2020年全国2卷高考理科数学试题附答案
2020年高考全国2卷理科数学带答案解析

2020年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i 12i +=-A.43i 55-- B.43i 55-+ C.34i 55-- D.34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A.9 B.8 C.5 D.43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A.4B.3C.2D.05.双曲线22221(0,0)x y a b a b -=>>的离心率为3,则其渐近线方程为A.2y x =±B.3y x =±C.22y x =± D.32y x =± 6.在ABC △中,5cos 25C =,1BC =,5AC =,则AB =A.42 B.30 C.29 D.257.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A.1i i =+B.2i i =+ C.3i i =+D.4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112 B.114 C.115 D.1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为A.15B.56 C.55D.2210.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A.π4 B.π2 C.3π4D.π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A.50- B.0 C.2 D.5012.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A.23 B.12 C.13D.14二、填空题:本题共4小题,每小题5分,共20分。
2020年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得: 1,0,1,2A B ,则 U 2,3A B ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.2.若α为第四象限角,则()A.cos2α>0 B.cos2α<0C.sin2α>0D.sin2α<0【答案】D 【解析】【分析】由题意结合二倍角公式确定所给的选项是否正确即可.【详解】当6时,cos 2cos 03,选项B 错误;当3时,2cos 2cos 03,选项A 错误;由 在第四象限可得:sin 0,cos 0 ,则sin 22sin cos 0 ,选项C 错误,选项D 正确;故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C 【解析】【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S ,解方程即可得到n ,进一步得到3n S .【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n ,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S ,因为下层比中层多729块,所以322729n n n n S S S S ,即3(927)2(918)2(918)(99)7292222n n n n n n n n 即29729n ,解得9n ,所以32727(9927)34022n S S .故选:C【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.55B.255C.355D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 距离均为22555d;所以,圆心到直线230x y 的距离为255.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.6.数列{}n a 中,12a ,m n m n a a a ,若155121022k k k a a a ,则k ()A.2B.3C.4D.5【答案】C 【解析】分析】取1m ,可得出数列 n a 是等比数列,求得数列 n a 的通项公式,利用等比数列求和公式可得出关于k 的等式,由k N 可求得k 的值.【详解】在等式m n m n a a a 中,令1m ,可得112n n n a a a a ,12n na a,所以,数列 n a 是以2为首项,以2为公比的等比数列,则1222n n n a ,1011011105101210122122212211212k k k k k k a a a a,1522k ,则15k ,解得4k .故选:C.【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【答案】A 【解析】【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E 故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为2222222168c a b ab 当且仅当22a b 取等号C 的焦距的最小值:8故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.9.设函数()ln |21|ln |21|f x x x ,则f (x )()A.是偶函数,且在1(,)2 单调递增B.是奇函数,且在11(,)22单调递减C.是偶函数,且在1(,)2单调递增D.是奇函数,且在1(,)2单调递减【答案】D 【解析】【分析】根据奇偶性的定义可判断出 f x 为奇函数,排除AC ;当11,22x时,利用函数单调性的性质可判断出 f x 单调递增,排除B ;当1,2x时,利用复合函数单调性可判断出 f x 单调递减,从而得到结果.【详解】由 ln 21ln 21f x x x 得 f x 定义域为12x x,关于坐标原点对称,又 ln 12ln 21ln 21ln 21f x x x x x f x ,f x 为定义域上的奇函数,可排除AC ;当11,22x时, ln 21ln 12f x x x , ln 21y x Q 在11,22 上单调递增, ln 12y x 在11,22上单调递减,f x 在11,22上单调递增,排除B ;当1,2x时, 212ln 21ln 12ln ln 12121x f x x x x x,2121x∵在1,2上单调递减, ln f 在定义域内单调递增,根据复合函数单调性可知: f x 在1,2上单调递减,D 正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据 f x 与 f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.10.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.3B.32C.1D.32【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离22d R r.【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为934的等边三角形,21393224a ,解得:3a ,22229933434a r a ,球心O 到平面ABC 的距离22431d R r .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.11.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.12.0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ,且存在正整数m ,使得(1,2,)i m i a a i 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k 的序列是()A 11010 B.11011C.10001D.11001【答案】C 【解析】【详解】由i m i a a 知,序列i a 的周期为m ,由已知,5m ,511(),1,2,3,45i i k i C k a a k 对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a ,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a ,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a ,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.二、填空题目:本题共4小题,每小题5分,共20分.13.已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】22【解析】【分析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值.【详解】由题意可得:211cos 452a b ,由向量垂直的充分必要条件可得:0k a b a,即:2202k a a b k ,解得:22k .故答案为:22.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】【分析】根据题意,采用捆绑法,先取2名同学看作一组,现在可看成是3组同学分配到3个小区,即可求得答案.【详解】∵4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:246C 现在可看成是3组同学分配到3个小区,分法有:336A根据分步乘法原理,可得不同的安排方法6636 种故答案为:36.【点睛】本题主要考查了计数原理的实际应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.15.设复数1z ,2z 满足12||=||=2z z ,123i z z ,则12||z z =__________.【答案】23【解析】【分析】令12cos 2sin z i ,22cos 2sin z i ,根据复数的相等可求得1cos cos sin sin 2,代入复数模长的公式中即可得到结果.