电力系统建模仿真作业1

合集下载

基于Simulink的简单电力系统仿真【范本模板】

基于Simulink的简单电力系统仿真【范本模板】

实验六 基于Simulink 的简单电力系统仿真实验目的1) 熟悉Simulink 的工作环境;2) 掌握Simulink 电力系统工具箱的使用;3) 掌握在Simulink 的工作环境中建立简单电力系统的仿真模型实验内容输电线路电路参数建模时采用电力系统分析中常用的π型等值电路,搭建如图1所示的一个简单交流单相电力系统,在仿真进行中,负载通过断路器切除并再次投入。

π型等值电路具体元件参数如下:Ω=2.5R ,H L 138.0=,F C C μ967.021==.π型等值电路图1 简单电力系统仿真示意图1) 在Simulink 中建立简单交流单相电力系统模型,并进行仿真,观测负载电流和输电线路末端电压;2) 结合理论知识分析上述观测信号变化的原因;3) 比较不同功率因数,如cos φ=1、cos φ=0。

8(感性)、cos φ=0。

8(容性)负载条件下的仿真结果实验原理与方法1、系统的仿真电路图实验步骤根据所得建立模型,给定参数,得到仿真结果cosφ=1cosφ=0。

8(感性)cosφ=0.8(容性)实验结果与分析cosφ=1cosφ=0.8(感性)cosφ=0。

8(容性)仿真结果分析(1)在纯阻性负载电路中,电压相位与电流相位相同;与感性负载相比,断路器重新闭合后电流没有额外的直流分量.(2)在感性负载中,电压相位超前电流相位;断路器重新闭合时,交变的电流瞬间增加了一个直流分量,随后逐渐减小.(3)在容性负载中,电压相位滞后于电流相位;断路器重新闭合时,电流瞬间突变至极大;与感性负载和纯阻性负载相比,断路器断开时的末端电压由于有电容放电作用,电压波形畸变很小。

(4)当断路器断开时,线路断路,电流突变为0,但电压行波仍在进行,因此在末端能够测量到连续的电压波形,但断路器断开对电压波形造成了影响,产生了畸变。

这是由于能量是通过电磁场传递的,线路断开时电压继续向前传递。

总括:L和C对输出波形振荡的频率和幅度影响程度不同,当变化相同幅度时,电容对振荡频率和幅度的影响要比电感的大.感想:Matlab中Simulik通过拖拉建模方式对电路进行仿真,具有快捷、方便、灵活的特点。

电力系统建模仿真作业1

电力系统建模仿真作业1

无穷大功率电源供电系统仿真假设无穷大功率电源供电系统,在0.02s时刻变压器低压母线发生三相短路故障,仿真其短路电流周期分量幅值和冲击电流的大小。

线路参数L=50km,x1=0.4Ω/km,r1=0.17Ω/km;变压器Sn=20MV·A,短路电压Us%=10.5,短路损耗ΔPs=135kw,空载损耗ΔP0=22kw,空载电流I0%=0.8,变比kT=110/11,高低压绕组均为Y行联接;并设供电点电压为110KV。

其对应的Simulink仿真模型如图1-1所示。

图1-1 无穷大功率电源供电系统的Simulink仿真图表1-1 图1-1仿真电路中各模块名称及提取路径模块名提取路径无穷大功率电源Three-Phase Source SimPowerSystems/Eletrical Sources三相并联RLC负荷模块5MW SimPowerSystems/Elements串联RLC支路Three-phaseParallelRLCBranch SimPowerSystems/Elements三相故障模块Three-phase-Fault SimPowerSystems/Elements三相电压电流测量模块V-I-M SimPowerSystems/Measurements示波器模块Scope Simulink/Sinks电力系统图形用户界面Poweigui SimPowerSystems双绕组变压器模块Three-PhaseTransformer SimPowerSystems/Elements图1-2 电源模块的参数设置变压器T 采用“Three-PhaseTransformer (Two Windings )”模型。

