率、波长等参现象,是波动光学的基础。
偏振现象及其产生条件
干涉仪和衍射仪使用方法
干涉仪使用方法
通过分束器将光源发出的光波分成两束,再经过反射镜反射后汇聚到一点,形成干涉图样。通过调整反射镜的位 置和角度,可以观察不同干涉现象。
衍射仪使用方法
将光源发出的光波通过衍射光栅或单缝等衍射元件,观察衍射现象。通过调整光源位置、衍射元件参数等,可以 研究光的衍射规律。
光的反射与折射现象
光的反射
光在两种介质的分界面上改变传播方向又返回原来 介质中的现象。反射定律:反射光线、入射光线和 法线在同一平面内,反射光线和入射光线分居法线 两侧,反射角等于入射角。
光的折射
光从一种介质斜射入另一种介质时,传播方向发生 改变的现象。折射定律:折射光线、入射光线和法 线在同一平面内,折射光线和入射光线分居法线两 侧,折射角与入射角的正弦之比等于两种介质的折 射率之比。
了解干涉条纹的形成和特点。
衍射光栅测量光谱线宽度
03
使用衍射光栅测量光谱线的宽度,掌握衍射光栅的工作原理和
测量方法。
量子光学实验项目注意事项
单光子源的制备与检测 了解单光子源的概念、制备方法及其检测原理,注意实验 过程中的光源稳定性、探测器效率等因素对实验结果的影 响。
量子纠缠态的制备与观测 熟悉量子纠缠态的基本概念和制备方法,掌握纠缠态的观 测和度量方法,注意实验中的环境噪声、探测器暗计数等 因素对纠缠态的影响。
《物理光学》课件

过一定时间以后,电磁振动所到达的各点将构成一个以O点为中
心的球面,如图所示。这时的波阵面是球面,这种波就称为球
面波。
光线
波面
O
R
设图中的球面波为单色光波。由于球面波波面上各点的位相相 同,因此只需研究从O点发出的任一方向上各点的电磁场变化规 律,即可知道整个空间的情况。 取沿OR方向传播的光波为对象。设O点的初相为0,则距O点为r 的某点P的位相为
nc v
代入c、v各自的表达式,有
n c v
00
rr
r为相对介电常数,r为相对磁导率。
对除磁性物质以外的大 多数物质而言, r 1,故 n r
这个表达式称麦克斯韦 关系。
§3 平面电磁波 本节根据波动的两个偏微分方程,结合边界条件、初始条件,
得出其中的平面波解-平面波的波函数。
对积分得
2E z 2
1 v2
2E t 2
2E 4
0
即
E
0
E g
g 是的任意矢量函数
再对 积分得
E
g
d
f2
f1
f2
f1z vt f2 z vt
vt
取周期为2的余弦函数作为波动方 程的特解:
E
A cos
2
z
vt
3
B
A
cos
2
z
vt
4
二 平面简谐波
(3)(4)式是平面简谐波的波函数,即我们认定研究的电磁 波为平面简谐波。
大学物理课件光学

康普顿效应
当X射线或γ射线与物质相互作用时,光子将部分能量转移 给电子,使电子获得动能并从原子中逸出。康普顿效应进 一步证实了光的粒子性。
02
光的干涉现象及应用
双缝干涉实验及原理
双缝干涉实验装置与步骤
介绍双缝干涉实验的基本装置,包括 光源、双缝、屏幕等,以及实验的操 作步骤。
双缝干涉现象观察
双缝干涉原理分析
光的偏振现象
横波特有的现象,纵波不发生偏振。 光的偏振证明了光是一种横波。
光的量子性描述
光子概念
光是由一份份不连续的能量子组成的,每一份能量子称为 一个光子。光子具有能量ε=hν和动量p=h/λ,其中h为普 朗克常量,ν为光的频率,λ为光的波长。
光电效应 当光照在金属表面时,金属中的电子会吸收光子的能量并 从金属表面逸出,形成光电流。光电效应实验证明了光的 量子性。
大学物理课件光学
目录
• 光学基本概念与理论 • 光的干涉现象及应用 • 光的衍射现象及应用 • 光的偏振现象及应用 • 现代光学技术与发展趋势 • 实验方法与技巧
01
光学基本概念与理论
光的本质和特性
01 光是一种电磁波
光具有波粒二象性,既可以表现为波动性质,也 可以表现为粒子性质。
02 光速不变原理
偏振光
光振动在某一特定方向的光,在垂直于传播方向的平面 上,只沿某个特定方向振动。
马吕斯定律和布儒斯特角
马吕斯定律
描述线偏振光通过检偏器后透射光强与检偏器透振方向夹角的关系,即透射光强与夹角的余弦值的平方成正比。