【详解】122z z ∵,可设12cos 2sin z i ,22cos 2sin z i , 122cos cos 2sin sin 3z z i i ,2cos cos 32sin sin 1,两式平方作和得: 422cos cos 2sin sin 4 ,化简得:1cos cos sin sin 2122cos cos 2sin sin z z i224cos cos 4sin sin 88cos cos sin sin 8423 故答案为:23.【点睛】本题考查复数模长的求解,涉及到复数相等的应用;关键是能够采用假设的方式,将问题转化为三角函数的运算问题.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23;(2)323 .【解析】【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到 29AC AB AC AB ,利用基本不等式可求得AC AB 的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB ,2221cos 22AC AB BC A AC AB , 0,A ∵,23A .(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB ,即 29AC AB AC AB .22AC AB AC AB∵(当且仅当AC AB 时取等号), 22223924AC AB AC AB AC AB AC AB AC AB ,解得:23AC AB (当且仅当AC AB 时取等号),ABC 周长323L AC AB BC ,ABC 周长的最大值为323 .【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ,2011200i i y,2021)80i i x x (,2021)9000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni i i i i n n i i x y x x y y y x((((,2=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20120202211()()()()ii i i i i i x x y y r x x y y 计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000(2)样本(,)i i x y 的相关系数为20120202211()()800220.943809000()()i i i i i i i x x y y r x x y y (3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C ,22:12C y x .【解析】【分析】(1)求出AB 、CD ,利用43CD AB可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF 可求得c 的值,进而可得出1C 与2C 的标准方程.【详解】(1) ,0F c ∵,AB x 轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c ,联立22222221x c x y a b a b c,解得2x c b y a ,则22b AB a,抛物线2C 的方程为24y cx ,联立24x c y cx,解得2x c y c ,4CD c ,43CD AB ∵,即2843b c a,223b ac ,即222320c ac a ,即22320e e ,01e Q ,解得12e ,因此,椭圆1C 的离心率为12;(2)由(1)知2a c ,3b c ,椭圆1C 的方程为2222143x y c c,联立222224143y cx x y c c,消去y 并整理得22316120x cx c ,解得23x c 或6x c (舍去),由抛物线的定义可得25533c MF c c ,解得3c .因此,曲线1C 的标准方程为2213627x y ,曲线2C 的标准方程为212y x .【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.20.如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2)1010.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP ,由(1)BC ⊥平面1A AMN ,可得QPN 为1B E 与平面1A AMN 所成角,即可求得答案.【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB 1//MN AA 在ABC 中,M 为BC 中点,则BC AM又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF 11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMNEF ∵平面11EB C F平面11EB C F 平面1A AMN(2)连接NP∵//AO 平面11EB C F ,平面AONP 平面11EB C F NP //AO NP根据三棱柱上下底面平行,其面1A NMA 平面ABC AM ,面1A NMA 平面1111A B C A N //ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m )可得:ON AP ,6NP AO AB m∵O 为111A B C △的中心,且111A B C △边长为6m 16sin 6033ON m 故:3ON AP m∵//EF BC AP EP AM BM3333EP 解得:EP m在11B C 截取1B Q EP m ,故2QN m∵1B Q EP 且1//B Q EP四边形1B QPE 是平行四边形,1//B E PQ由(1)11B C 平面1A AMN故QPN 为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得: 222226210PQ QN PN m m m 210sin 10210QN m QPN PQ m 直线1B E 与平面1A AMN 所成角的正弦值:1010.【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.21.已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:33()8f x ;(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .【答案】(1)当0,3x时, '0,f x f x 单调递增,当2,33x 时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)证明见解析;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后由导函数的零点确定其在各个区间上的符号,最后确定原函数的单调性即可;(2)首先确定函数的周期性,然后结合(1)中的结论确定函数在一个周期内的最大值和最小值即可证得题中的不等式;(3)对所给的不等式左侧进行恒等变形可得2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n f x x x x x x x x x ,然后结合(2)的结论和三角函数的有界性进行放缩即可证得题中的不等式.【详解】(1)由函数的解析式可得: 32sin cos f x x x ,则: 224'23sin cos sin f x x x x2222sin 3cos sin x x x 222sin 4cos 1x x 22sin 2cos 12cos 1x x x ,'0f x 在 0,x 上的根为:122,33x x,当0,3x时, '0,f x f x 单调递增,当2,33x时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)注意到 22sinsin 2sin sin 2f x x x x x f x ,故函数 f x 是周期为 的函数,结合(1)的结论,计算可得: 00f f ,233333228f ,2233333228f ,据此可得: max 338f x, min 338f x ,即 338f x .(3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x x x 233333sin sin 2sin 4sin 2n x x x x2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n x x x x x x x x 232333333sin sin 2888n x x 23338n 34n .【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。
2020年高考理科数学全国卷2-答案

2020年普通高等学校招生全国统一考试·全国Ⅱ卷理科数学答案解析一、选择题 1.【答案】A【解析】由题意可得:{}1012AB =-,,,,则{2()3UA B =-},.故选:A .【考点】并集、补集的定义与应用 2.【答案】D【解析】当π6α=-时,πcos2cos 03α⎛⎫=- ⎪⎝⎭>,选项B 错误;当π3α=-时,2πcos 2cos 03α⎛⎫=- ⎪⎝⎭<,选项A 错误;由α在第四象限可得:sin 0cos 0αα,><,则sin22sin cos 0ααα=<,选项C 错误,选项D 正确;故选:D .【考点】三角函数的符号,二倍角公式,特殊角的三角函数值 3.【答案】B【解析】由题意,第二天新增订单数为50016001200900+-=,故需要志愿者9001850=名.故选:B . 【考点】函数模型的简单应用 4.【答案】C【解析】设第n 环天心石块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S --,因为下层比中层多729块,所以322729n n n n S S S S -=-+,即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+,即29729n =,解得9n =,所以32727(9927)34022n S S +⨯===.故选:C .【考点】等差数列前n 项和有关的计算5.【答案】B【解析】由于圆上的点()21,在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为()a a ,,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()11,或()55,,圆心到直线230x y --=距离均为d ==;所以,圆心到直线230x y --=.