根据给定的数据,计算折算到110kv 侧的参数如下:变压器的电阻为2233221351101010 4.0820000s N T N PU R S ∆⨯=⨯=⨯Ω=Ω 变压器的电抗为22332%10.5110101063.5310010020000s N T N U U X S ⨯=⨯=⨯Ω=Ω⨯ 变压器的漏感:63.53/(2)0.2022 3.1450T T L X f H H π===⨯⨯变压器的励磁电阻为2233301101010 5.51022N m U R P =⨯=⨯Ω=⨯Ω∆ 变压器的励磁电抗为22330100100110101075625%0.820000N m N U X I S ⨯=⨯=⨯Ω=Ω⨯ 变压器的励磁电感为75625/(2)240.82 3.1450m m L X f H H π===⨯⨯变压器模块中的参数采用有名值则设置如图1-3所示图1-3采用有名值时变压器模块的参数设置如果要采用标幺值,则在Similink 的三相变压器模型中,一次、二次绕组漏感和电阻的标幺值以额定功率和一次、二次侧各自的额定线电压为基准值,励磁电阻和励磁电感以额定功率和一次额定线电压为基准值。

(完整版)电力系统仿真

(完整版)电力系统仿真

电力系统分析与设计例子:电力系统可视化仿真介绍EXAMPLE1-1:题目:双总线电力系统初始条件:总线1电压为16kV,总线2为15.75KV,负载功率为5MW,发电机功率为5.1MW。

总线1与总线2之间由一条传输线连接。

实验步骤:保持其他参数不变,依次调节负载功率参数,观察其他参数的变化。

实验现象:①当负载功率为5MW时,发电机的输出功率为5.1MW。

②当负载功率调整为6MW时,发电机的输出功率为6.1MW。

③当负载功率调整为4MW 时,发电机的输出功率为4.0MW。

实验结论:在双总线电力系统中,当其他线路装置参数不变时,负载功率增大时,发电机的输出功率相应增大,负载功率减小时,发电机的输出功率相应减小。

EXAMPLE1-2:题目:植入新的总线初始条件:在上图中保持其他条件不变,植入新的总线”Bus3”。

实验步骤:在powerworld选择edit mode,在Draw中选择Network---bus,将”Bus”放置图中,双击”Bus”,将对话框中的名称改为”Bus3”,电压改为16kV。

实验结果:如下图所示EXAMPLE1-3:题目:三总线电力系统初始条件:在EXAMPLE2的基础上,通过传输线路将Bus1和Bus2与Bus3连接在一起。

实验步骤:在edit mode下,选择draw选项,选择Network中的transmission line,单击Bus1,然后将线路连接到Bus3,双击完成连接。

并调节字体大小和线路的颜色。

在Network中选择load选项,选择load的大小。

最后把系统名字改为Three Bus Powr system。

实验结果:如下图所示②对新系统进行调节参数实验:实验步骤:⑴调节新总线Bus3下负载参数,观察对其它参数的影响:①当负载功率为11MW时,如图②当负载功率为9MW时,如图实验结论:当Bus3下负载功率增大时,Bus2和Bus3上的电压降低,发电机的输出功率增大;当Bus3下负载功率减小时,Bus2和Bus3上的电压增大,发电机的输出功率变小。

电力系统分析(本)网上作业一及答案

电力系统分析(本)网上作业一及答案

练习一:单项选择题1、额定变比为10.5kV/242kV的变压器工作于+2.5%抽头,其实际变比为()。

A 10.5kV/242kVB 10kV/220kV C10.5kV/248.05Kv(答案:C)2、额定变比为35kV/11kV的变压器工作于-2.5%抽头,其实际变比为()。