布儒斯特角
当自然光在两种各向同性媒质分界面上反射、折射时,反射光和折射光都是部分偏振光。反射光中垂直振动多于 平行振动,折射光中平行振动多于垂直振动。当入射角满足某种条件时,反射光中垂直振动的光完全消失,只剩 下平行振动的光,这种光是线偏振光,而此时的入射角叫做布儒斯特角。
当X射线或γ射线与物质相互作用时,光子将部分能量转移 给电子,使电子获得动能并从原子中逸出。康普顿效应进 一步证实了光的粒子性。
02
光的干涉现象及应用
双缝干涉实验及原理
双缝干涉实验装置与步骤
介绍双缝干涉实验的基本装置,包括 光源、双缝、屏幕等,以及实验的操 作步骤。
双缝干涉现象观察
双缝干涉原理分析
光的偏振现象
横波特有的现象,纵波不发生偏振。 光的偏振证明了光是一种横波。
光的量子性描述
光子概念
光是由一份份不连续的能量子组成的,每一份能量子称为 一个光子。光子具有能量ε=hν和动量p=h/λ,其中h为普 朗克常量,ν为光的频率,λ为光的波长。
光电效应 当光照在金属表面时,金属中的电子会吸收光子的能量并 从金属表面逸出,形成光电流。光电效应实验证明了光的 量子性。
大学物理课件光学
目录
• 光学基本概念与理论 • 光的干涉现象及应用 • 光的衍射现象及应用 • 光的偏振现象及应用 • 现代光学技术与发展趋势 • 实验方法与技巧
01
光学基本概念与理论
光的本质和特性
01 光是一种电磁波
光具有波粒二象性,既可以表现为波动性质,也 可以表现为粒子性质。
02 光速不变原理
偏振光
光振动在某一特定方向的光,在垂直于传播方向的平面 上,只沿某个特定方向振动。
马吕斯定律和布儒斯特角
马吕斯定律
描述线偏振光通过检偏器后透射光强与检偏器透振方向夹角的关系,即透射光强与夹角的余弦值的平方成正比。
布儒斯特角
当自然光在两种各向同性媒质分界面上反射、折射时,反射光和折射光都是部分偏振光。反射光中垂直振动多于 平行振动,折射光中平行振动多于垂直振动。当入射角满足某种条件时,反射光中垂直振动的光完全消失,只剩 下平行振动的光,这种光是线偏振光,而此时的入射角叫做布儒斯特角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 麦克斯韦方程组
麦克斯韦方程组描述了电磁场的基本规律,它有积分和微分两种 表达形式。 一 积分形式的麦克斯韦方程组 1 静电场和静磁场的麦克斯韦方程组
D d Q
E dl 0
B d 0
H dl I
静电场的高斯定理 静电场的环路定律 静磁场的高斯定理 静磁场的环路定律
这一方程组只适用于稳恒场。若电场和磁场是交变场,则其中 的部分表达式不适用
物理光学
绪论
一 光学的两大分支 光学是物理学最古老的学科之一,它分为几何光学和物 理光学两大部分。
几何光学:以光的直线传播模型为基础,研究光的传播 规律、 成象规律,是光学系统设计的基础。
物理光学:以光的电磁理论为基础,研究光的本性、光 的传播规律及光与物质的相互作用。
二 物理光学的内容
1 波动光学 2 薄膜光学 3 非线性光学 4 傅立叶光学 5 集成光学
D
1
B 0
2
E
B
3
H
t j D
4
t
式中
x0
x
y0
y
z0
z
称哈密顿算符
是电荷分布的体密度,j是传导电流密度。从积分式变换到微 分式依据的数学定理,可参见课本后的附录。
三 物质方程
麦克斯韦方程组中共出现两个电场量E、D和两个磁场量B、H。 其中的E、B是基本量,D、H是辅助量。对应的基本量与辅助量 的关系取决于电磁场所在的物质。
2E 2E
2E 2E
2
z 2 2 2
2E t 2
v
2
2E
2
2 2E
2E
2
因此(1)式化简为
对积分得
2E z 2
1 v2
2E t 2
2E 4
0
即
E
0
E g
g 是的任意矢量函数
再对 积分得
E
g
d
f2
f1
f2
f1z vt f2 z vt
f1、f 2是z和t的两个任意函数,代表沿Z轴正、负方向传播的两个平面波。
所谓平面波,是指电场和磁场在垂直于传播方向的平面内各点
具有相同值的波。
设平面波沿三维坐标系的Z轴正向传播,如图1-4所示。产生平 面波的电磁场波动方程简化为