故选:B .【考点】圆心到直线距离的计算 6.【答案】C【解析】在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=. 所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n nn a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++--∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C .【考点】利用等比数列求和求参数的值 7.【答案】A【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E ,故选:A .的【考点】根据三视图判断点的位置 8.【答案】B 【解析】22221(00)x y C a b a b-=:>,> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线22221(00)x yC a b a b-=:>,>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故()D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故()E a b -, ∴||2ED b =∴ODE △面积为:1282ODE S a b ab =⨯==△双曲线22221(00)x y C a b a b-=:>,>∴其焦距为2228cab ==当且仅当a b ==∴C 的焦距的最小值:8.故选:B .【考点】双曲线焦距的最值问题 9.【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当1122x ⎛⎫∈- ⎪⎝⎭,时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+在1122⎛⎫- ⎪⎝⎭,上单调递增,()ln 12y x =-在1122⎛⎫- ⎪⎝⎭,上单调递减,()f x ∴在1122⎛⎫- ⎪⎝⎭,上单调递增,排除B ;当12x ⎛⎫∈-∞- ⎪⎝⎭,时,()()()212ln 21ln 12lnln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在12⎛⎫-∞- ⎪⎝⎭,上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在12⎛⎫-∞- ⎪⎝⎭,上单调递减,D 正确.故选:D .【考点】函数奇偶性和单调性的判断 10.【答案】C【解析】设球O 的半径为R ,则24π16πR =,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴=∴球心O 到平面ABC 的距离1d ===.故选:C . 【考点】球的相关问题的求解 11.【答案】A【解析】由2233x y x y ----<得:2323x x y y ----<,令()23t tf t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD 无法确定.故选:A .【考点】数式的大小的判断问题 12.【答案】C【解析】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511()12345i i k i C k a a k +===∑,,,, 对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=∑≤52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;故选:C【考点】数列的新定义问题 二、填空题 13.【答案】2【解析】由题意可得:211cos45a b →→⋅=⨯⨯=0k a b a →→→⎛⎫-= ⎪⎝⎭,即:2202k a ab k →→→⨯-=-=,解得:2k =.故答案为:2. 【考点】平面向量的数量积定义与运算法则 14.【答案】36【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,∴先取2名同学看作一组,选法有:246C =.现在可看成是3组同学分配到3个小区,分法有:336A =.根据分步乘法原理,可得不同的安排方法6636⨯=种.故答案为:36.【考点】计数原理的实际应用15.【答案】【解析】122z z ==,可设12cos 2sin i z θθ=+,22cos 2sin i z αα=+,()()122cos cos 2sin sin i 3i z z θαθα∴+=+++=+,()()2cos cos 2sin sin 1θαθα⎧+⎪∴⎨+=⎪⎩()422cos cos 2sin sin 4θαθα++=,化简得:1cos cos sin sin 2θαθα+=-()()122cos cos 2sin sin iz z θαθα∴-=-+-==故答案为: 【考点】复数模长的求解 16.【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【考点】复合命题的真假,空间中线面关系有关命题真假的判断 三、解答题 17.【答案】(1)23π; (2)3+【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-,()0πA ∈,,2π3A ∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-=++=,即()29AC AB AC AB +-=.22AC AB AC AB +⎛⎫⎪⎝⎭≤(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-+-=+⎪⎝⎭,解得:AC AB +≤仅当AC AB=时取等号),ABC ∴△周长3L AC AB BC =+++≤,ABC ∴△周长的最大值为3+【考点】解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题18.【答案】(1)12000; (2)0.94; (3)详见解析【解析】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(),i i x y的相关系数为20()()0.94ii xx y y r --===≈∑ (3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样,先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可. 【考点】平均数的估计值、相关系数的计算,抽样方法的选取 19.【答案】(1)12;(2)22113627x y C +=:,2212C y x =:.【解析】(1)()0F c ,,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22b AB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x c y c =⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,b =,椭圆1C 的方程为2222143x yc c +=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去),由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【考点】椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程 20.【答案】(1)证明见解析; (2. 【解析】(1)M N ,分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴.在ABC △中,M 为BC 中点,则BC AM ⊥.又侧面11BB C C 为矩形,1BC BB ∴⊥,1//MN BB ,MN BC ⊥,由MN AM M =,,MN AM ⊂平面1A AMN ,∴BC ⊥平面1A AMN .又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC .又11B C ⊂平面11EB C F ,且平面11EB C F平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN ,∴EF ⊥平面1A AMN ,EF ⊂平面11EB C F ,∴平面11EB C F ⊥平面1A AMN .(2)连接NP//AO 平面11EB C F ,平面AONP 平面11EB C F NP =,∴//AO NP .根据三棱柱上下底面平行,其面1A NMA平面ABC AM =,面1A NMA平面1111A B C A N =,∴//ON AP .故:四边形ONPA是平行四边形.设ABC △边长是6m (0m >),可得:ON AP =,6NP AO AB m ===.O 为111A B C △的中心,且111A B C △边长为6m ,∴16sin 603ON =⨯⨯︒,故:ON AP ==.//EF BC ,∴AP EPAM BM=,∴3EP=.解得:EP m =.在11B C 截取1B Q EP m ==,故2QN m =,1B Q EP =且1//B Q EP ,∴四边形1B QPE 是平行四边形,∴1//B E PQ .由(1)11B C ⊥平面1A AMN ,故QPN ∠为1B E 与平面1A AMN 所成角.在Rt QPN △,根据勾股定理可得:PQ ,sinQN QPN PQ ∴∠===∴直线1B E 与平面1A AMN . 【考点】证明线线平行和面面垂直,线面角21.【答案】(1)当π03x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增,当π2π33x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减,当2ππ3x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增.(2)证明见解析; (3)证明见解析.