A 34.125kV/10.725kVB 34.125kV/11kV C35kV/11Kv(答案:B)3、三绕组变压器的结构,通常将高压绕组绕在铁心的()。

A 外层B 内层C中层(答案:A)4、采用分裂导线可()输电线电容。

A 增大B 减小C保持不变(答案:A)5、采用分裂导线可()输电线等效半径。

A 增大B 减小C保持不变(答案:A)6、短路电流周期分量的标么值与()有关。

A.转移电抗和短路时间B.计算电抗和短路点距离C.计算电抗和短路时间(答案:C)7、在系统发生短路时,异步电动机()向系统提供短路电流。

A.绝对不B.一直C.有时(答案:C)8、在运用计算曲线进行短路电流计算时,负荷。

A.用恒定阻抗表示B.用变阻抗表示C.不予考虑(答案:A)9、对于静止元件来说,其()。

A 正序电抗=负序电抗B正序电抗=零序电抗C负序电抗=零序电抗(答案:A)10、架空输电线的正序电抗()于其零序电抗。

A 大于B 小于C等于(答案:B)11、有架空地线的输电线的零序电抗()无架空地线的输电线的零序电抗。

A 大于B 小于C等于(答案:B)12、平行架设的双回输电线的零序阻抗()单回输电线的零序阻抗。

A 大于B 小于C等于(答案:A)13、对于变压器的各序漏抗,其值大小()A 相等B 不等C不能确定(答案:A)14、两相短路时的比例系数m(n)为()。

A.3B.1C.3(答案:A)15、电压和电流对称分量在经过()接线的变压器后相位不变。

A. Y,d11B. Y,y0C.Y,d1(答案:B)16、电力系统发生短路后,系统中各点电压的不对称程度主要由()序分量决定。

PSCAD的电力系统仿真大作业1

PSCAD的电力系统仿真大作业1

电力系统分析课程报告姓名******学院自动化与电气工程学院专业控制科学与工程班级*****************指导老师******二〇一六年六月十六1同步发电机三相短路仿真计算1.1仿真模型的建立根据老师给的三相同步发电机模型做了修改(空载)。

同步发电机三相短路实验仿真研究的模型如下图所示:图1.1 同步发电机三相短路仿真研究的模型1.2 PSCAD中的仿真结果1.2.1 发电机出口电压Ea。

发电机出口电压Ea,如下图所示:图1.2 发电机出口电压Ea1.2.1 衰减时间常数Ta对于直流分量的影响励磁电压和原动机输入转矩Ef与Tm均为定常值1.0,且发电机空载。

当运行至0.5056s时,发电机发生三相短路故障。

定子三相短路电流中含有直流分量和交流分量,三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定,大约0.2s。

PSCAD同步发电机模型衰减时间常数Ta(Ta=0.235s)对应位置下图所示。

图1.3 同步发电机参数Ta设置图(1)当衰减时间常数Ta=0.235s时,直流分量(If)的衰减过程如下图所示。

图1.4 直流分量的衰减波形(2)当衰减时间常数Ta=0.125s的参数设置、直流分量(If)的衰减过程如下图所示。

图1.3 同步发电机参数Ta设置图图1.4 直流分量的衰减波形1.2.2 短路时间不同的影响同步发电机出口三相短路的时间不同对三相短路电流的影响:短路电流的直流分量起始值越大,短路电流瞬时值就越大;直流分量的起始值与短路时间的电流相位直接关系。

短路时间参数设置如下图所示:图1.5 短路时间参数设置1)当0.5056s时发生三相短路,电流波形如下图所示:图1.6 三相短路电流波形2)当0.8065s时发生三相短路,电流波形如下图所示:图1.7 三相短路电流波形1.2.3 Xd、Xd`、Xd``对短路电流的影响(1) Xd不同的影响同步发电机的三相短路研究模型中Xd的参数设置如下图所示:图1.8 Xd的参数设置仿真波形如下图所示:图1.9 三相短路电流波形同步发电机的三相短路研究模型中Xd的参数设置如下图所示:图1.10 Xd的参数设置Xd=10.14时,仿真波形如下图所示图1.11 三相短路电流波形(2)Xd`的影响同步发电机的三相短路研究模型中Xd’的参数设置如下图所示:图1.12 Xd的参数设置Xd’=0.314时三相短路电流的波形如下图所示:图1.13 三相短路电流波形同步发电机的三相短路研究模型中Xd’的参数设置如下图所示:图1.14 Xd’的参数设置Xd’=1.01时,三相短路电流的波形如下图所示:图1.15 三相短路电流波形(3)Xd’’的影响同步发电机的三相短路研究模型中Xd’’的参数设置如下图所示:图1.16 Xd’’的参数设置Xd’’=10.14时,仿真波形如下图所示:图1.17 三相短路电流波形同步发电机的三相短路研究模型中Xd’’的参数设置如下图所示:图1.18 Xd’’的参数设置Xd’’=0.9时三相短路电流的波形如下图所示:图1.19 三相短路电流波形1.2.4衰减时间常数Td’、Td’’的影响(1)不同Td’时A相短路电流暂态交流分量衰减速度。