2E 1 2E 0
1
z
2
v2
t
2
2B z 2
1 v2
2B t 2
0
2
引入中间变量对方程化简,令 z vt
z vt
对(1)式代换变量,得
在此条件下,麦克斯韦方程组简化为
E 0
1
B 0
2
E
B
3
B
t
E
4
t
取第三式的旋度
E
B
将(4)式代入上式右侧
E
t
2E
t 2
由场论公式,上式左侧可变为
E
E
2
E
由于 E 0,所以 E 2 E
由此可得:
2 E
2E
0
t 2
由相似的数学运算2 B可得到关2 B于 B0的方程
d
B d
H dl
I
0
D t
d
(1) (2) (3) (4)
(2)式的意义是:单位正电荷沿闭合回路移动一周时,交变的
涡旋电 场所作的功等于回路中产生的感应电动势。(4)式中的
D t
d
ID
为位移电流。
二 微分形式的麦克斯韦方程组 为方便地求解电磁场的某一场量,实际中常使用麦克斯韦方程 组的微分形式。
2 交变电磁场的麦克斯韦方程组 麦克斯韦假定在交变电场和交变磁场中,高斯定理依然成立。
变化的磁场会产生涡旋电场,故静电场的环路定律应代之以涡
旋电场场强的环流表达式;对静磁场的环路定律则引入了位移
电流的概念后进行了修改,这样,就得出了适用于交变电磁场
的麦克斯韦方程组。
D d Q
E
dl
B t
nc v
代入c、v各自的表达式,有
n c v
00
rr
r为相对介电常数,r为相对磁导率。
对除磁性物质以外的大 多数物质而言, r 1,故 n r
这个表达式称麦克斯韦 关系。
§3 平面电磁波 本节根据波动的两个偏微分方程,结合边界条件、初始条件,
得出其中的平面波解-平面波的波函数。
一 沿某一坐标轴方向传播的平面波
t 2
令 v 1
两方程变为
2E
1
2E 0
2B
v2 1 v2
t
2
2B t 2
0
这两个偏微分方程称波动方程,它们的解为各种波动,这表明 电场和磁场是以波动的形式在空间传播的,传播速度为v。
三 电磁波
1 电磁波的速度
电磁波在介质中的传播速度取决于介质的介电常数和磁导率,
关系式为:
v 1
当电磁波在真空中传播时,速度为c
c 1 00
2 电磁波谱 电磁波包含许多波长成分,除了我们熟知的无线电波和光波以 外,还包括X射线、射线等。按照波长或频率的顺序把这些电 磁波排列成,称为电磁波谱,如图1-3所示。
3 介质的绝对折射率 电磁波在真空中的速度与在介质中的速度是不等的。为了描述 不同介质中电磁波传播特性的差异,定义了介质的绝对折射率:
在各向同性物质中,有以 下关系成立:
DE
为介质的介电系数
B H
j E
为介质的磁导率
导电物质中,还有
的关系。为电导率。
以上三式合称为物质方程。麦克斯韦方程组与物质方程结合,
构成一组完整的反映电磁场普遍规律的方程组。
§2 电磁场的波动 性
一 电磁场的传播 用麦克斯韦电磁理论的基本概念,可以将电场和磁场的相互关 系表述为: 空间某区域内有变化的电场,则在临近的区域内印起变化的磁 场;这个变化的磁场又在较远的区域内引起新的变化的电场, 并在更远的区域内引起新的变化的磁场。这个过程持续地继续 下去,变化的电场和变化的磁场交替产生,构成统一的电磁场。 在这种交替产生过程中,电磁场由近及远、以有限的速度在空 间内传播,形成电磁波。 二 电磁场的波动方程 由麦克斯韦方程组可导出关于电场基本量E和磁场基本量B的两 个偏微分方程,从而证明电磁场的波动性。为简化讨论,假设 所讨论的空间为无限大且充满各向同性的均匀介质,故、均 为常数;又设讨论的区域远离辐射源,因此=0,j=0。
第 一 章 光的电磁理论
1864年,麦克斯韦在总结安培、法拉第等人关于电场、磁场的 研究工作的基础上,归纳得出了描述统一的电磁场规律的麦克 斯韦方程组,建立了完整的电磁场理论。1865年他进一步提出 了光是一种电磁波的设想并在1888年为赫兹的实验所证实,光 的电磁理论由此得以确立。光的电磁理论的建立推动了光学及 整个物理学的发展,尽管在理论上有其局限性,但它仍是阐明 众多光学现象的经典理论。
上式还可进一步简化。
设沿Z轴正向传播的平面波v 0,沿Z轴负向传播的平面波v 0,
则可将f1、f 2两函数合二为一。