【解析】(1)由函数的解析式可得:()32sin cos f x x x =,则:()()22423sin cos sin f x x x x'=-()2222sin 3cos sin x x x =-()222sin 4cos 1x x =-()()22sin 2cos 12cos 1x x x =+-,()0f x '=在()0πx ∈,上的根为:12π2π33x x ==,,当π03x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增,当π2π33x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减,当2ππ3x ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '>,单调递增.(2)注意到()()()()22πsin πsin 2πsin sin2f x x x x x f x +=+⎡+⎤==⎣⎦,故函数()f x 是周期为π的函数,结合(1)的结论,计算可得:()()0π0f f ==,2π3228f ⎛⎛⎫=⨯= ⎪ ⎝⎭⎝⎭,223f π⎛⎛⎫=⨯= ⎪ ⎝⎭⎝⎭⎝⎭()max 8f x ⎡⎤=⎣⎦,()min 8f x ⎡⎤=-⎣⎦,即()f x ≤. (3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x x x 233333sin sin 2sin 4sin 2n x x xx ⎡⎤=⎣⎦ ()()()2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n x x x x x x x x -⎡⎤=⎣⎦23233sin sin 2nx x ⎡⎤⨯⨯⎢⎥⎣⎦≤ 23n ⎡⎤⎢⎥⎢⎥⎝⎭⎣⎦≤34n ⎛⎫= ⎪⎝⎭. 【考点】导数的应用22.【答案】(1)14C x y +=:;2224C x y -=:;(2)17cos 5ρθ=. 【解析】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=; 由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=. (2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即5322P ⎛⎫ ⎪⎝⎭,; 设所求圆圆心的直角坐标为()0a ,,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为cos 5ρθ=. 【考点】极坐标与参数方程的综合应用23.【答案】(1)32x x ⎧⎨⎩≤或112x ⎫⎬⎭; (2)(][)13-∞-+∞,,. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-,解得:32x ≤;当34x <<时,()4314f x x x =-+-=,无解;当4x 时,()43274f x x x x =-+-=-,解得:112x ;综上所述:()4f x 的解集为32x x ⎧⎨⎩≤或112x ⎫⎬⎭. (2)()()()()22222121211f x x a x a x a x a a a a =-+-+---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-,解得:1a -≤或3a ,a ∴的取值范围为(][)13-∞-+∞,,. 【考点】绝对值不等式的求解,利用绝对值三角不等式求解最值。
2020年高考全国卷Ⅱ数学(理)试卷及答案详解,

2020年高考全国卷Ⅱ数学(理)试卷一、选择1. 已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)= ( )A. {−2,3}B. {−2,2,3}C. {−2,−1,0,3}D. {−2,−1,0,2,3}2. 若α为第四象限角,则( )A.cos2α>0B.cos2α<0C.sin2α>0D. sin2α<03. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名4. 北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块5. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为( )A.√55B. 2√55C.3√55D.4√556. 数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10=215−25,则k= ()A.2B.3C.4D.57. 如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H8. 设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为() A.4 B.8 C.16 D.329. 设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)( )A.是偶函数,且在(12,+∞)单调递增B.是奇函数,且在(−12,12)单调递减C.是偶函数,且在(−∞,−12)单调递增D.是奇函数,且在(−∞,−12)单调递减10. 已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1 D.√3211. 若2x−2y<3−x−3−y,则( )A. ln(y−x+1)>0B.ln(y−x+1)<0C.ln|x−y|>0D.ln|x−y|<012. 0−1周期序列在通信技术中有着重要应用.若序列a 1a 2⋯a n ⋯满足a i ∈{0,1}(i =1,2,⋯),且存在正整数m ,使得a i+m =a i (i =1, 2, ⋯)成立,则称其为0−1周期序列,并称满足a i+m =a i (i =1, 2, ⋯)的最小正整数m 为这个序列的周期.对于周期为m 的0−1序列a 1a 2⋯a n ⋯,C (k )=1m∑a i m i=1a i+k (k =1, 2, ⋯, m −1)是描述其性质的重要指标.下列周期为5的0−1序列中,满足C (k )≤15(k =1,2,3,4)的序列是( ) A.11010⋯ B.11011⋯ C.10001⋯ D.11001⋯二、填空题已知单位向量a →,b →的夹角为45∘,ka →−b →与a →垂直,则k =________.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名学生,则不同的安排方法有________种.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=________.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下列命题中所有真命题的序号是________.①p 1∧p 4 ;②p 1∧p 2 ;③¬p 2∨p 3 ; ④¬p 3∨¬p 4. 三、解答题△ABC 中, sin 2A −sin 2B −sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求△ABC 周长的最大值.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i 20i=1=60 ,∑y i 20i=1=1200, ∑(x i −x ¯)220i=1=80, ∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:r=∑(x−x¯)n(y−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1√2≈1.414.已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合.C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.如图已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥面EB1C1F.(2)设O为△A1B1C1的中心,若AO//面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.已知函数f(x)=sin2x sin2x.(1)讨论f(x)在(0,π)上的单调性;(2)证明:|f(x)|≤3√38;(3)证明:sin2x sin22x sin24x⋯sin22n x≤3n4n.已知曲线C1,C2的参数方程分别为C1:{x=4cos2θ,y=4sin2θ(θ为参数),C2:{x=t+1t,y=t−1t(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.已知函数f(x)=|x−a2|+|x−2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.参考答案与试题解析2020年高考全国卷Ⅱ数学(理)试卷一、选择1.【答案】A【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】解:由题意可知A∪B={−1,0,1,2},故∁U(A∪B)={−2,3}.故选A.2.【答案】D【考点】任意角的三角函数【解析】此题暂无解析【解答】解:∵α为第四象限角,∴−π+2kπ<α<2kπ,2∴−π+4kπ<2α<4kπ,∴2α是第三或第四象限角,∴当2α在第三象限时,cos2α<0,当2α在第四象限时,cos2α>0,故A,B错误;无论2α在第三还是在第四象限,都有sin2α<0.故选D.3.【答案】B【考点】生活中概率应用【解析】此题暂无解析【解答】解:因为公司可以完成配货1200份订单,则至少需要志愿者为:1600+500−1200=18名.50故选B.4.【答案】C【考点】等差数列的前n项和等差数列的性质等差数列【解析】此题暂无解析【解答】解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差d=9,a1=9.由等差数列性质知S n,S2n−S n,S3n−S2n成等差数列,且(S3n−S2n)−(S2n−S n)=n2d,则9n2=729,解得n=9,则三层共有扇形面石板为S3n=S27=27a1+27×262×9=3402块. 故选C.5.【答案】B【考点】点与圆的位置关系点到直线的距离公式【解析】此题暂无解析【解答】解:设圆心为(a,a),则半径为a,圆过点(2,1),则(a−2)2+(a−1)2=a2,解得a=1或a=5,所以圆心坐标为(1,1)或(5,5),圆心(1,1)到直线的距离是d=5=2√55,圆心(5,5)到直线的距离是d=√5=2√55.故选B.6.