电力系统仿真实习报告模板(华北电力大学)

电力系统仿真实习报告模板(华北电力大学)

实验一 电力系统有功功率分布及分析二、实验原理图1所示为一条线路的等值电路图。

假设ij P 和ij Q 为线路ij 的有功及无功潮流,两端节点电压分别为i U 和j U ,其它参数如图所示。

则有假设1==j i U U , sin ij ij θθ=, cos 1=ij θ,0=ij r上式可以简化为式中ij x 是线路电抗。

三、实验步骤及数据记录 ① ②母线名Bus1Bus2Bus3BusaBusbBuscU(幅值) 238.85 239.75 242.21 231.29 235.02 237.22 δ(相角)2.72.14-2.73-2.030.3发电机有功P母线名Bus1Bus2Bus3BusaBusbBusc108.60 U 238.25 238.11 240.1 230.27 233.85 235.30 δ-0.102.521.86-2.89-2.220.04发电机有功P 母线名Bus1Bus2Bus3BusaBusbBusc111.75 U 237.64 236.46 237.98 229.23 232.66 233.38 δ-0.202.341.58-3.06-2.42-0.21发电机有功P 母线名Bus1Bus2Bus3BusaBusbBusc()ij ij ij ij j i ij i ij b g V V g V P θθsin cos 2+-=ijj i j i ij ij x b p /)()(`θθθθ-=--=图1 线路等值电路图 图1 线路等值电路图③第②步实验完成后,重新点击“量测分析”、“状态估计”、“调度员潮流”重新返回基态潮流,或者点击“调度员潮流”窗口上菜单栏“调度操作”项,选择“清除操作”项,系统便返回初始基态潮流。

选择母线C上的负荷进行操作,在窗口中选中负荷,按右键,在弹出的菜单中选择“负荷功率调节”,在出现的对话窗中调节负荷有功功率P。

依次调节功率,每次递增10MW,共操作十次,记录下每次操作后负荷有功功率P的值、各节点电压的幅值和电压相角值。

电力系统建模仿真作业

电力系统建模仿真作业

风电并网后静态电压稳定性分析的建模与仿真电力系统经常采用P-V曲线分析法来分析有关静态电压稳定性的问题,P代表穿越传输断面传送的功率或者一个区域的总负荷,V代表代表性节点或关键节点的电压。

P-V曲线分析法即是建立一个区域负荷或者传输界面潮流和节点电压之间的关系曲线,从电力系统当前的稳定运行点开始,通过不断增加P,使用潮流计算,描出代表节点的电压变化曲线,用P-V曲线的拐点来表示区域负荷或者传输界面功率的增加导致整个系统临界电压崩溃的程度,即系统静态电压稳定极点。

在把P-V曲线法用于研究风电的接入对电压静态稳定性的影响时,P代表的是风电场输出的有功功率,V为机端电压、风电接入点电压(PCC电压)等其他需要监测的母线电压。

实际上,P-V曲线法是在静态情况下,研究风速变化导致的风电场输出有功功率的变化对电网电压的影响。

用风电输出的有功功率引起的电压水平的变化及当前运行点到电压崩溃点的“距离”,反映风电接入的电网的电压稳定裕度。

在求取风电接入系统的P-V曲线时 ,除了系统平衡节点外,一般不考虑网内其他常规机组的有功功率的变化以及网内负荷的变化情况。

综上,电网基于静态电压稳定性的风电接纳能力,即是以电网的静态电压稳定性作为约束条件,在保证电网静态电压稳定的基础上尽可能多接入风电。

通常系统静态电压越限临界点所接入的风电容量即为系统可接纳的最大风电并网容量。

1算例本文通过IEEE14节点标准测试系统作为算例,风电场通过变压器和110 kV 线路接入IEEEl4节点标准测试系统的14号节点,使用以上算法对基于静态电压稳定性下的一风电场的并网功率极限进行计算。