【答案】C【考点】等比数列的前n项和等比关系的确定【解析】此题暂无解析【解答】解:a m+n=a m a n,取m=1,则a1+n=a1a n. 又a1=2,所以a n+1a n=2,所以{a n}是首项,公比均为2等比数列,则a n=2n,所以a k+1+a k+2+⋯+a k+10=2k+1(1−210)1−2=2k+1⋅210−2k+1=215−25,解得k=4.故选C.7.【答案】A【考点】由三视图还原实物图【解析】此题暂无解析【解答】解:该几何体是两个长方体拼接而成,如图所示,显然所求点对应的为E点.故选A.8.【答案】B【考点】直线与双曲线结合的最值问题双曲线的渐近线【解析】此题暂无解析【解答】解:双曲线C:x 2a2−y2b2=1(a>0,b>0)的两条渐近线分别为y=±bax,则容易得到|DE|=2b,则S△ODE=ab=8. 又因为c2=a2+b2≥2ab=16,即c≥4,焦距2c≥8.故选B.9.【答案】D【考点】函数奇偶性的判断复合函数的单调性【解析】此题暂无解析【解答】解:函数f(−x)=ln|−2x+1|−ln|−2x−1|=ln|1−2x|−ln|2x+1|=−f(x),∴f(x)为奇函数.当x∈(12,+∞)时,f(x)=ln(2x+1)−ln(2x−1)=ln2x+12x−1=ln(1+22x−1),单调递减;当x∈(−12,12)时,f(x)=ln(2x+1)−ln(1−2x),单调递增;当x∈(−∞,−12)时,f(x)=ln(−2x−1)−ln(1−2x)=ln2x+12x−1=ln(1+22x−1),单调递减.故选D.10.【答案】C【考点】三角形的面积公式三角形五心球的体积和表面积【解析】此题暂无解析【解答】解:设ABC的外接圆圆心为O1,记OO1=d,圆O1的半径为r,球O半径为R,等边三角形△ABC的边长为a,则S△ABC=√34a2=9√34,可得a=3,所以r=√3=√3.由题知球O的表面积为16π,则R=2,由R2=r2+d2,易得d=1,即O到平面ABC的距离为1. 故选C.11.【答案】A【考点】利用导数研究函数的单调性函数单调性的性质【解析】此题暂无解析【解答】解:2x−3−x<2y−3−y,设f(x)=2x−3−x,则f′(x)=2x ln2+3−x ln3>0,∴函数f(x)在R上单调递增,∵f(x)<f(y),所以x<y,则y−x+1>1,∴ln(y−x+1)>0.故选A.12.【答案】C【考点】函数新定义问题数列的求和【解析】此题暂无解析【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)=25>15,不满足,排除;对于B选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C选项,C(1)=15∑a i5i=1a i+1=15(0+0+0+0+1)=15,C(2)=15∑a i5i=1a i+2=15(0+0+0+0+0)=0,C(3)=15∑a i5i=1a i+3=15(0+0+0+0+0)=0,C(4)=15∑a i5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+1)=25>0,不满足,排除.故选C.二、填空题【答案】√22向量的数量积判断向量的共线与垂直 平面向量数量积 【解析】 此题暂无解析 【解答】解:∵ 单位向量a →,b →的夹角为45∘, ∴ a →⋅b →=|a →|⋅|b →|⋅cos 45∘=√22. ∵ ka →−b →与a →垂直, ∴ (ka →−b →)⋅a →=k −√22=0,∴ k =√22. 故答案为:√22.【答案】36【考点】排列、组合及简单计数问题 【解析】 此题暂无解析 【解答】解:由题意可得,不同的安排方法有C 42A 33=36种. 故答案为:36. 【答案】2√3【考点】 复数的模 【解析】 此题暂无解析 【解答】解:由题设z 1=a +bi ,则z 2=(√3−a)+(1−b )i , 故 |z 1|2=a 2+b 2=4, |z 2|2=(√3−a)2+(1−b )2 =a 2+b 2−2√3a −2b +4=4, 则|z 1−z 2|2=(2a −√3)2+(2b −1)2 =4a 2+4b 2−4√3a −4b +4=2(a 2+b 2)+2(a 2+b 2−2√3a −2b)+4 =2×4+4=12, 故|z 1−z 2|=2√3. 故答案为:2√3.①③④【考点】逻辑联结词“或”“且”“非”命题的真假判断与应用空间中直线与平面之间的位置关系空间中直线与直线之间的位置关系【解析】此题暂无解析【解答】解:对于p1:可设l1与l2相交,所得平面为α.若l3与l1相交,则交点A必在α内,同理,与l2交点B在α内,故直线AB在α内,即l3在α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数多平面,故p2为假命题.对于p3:空间中两条直线的位置关系有相交、平行、异面,若不相交,可能平行,也可能异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,因为直线l⊂平面α,故m⊥l,故p4为真命题.综上可知:①p1∧p4为真命题;②p1∧p2为假命题,③¬p2∨p3为真命题;④¬p3∨¬p4为真命题.故答案为:①③④ .三、解答题【答案】解:(1)在△ABC中,设内角A,B,C的对边分别为a,b,c,∵sin2A−sin2B−sin2C=sin B sin C,由正弦定理得,a2−b2−c2=bc,即b2+c2−a2=−bc,由余弦定理得,cos A=b2+c2−a22bc =−12.∵0<A<π,∴A=2π3.(2)由(1)知A=2π3,因为BC=3,即a=3,由余弦定理得,a2=b2+c2−2bc cos A,∴9=b2+c2+bc=(b+c)2−bc.由基本不等式√bc≤b+c2知bc≤(b+c)24,结合上式得9=(b+c)2−bc≥34(b+c)2, (b+c)2≤12,∴b+c≤2√3,当且仅当b=c=√3时取等号,∴△ABC周长的最大值为3+2√3.【考点】基本不等式在最值问题中的应用正弦定理【解析】此题暂无解析【解答】解:(1)在△ABC中,设内角A,B,C的对边分别为a,b,c,∵sin2A−sin2B−sin2C=sin B sin C,由正弦定理得,a2−b2−c2=bc,即b2+c2−a2=−bc,由余弦定理得,cos A=b2+c2−a22bc =−12.∵0<A<π,∴A=2π3.(2)由(1)知A=2π3,因为BC=3,即a=3,由余弦定理得,a2=b2+c2−2bc cos A,∴9=b2+c2+bc=(b+c)2−bc.由基本不等式√bc≤b+c2知bc≤(b+c)24,结合上式得9=(b+c)2−bc≥34(b+c)2,(b+c)2≤12,∴b+c≤2√3,当且仅当b=c=√3时取等号,∴△ABC周长的最大值为3+2√3.【答案】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得,r=∑(x i−x¯)ni=1(y i−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1=√80×9000=6√2≈0.94;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.【考点】众数、中位数、平均数相关系数收集数据的方法此题暂无解析【解答】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得,r=∑(x i−x¯)ni=1(y i−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1=√80×9000=6√2≈0.94;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.【答案】解:(1)F为C1的焦点,且AB⊥x轴,∴F(c,0),|AB|=2b2a,设C2的标准方程为y2=2px(p>0),∵F为C2的焦点,且AB⊥x轴,∴F(p2,0).由抛物线的定义可得,|CD|=2p.∵|CD|=43|AB| .C1与C2焦点重合,∴{c=p2,2p=43×2b2a,消去p得:4c=8b 23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,∴e=12或e=−2(舍),故C1的离心率为12.(2)由(1)知a=2c,b=√3c,p=2c.∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍).从而|MF|=x+p2=23c+c=53c=5,∴c=3,∴C1与C2的标准方程分别为x236+y227=1,y2=12x.【考点】圆锥曲线的综合问题椭圆的离心率抛物线的标准方程抛物线的定义椭圆的标准方程【解析】此题暂无解析【解答】解:(1)F为C1的焦点,且AB⊥x轴,∴F(c,0),|AB|=2b2a,设C2的标准方程为y2=2px(p>0),∵F为C2的焦点,且AB⊥x轴,∴F(p2,0).由抛物线的定义可得,|CD|=2p.∵|CD|=43|AB| .C1与C2焦点重合,∴{c=p2,2p=43×2b2a,消去p得:4c=8b 23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,∴e=12或e=−2(舍),故C1的离心率为12.(2)由(1)知a=2c,b=√3c,p=2c.∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍).从而|MF|=x+p2=23c+c=53c=5,∴c=3,∴C1与C2的标准方程分别为x236+y227=1,y2=12x.【答案】(1)证明:∵M,N分别为BC,B1C1的中点,底面为正三角形,∴B1N=BM,四边形BB1NM为矩形,A1N⊥B1C1,∴BB1//MN,而AA1//BB1,MN⊥B1C1,∴AA1//MN.又∵MN∩A1N=N,∴B1C1⊥面A1AMN.∵B1C1⊂面EB1C1F,∴面A1AMN⊥面EB1C1F.(2)∵三棱柱上下底面平行,平面EB1C1F与上下底面分别交于B1C1,EF,∴EF//B1C1//BC.∵AO//面EB1C1F,AO⊂面AMNA1,面AMNA1∩面EB1C1F=PN,∴AO//PN,四边形APNO为平行四边形,而O为正三角形的中心,AO=AB,∴A1N=3ON,AM=3AP,PN=BC=B1C1=3EF.由(1)知直线B1E在平面A1AMN内的投影为PN,直线B1E与平面A1AMN所成角即为等腰梯形EFC1B1中B1E与PN所成角.在等腰梯形EFC1B1中,令EF=1,过E作EH⊥B1C1于H,则PN=B1C1=EH=3,B1H=1,B1E=√10,sin∠B1EH=B1HB1E =√1010.所以直线B1E与平面A1AMN所成角的正弦值为√1010.【考点】直线与平面所成的角两条直线平行的判定平面与平面垂直的判定【解析】此题暂无解析【解答】(1)证明:∵M,N分别为BC,B1C1的中点,底面为正三角形,∴B1N=BM,四边形BB1NM为矩形,A1N⊥B1C1,∴BB1//MN,而AA1//BB1,MN⊥B1C1,∴AA1//MN.又∵MN∩A1N=N,∴B1C1⊥面A1AMN.∵B1C1⊂面EB1C1F,∴面A1AMN⊥面EB1C1F.(2)∵三棱柱上下底面平行,平面EB1C1F与上下底面分别交于B1C1,EF,∴EF//B1C1//BC.∵AO//面EB1C1F,AO⊂面AMNA1,面AMNA1∩面EB1C1F=PN,∴AO//PN,四边形APNO为平行四边形,而O为正三角形的中心,AO=AB,∴A1N=3ON,AM=3AP,PN=BC=B1C1=3EF.由(1)知直线B1E在平面A1AMN内的投影为PN,直线B1E与平面A1AMN所成角即为等腰梯形EFC1B1中B1E与PN所成角.在等腰梯形EFC1B1中,令EF=1,过E作EH⊥B1C1于H,则PN=B1C1=EH=3,B1H=1,B1E=√10,sin∠B1EH=B1HB1E =√1010.所以直线B1E与平面A1AMN所成角的正弦值为√1010.【答案】(1)解:∵ f (x )=2sin 3x cos x , ∴ f ′(x )=2sin 2x(3cos 2x −sin 2x) =−8sin 2x sin (x +π3)sin (x −π3).当x ∈(0,π3)时, f ′(x )>0, f (x )单调递增;当x ∈(π3,2π3)时, f ′(x )<0, f (x )单调递减; 当x ∈(2π3,π)时, f ′(x )>0, f (x )单调递增.(2)证明:由f (x )=2sin 3x cos x 得, f (x )为R 上的奇函数.f 2(x )=4sin 6x cos 2x =4(1−cos 2x )3cos 2x =4(1−cos 2x )3×3cos 2x 3≤43×(3−3cos 2x+3cos 2x 4)4=(34)3.当1−cos 2x =3cos 2x ,即cos x =±12时等号成立,故|f (x )|≤3√38.(3)证明:由(2)知:sin 2x sin 2x ≤3√38=(34)32,sin 22x sin 4x ≤3√38=(34)32, sin 222x sin 23x ≤3√38=(34)32,⋯ sin 22n−1x sin 2n x ≤3√38=(34)32,∴ sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x ≤(34)3n2 , ∴ sin 3x sin 32x sin 34x ⋯sin 32n−1x sin 32n x =sin x(sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x)sin 2nx ≤(34)3n 2,∴ sin 2x sin 22x sin 24x ⋯ sin 22n x ≤3n4n . 【考点】 不等式的证明利用导数研究函数的单调性 【解析】 此题暂无解析 【解答】(1)解:∵ f (x )=2sin 3x cos x , ∴ f ′(x )=2sin 2x(3cos 2x −sin 2x) =−8sin 2x sin (x +π3)sin (x −π3).当x ∈(0,π3)时, f ′(x )>0, f (x )单调递增; 当x ∈(π3,2π3)时, f ′(x )<0, f (x )单调递减;当x ∈(2π3,π)时, f ′(x )>0, f (x )单调递增.(2)证明:由f (x )=2sin 3x cos x 得, f (x )为R 上的奇函数. f 2(x )=4sin 6x cos 2x =4(1−cos 2x )3cos 2x =4(1−cos 2x )3×3cos 2x 3≤43×(3−3cos 2x+3cos 2x 4)4=(34)3.当1−cos 2x =3cos 2x ,即cos x =±12时等号成立,故|f (x )|≤3√38.(3)证明:由(2)知:sin 2x sin 2x ≤3√38=(34)32,sin 22x sin 4x ≤3√38=(34)32, sin 222x sin 23x ≤3√38=(34)32,⋯,sin 22n−1x sin 2nx ≤3√38=(34)32,∴ sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22nx ≤(34)3n 2,∴ sin 3x sin 32x sin 34x ⋯sin 32n−1x sin 32n x=sin x(sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x)sin 2n x ≤(34)3n2, ∴ sin 2x sin 22x sin 24x ⋯ sin 22n x ≤3n4n . 【答案】解:(1)C 1:{x =4cos 2θ,①y =4sin 2θ,②①+②得,x +y =4,故C 1的普通方程为:x +y −4=0. 由 {x =t +1t ,y =t −1t可得{x 2=t 2+2+1t2,③y 2=t 2−2+1t2,④③−④得,x 2−y 2=4,故C 2的普通方程为:x 2−y 2=4. (2)联立C 1,C 2 {x +y −4=0,x 2−y 2=4,解得:{x =52,y =32, 所以点P 坐标为:P (52,32). 设所求圆圆心为Q (a,0),半径为a ,故圆心Q (a,0)到P (52,32)的距离为√(52−a)2+(32−0)2=a ,解得a =1710,所以圆Q 的圆心为(1710, 0),半径为1710,则圆Q 的直角坐标方程为:(x −1710)2+y 2=(1710)2,即.x 2+y 2−175x =0,所以所求圆的极坐标方程为: ρ=175cos θ.【考点】圆的极坐标方程与直角坐标方程的互化 直线与双曲线结合的最值问题 参数方程与普通方程的互化 点到直线的距离公式 【解析】 此题暂无解析 【解答】解:(1)C 1:{x =4cos 2θ,①y =4sin 2θ,②①+②得,x +y =4,故C 1的普通方程为:x +y −4=0. 由 {x =t +1t ,y =t −1t 可得{x 2=t 2+2+1t2,③y 2=t 2−2+1t 2,④③−④得,x 2−y 2=4,故C 2的普通方程为:x 2−y 2=4. (2)联立C 1,C 2 {x +y −4=0,x 2−y 2=4,解得:{x =52,y =32, 所以点P 坐标为:P (52,32). 设所求圆圆心为Q (a,0),半径为a ,故圆心Q (a,0)到P (52,32)的距离为√(52−a)2+(32−0)2=a ,解得a =1710,所以圆Q 的圆心为(1710, 0),半径为1710, 则圆Q 的直角坐标方程为:(x −1710)2+y 2=(1710)2, 即.x 2+y 2−175x =0,所以所求圆的极坐标方程为: ρ=175cos θ.【答案】解:(1)当a =2时,f (x )={7−2x ,x ≤3,1,3<x ≤4,2x −7,x >4.试卷第21页,总21页 因此,不等式f (x )≥4的解集为{x|x ≤32或x ≥112}.(2)因为f (x )=|x −a 2|+|x −2a +1|≥|a 2−2a +1|=(a −1)2, 故当(a −1)2≥4,即|a −1|≥2时, f (x )≥4,所以当a ≥3或a ≤−1时,f (x )≥4;当−1<a <3时, f (a 2)=|a 2−2a +1|=(a −1)2<4. 所以a 的取值范围是(−∞,−1]∪[3,+∞).【考点】绝对值不等式的解法与证明绝对值三角不等式【解析】此题暂无解析【解答】解:(1)当a =2时,f (x )={7−2x ,x ≤3,1,3<x ≤4,2x −7,x >4.因此,不等式f (x )≥4的解集为{x|x ≤32或x ≥112}.(2)因为f (x )=|x −a 2|+|x −2a +1|≥|a 2−2a +1|=(a −1)2, 故当(a −1)2≥4,即|a −1|≥2时, f (x )≥4,所以当a ≥3或a ≤−1时,f (x )≥4;当−1<a <3时, f (a 2)=|a 2−2a +1|=(a −1)2<4. 所以a 的取值范围是(−∞,−1]∪[3,+∞).。
2020年高考试题——数学(理)(全国卷II)

2020年普通高等学校招生全国统一考试(全国卷Ⅱ)数学试卷(理科)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(A∪B)=1.已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则UA.{-2,3}B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-10,2,3}2.若α为第四象限角,则A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05。
志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)A.3699块B.3474块C.3402块D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为52535456.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+…+a k+10=215-25,则k=A.2B.3C.4D.57.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为A.EB.FC.GD.H8.设O为坐标原点,直线x=a与双曲线C:22221(0,0)x ya ba b-=>>的两条渐近线分别交于D,E两点。
2020年高考全国2卷理科数学试卷

绝密★启用前2021年普通高等学校招生全国统一测试理科数学考前须知:1 .做题前,考生务必将自己的姓名、考生号、座位号填写在做题卡上.本试卷总分值150分.2 .作答时,将答案写在做题卡上.写在本试卷上无效.3 .测试结束后,将本试卷和做题卡一并交回.一'选择题:此题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.集合U={-2, -1, 0, 1, 2, 3}, A={-1, 0, 1}, B={\, 2},贝ijQ,(AU8) =A. {-2, 3}B. {-2, 2, 3}C. {-2, -b 0, 3}D. {-2, -1, 0, 2, 3〕2.假设a为第四象限角,那么A. cos2a>0B. cos2a<0C. sin2a>0D. sin2a<03 .在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货, 为使第二天完成积压订单及当日订单的配货的概率不小于0.95,那么至少需要志愿者A. 10 名B. 18 名C. 24 名D. 32 名4 .北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中央有一块圆形石板〔称为天心石〕,环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,每层环数相同,且下层比中层多729块,那么三层共有扇面形石板〔不含天心石〕A. 3699 块B. 3474 块C. 3402 块D. 3339 块5 .假设过点〔2, 1〕的圆与两坐标轴都相切,那么圆心到直线2x-y-3 = 0的距离为6 .数列{“〃}中,%=2,片,假设凡7+6.2+…+.n.=2"—2‘,那么% =7 .以下图是一个多而体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为",在俯视图中对应的点为N,那么该端点在侧视图中对应的点为,1/假设△OOE的面积为8,那么C的焦距的最小值为A. 2B. 3C. 4D. 58. A. E B. FND. H设.为坐标原点,直线x = 〃与双曲线C:X2〕广〉0力>0〕的两条渐近线分别交于两点, A. 4 B. 8 C. 16 D. 32C. G12.0-1周期序列在通信技术中有着重要应用.假设序列.但…耳…满足q.s{01}(i = l,2,…),且存在正整数皿,使得1,2, ・•.)成立,那么称其为0-1周期序列,并称满足生40«= 1,2,…)的最小正整数,〃为1桁这个序列的周期.对于周期为小的0-1序列.0…为…,C 伏)=2>%依=12…,〃L1)是描述其性 质的重要指标,以下周期为5的0-1序列中,满足C(") 4,e=1,2, 3,4)的序列是5A. 11010 ••B. 110U --C. 10001--D. 11001 ••二、填空题:此题共4小题,每题5分,共20分.13. 单位向量.,b 的夹角为45° ,履-力与.垂直,那么k=.14. 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,那么不 同的安排方法共有 种.15. 设复数为,q 满足%1=叼=2 ,马+4=6 + "那么lz 「Z2l=. 16. 设有以下四个命题:Pi :两两相交且不过同一点的三条直线必在同一平面内./〞:过空间中任意三点有且仅有一个平而.P3:假设空间两条直线不相交,那么这两条直线平行.P4:假设直线/U 平面a,直线机_L 平面a,那么 m±l.那么下述命题中所有真命题的序号是—.① 〃1八〃4 ② Pd 〃2③2Vp3 ④F%7三、解做题:共70分.解容许写出文字说明、证实过程或演算步骤.第17〜21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.9 .设函数/(x) = ln ⑵+II,那么/)A.是偶函数,且在('+8)单调递增2C.是偶函数,且在(-co,-1)单调递增2 10.△ABC 是而积为咛的等边三角形,4B.是奇函数,且在单调递减2 2D.是奇函数,且在(一二1)单调递减2且其顶点都在球.的球而上.假设球.的外表积为16兀,那么O到平而ABC 的距离为A.小B. 2211.假设 2、-2><3r —3-v ,那么A. ln(v-x+l)>0B. ln()f -x+l)<0C. 1D. f2C. In I x-y I >0D. In I x-y I <0〔-〕必考题:共60分.17. 〔12 分〕△AB C 中,sin 2A — sin 2B —sin 2C= sinBsinC.〔1〕求 A :〔2〕假设BC=3,求△ABC 周长的最大值.18. 〔12 分〕某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物 的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据■,>',〕〔/=1. 2,…,20〕,其中厮和以分别表示第,个样区的植物覆盖而积〔单位:公20 2020顷〕和这种野生动物的数量,并计算得、>=6°,Ex =1200 t Za —f 〕2=8., Mli-l /-I〔y — ,〕2 = 9000 , i-ii-l〔1〕求该地区这种野生动物数量的估计值〔这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数〕;〔2〕求样本〔如»〕 〔/= 1, 2,…,20〕的相关系数〔精确到0.01〕;〔3〕根据现有统计资料,各地块间植物覆盖而积差异很大.为提升样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.Z 〔X - r 〕〔F 一力tu, -x 〕2X 〔y-y 〕2r-1 i-l19. 〔12 分〕尸且与工轴垂直的直线交.于A ,B 两点,交.2于C,.两点〔1〕求G 的离心率;〔2〕设M 是G 与.2的公共点,假设IMFI=5,求Q 与C2的标准方程.20. 〔12 分〕如图,己知三棱柱A8C-4SG 的底面是正三角形,侧面3囱CC 是矩形,A4, N 分别为BC, Bi .的中附: 相关系数,・=椭圆Ci :%2 V 2——+ _ 〃 b 2=1〔心历>0〕的右焦点厂与抛物线C2的焦点重合,G 的中央与C2的顶点重合.过点,P为AM上一点,过当.和尸的平面交力8于E,交AC于F.〔1〕证实:AM/MN,且平面AHMALL平面EBiCiF;〔2〕设.为△4SG的中央,假设A.〃平而ESGF,且求直线BE与平而ANMN所成角的正弦值.21.〔12分〕己知函数f(x) = sin z xsin2x .〔1〕讨论/U〕在区间〔0,兀〕的单调性:〔2〕证实:|/.〕伍¥ :O3n〔3〕设〃wN ,证实:sin2Asin22xsin24x-siii22" x<—.4n〔-〕选考题:共10分.请考生在第22、23题中任选一题作答.并用2B铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,那么按所做的第一题计分.22 .[选修4-4:坐标系与参数方程]〔10分〕曲线G, C2的参数方程分别为Q-1,fx = 4cos20.I tCi:[, 〔6为参数〕,C2:? i 〔,为参数〕.[y = 4siir. I v = "l 7〔i〕将a, C2的参数方程化为普通方程;〔2〕以坐标原点为极点,X轴正半轴为极轴建立极坐标系.设G,.2的交点为P,求圆心在极轴上, 且经过极点和P的圆的极坐标方程.23 .[选修4—5:不等式选饼]〔10分〕己知函数危〕=k-/l+lx-2a+ll.⑴当〃=2时,求不等式外〕24的解集;<2〕假设兀024,求a的取值范围.参考答案1. A2. D3. B4. C5. B6. C7. A8. B9. D 10. C 11. A 12. C13.正14. 36 15. 2邪16. ®@®217 .解:〔1〕由正弦定理和己知条件得3c2一AC?一A3?= AC AB,①由余弦定理得BC2 = AC2+AB2-2AC AB cosA > ②由①,②得cos A =27 jr 由于0cA<兀,所以4=二.38c〔2〕由正弦定理及〔1〕得一二= —^7 =——= 20, sin B sin C sin A从而AC = 26sin B f AB = 2 Win〔兀一 A — 3〕 = 3cos B - A/3 sin Z?.故BC + 4C + AB = 3 + W sin 8 + 3cos 8 = 3 + 口sin〔B +_〕.\ 所以当8=:时,△ABC周长取得最大值3 + 2石. 3 6又0<8 v_ 1 2018 .解〔1〕由得样本平均数y = ^y, = 60,从而该地区这种野生动物数量的估计值为60X200=12000.〔2〕样本即片〕"=1,2,…,20〕的相关系数20尸厂,"-800 = 2匚…“眉―黄〔1〕2 3V /-] /-I〔3〕分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由〔2〕知各样区的这种野生动物数量与植物覆盖面枳有很强的正相关.由于各地块间植物覆盖而积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提升了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.19 .解:〔1〕由可设C?的方程为V = 4以,其中c=一b2 b不妨设AC在第一象限,由题设得4 3的纵坐标分别为―,-―:的纵坐标分别为2c, -2c,2h2故1481=I CD 1= 4c . a4 Q C C C Cl由ICOI=_I48I得4(、==,即3X_=2—2(_)2,解得广一2 (舍去), 士二3 3a a a a a 2所以C的离心率为1.' 2L A2 V2(2)由(1)知.= 2c, b = yj3c > 故G:“H■厂二1,2 2 JC 4工设M(Xo,)'o),那么"+」;=1,,)上4c%,故u『1=1.①4c2 3c24c2 3c由于G的准线为x = —c,所以IM/l=x0+c,而IM/N=5,故x°=5 — c,代入①得(5 c)2+4("c) = ],即.2-2.一3 = 0,解得C = -1 (舍去),C = 3.4c2 3cc£ L c 2所以I的标准方程为一+ 一= 1, 2的标准方程为y二⑵-36 2720 .解:(1)由于M, N分别为8C, 81G的中点,所以MN〃CG・又由己知得AA/CG,故AA X//MN.由于△ASG是正三角形,所以&GL4|N・又B'CitMN,故31G_L平面A】AMM所以平而4AMNJ•平而EB X C X F .(2)由得AM,8c以M为坐标原点,一的方向为x轴正方向,一为单位长,建立如下图的MA\MB |空间直角坐标系M-x〞,那么AB=2, AM=y/3.连接NP,那么四边形AOVP为平行四边形,故PM=E芭62」o).由(1)知平面4AA/N,平而ABC, 3 3 3作NQ_LAM,垂足为Q,那么N.,平面ABC.设Q3,0,0),那么NQ =小一(针—/ B (aA,鼻一/ 七〞了:/ —\ ( 一\〃噌M又〃=(0,T,0)是平面A】AMN 的法向量,故sin(- '〃・8d)= cos n.B^= - =2 Ini I^EI 10所以直线8行与平面AiAMN所成角的正弦值为1021 .解:(1) f r(x) = cosx(sin xsin 2x) + sinx(sin xsin 2x)r=2sin x cos x sin lx + 2siirx cos 2x=2sin x sin 3x .当xw(0•匹)/当,兀)时,f f(x) > 0 ;当xe (匹,当时,f f(x)< 0 .3 u 3 33/(x) 兀2兀兀2兀所以在区间(0,-JT,兀)单调递增,在区间(一,一)单调递减.3 3 3 3(2)由于/(0)=/(兀)=0,由(1)知,/G)在区间[.,兀]的最大值为兀)W,3 8最小值为//^二二更.而是周期为冗的周期函数,故3 8 83(3)由于(sin' siif 2r・・§肝2"疗一=1 sin3x sin' 2K・・ sin" Tx I=1 sin x II sin2x sin,2x…sin"2"-'x sin 2n x II sin2 21T x I=1 sin x 叮(幻・心)…/⑵/)II sin22n xl<I/(X)/(2A)-/(2)-,X)I,所以sinAsin22x・・siif2"x4( 3,广=三.22.解:(1) G的普通方程为x+y = 4(0VxV4).由c的参数方程得/=/+ )+2,9=/+1二2,所以『一V=4.故C?的普通方程为x-/=4.f _5x -,金+y = 4, I 2 5 3<2)由< ,,得<所以P的直角坐标为,厂I厂一厂=4 _3 2 2i y=r 5 9设所求圆的圆心的直角坐标为(x,0),由题意得V=(x -_尸+ _, 0 0 0 2 417解得工=_.°io-17因此,所求圆的极坐标方程为P=_ cos6.57 - 2x, x < 3,23.解:(1)当.=2时,/a)=〈],3<x«4. [zv-7,x>4,3 11因此,不等式.f(x)之4的解集为“lx 4」或工2 2(2)由于/a)Tx-aT + lx-2a + llK1一4+ 11=3-1)2,故当3 — 1)?之4,即.一1»2 时J(x)N4 .所以当,它3 或aW—l 时,f(x)>4.当一1«/<3 时,f(a2)=\ /- 2a + 11= Q - 1)2<4 ,所以.的取值范围是(-8,-1]11[3,+8).。
2020高考数学全国真题及答案汇编

2020 年普通高等学校招生全国统一考试 理科数学 I
本试卷 5 页, 23 题 (含选考题). 全卷满分 150 分. 考试用时 120 分钟. 注意事项: 1. 答题前, 先将自己的姓名、准考证号填写在试卷和答题卡上, 并将准考证号条形码粘贴在答题卡上的指定 位置. 2. 选择题的作答: 每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑. 写在试卷、草稿纸和 答题卡上的非答题区域均无效. 3. 非选择题的作答: 用黑色签字笔直接答在答题卡上对应的答题区域内. 写在试卷、草稿纸和答题卡上的非 答题区域均无效. 4. 选考题的作答: 先把所选题目的题号在答题卡上指定的位置用 2B 铅笔涂黑. 答案写在答题卡上对应的答 题区域内, 写在试卷、草稿纸和答题卡上的非答题区域均无效. 5. 考试结束后, 请将本试卷和答题卡一并上交.
4
√ D: 5 + 1
2
题3图 4. 已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p =( ).
A: 2
B: 3
C: 6
D: 9
2020 年高考数学全国 I 卷理科真题
2
5. 某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位: ◦C) 的关系, 在 20 个不同的温度条 件下进行种子发芽实验, 由实验数据 xi, yi (i = 1, 2, · · · , 20) 得到下面的散点图:
目录
2020 年高考数学全国 I 卷理科真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 2020 年高考数学全国 I 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6 2020 年高考数学全国 I 卷文科真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 2020 年高考数学全国 I 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20 2020 年高考数学全国 II 卷理科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 28 2020 年高考数学全国 II 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32 2020 年高考数学全国 II 卷文科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40 2020 年高考数学全国 II 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 44 2020 年高考数学全国 III 卷理科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 51 2020 年高考数学全国 III 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 55 2020 年高考数学全国 III 卷文科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63 2020 年高考数学全国 III 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 2020 年新高考数学 I 卷真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 74 2020 年新高考数学 I 卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 79 2020 年新高考数学 II 卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 87 2020 年新高考数学 II 卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 92 2020 年高考数学北京卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 100 2020 年高考数学北京卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 104 2020 年高考数学天津卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 112 2020 年高考数学天津卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 116 2020 年高考数学上海卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 124 2020 年高考数学上海卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 127 2020 年高考数学浙江卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 135 2020 年高考数学浙江卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 139 2020 年高考数学江苏卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 146 2020 年高考数学江苏卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 151
2020年全国新高考II卷数学试题真题及答案(完整版)

在① ac 3 ,② c sin A 3 ,③ c 3b 这三个条件中任选一个,补充在下面问题中,若问题中 三角
形存在,求 c 值;若问题中 三角形不存在,说明理由.
问题:是否存在 △ABC ,它 内角 A, B,C
对边分别为 a,b, c ,且 sin A
3
sin
B
,
C
6
,________?
( 2)若 f( x)≥1,求 a 取值范围.
6 6
加油!你一定行!
真题在手 何必模拟
认真刷题 必过 加油
全卷完
1.考试顺利祝福语经典句子
1、相信自己吧!坚持就是胜利!祝考试顺利,榜上有名! 2、愿全国所有的考生都能以平常的心态参加考试,发挥自己的水平,考上理 想的学校。我真心地祝福你们。 3、试纸浸墨香,金笔下千言。思虑心平定,谨慎落笔闲。且喜平常度,切忌 神慌乱。畅游题海后,金榜题君名。考试在即,祝你成功。 4、亲爱的同学,期末考试来了,愿你们考出好成绩,考到自己理想的成绩。 5、努力吧!不管结果怎样,经历过,总会有结果的!期中考试的朋友们,为 你们祝福,也为自己祈祷!愿梦开始的地方,也是梦想实现的地方!嗯嗯,加油, 嗯,加油! 6、相信你们一定会有很多想说却未言的话,总之走过了,哭过了,笑过了, 就不会有遗憾!带上我们的祝福去打造另外一片属于自己的天空吧! 7、祝愿天下所有考生开心度过期中考试。祝福你们旗开得胜,取得美好佳 绩。平心对待,你们是最棒的!仁慈的上帝会祝福你们的,相信自己,一定能行! 8、眼看考试就要来了,向前看,相信自己,我会在远方为你送去最真挚的祝 福,付出就会有收获的! 9、又是一年年终了,期末考试转眼到。寒窗苦读为前途,望子成龙父母情。 我发短信传祝福:放下包袱开动脑筋,勤于思考好好复习,祝你取得好成绩! 10、信心来自于实力,实力来自于勤奋。我看到了你的努力,相信你一定能在 考试中取得好成绩!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考全国2卷理数试题及答案
(A∪B)=
1.已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则
U
A.{-2,3}
B.{-2,2,3}
C.{-2,-1,0,3}
D.{-2,-10,2,3}
2.若α为第四象限角,则
A.cos2α>0
B.cos2α<0
C.sin2α>0
D.sin2α<0
3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05。
志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者
A.10名
B.18名
C.24名
D.32名
4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)。