风电场IEEE14节点系统110kv线路图2.2 风电场接入IEEE14系统图图中变压器标幺变比取1(在实际运行中,可以通过改变变压器的分接头来调控特定节点的电压),风电场接入系统的线路参数为12.6+j24.96Ω。

本文基于双馈感应风机的风电场进行电压静态稳定约束下接纳能力计算。

电力电子建模与仿真例题

电力电子建模与仿真例题

Referenced Examples3-Phase Thyristor Rectifier Bridge注:本例的运行环境为matlab 7.11.0(2010b)1、建立一个名为example_1的model文件1)在matlab菜单栏上单击File,并在下拉菜单的New选项下单击Model:2)建立model文件后,单击工具栏的保存按钮:3)将文件名保存为example_1这样就建立了一个名为example_1的model文件下一步就可以在这个界面上绘制例题上的电气原理图仿真了.用matlab对电路进行仿真通常经过以下几个步骤:(a)放置所需要的各种元器件(包括电源),设置各元器件的属性。

(b)用导线连接各个元器件,形成电路图。

(c)执行仿真。

(d)观看仿真波形,分析仿真结果。

2.绘制电气原理图:放置电路图中的电气元器件并分别设元器件属性置。

单击工具栏的Library Browser按钮添加元件功能模块,并找到他们所在的模块库。

a)三相电源SimPowerSystem/Electrical Sources/AC V oltage Source单击右键,选择Add to example_1,这样就在example_1中添加了一个交流电源,为了接下来绘图的方便,可采用ctrl+R使模型旋转水平放置。

三相电源即需要三个交流电源,可采用复制粘贴的办法。

下图为如何添加一个AC V oltage Source模型接下来就要对交流电源的模型参数进行设置双击a相的交流电源模型,弹出模块参数设置的对话框:相电压峰值大小根据题目要求线电压峰值为208V进行计算,a相相角为0,频率为60Hz,这样a相交流电源就设置完成。

B相,C相的参数设置类似,注意B相相角为240、C相为120。

最后添加一个SimPowerSystem/Elements/Ground.这样三相电源的部分全部添加完成。

b)电感(电阻)SimPowerSystem/Elements/Series RLC Branch双击模型在branch type里选择L:然后可以对电感的值进行设置,例如设为0.2mH:如果是电阻与电感串联即可以选择RL。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无穷大功率电源供电系统仿真
假设无穷大功率电源供电系统,在0.02s时刻变压器低压母线发生三相短路故障,仿真其短路电流周期分量幅值和冲击电流的大小。

线路参数L=50km,x1=0.4Ω/km,r1=0.17Ω/km;变压器Sn=20MV·A,短路电压Us%=10.5,短路损耗ΔPs=135kw,空载损耗ΔP0=22kw,空载电流I0%=0.8,变比kT=110/11,高低压绕组均为Y行联接;并设供电点电压为110KV。

其对应的Simulink仿真模型如图1-1所示。

图1-1 无穷大功率电源供电系统的Simulink仿真图
表1-1 图1-1仿真电路中各模块名称及提取路径
模块名提取路径
无穷大功率电源Three-Phase Source SimPowerSystems/Eletrical Sources
三相并联RLC负荷模块5MW SimPowerSystems/Elements
串联RLC支路Three-phaseParallelRLCBranch SimPowerSystems/Elements
三相故障模块Three-phase-Fault SimPowerSystems/Elements
三相电压电流测量模块V-I-M SimPowerSystems/Measurements
示波器模块Scope Simulink/Sinks
电力系统图形用户界面Poweigui SimPowerSystems
双绕组变压器模块Three-PhaseTransformer SimPowerSystems/Elements
图1-2 电源模块的参数设置
变压器T 采用“Three-PhaseTransformer (Two Windings )”模型。

根据给定的数据,计算折算到110kv 侧的参数如下:
变压器的电阻为
22
33221351101010 4.0820000
s N T N PU R S ∆⨯=⨯=⨯Ω=Ω 变压器的电抗为
22
332%10.5110101063.5310010020000
s N T N U U X S ⨯=⨯=⨯Ω=Ω⨯ 变压器的漏感:
63.53/(2)0.2022 3.1450
T T L X f H H π==
=⨯⨯
变压器的励磁电阻为
22
33301101010 5.51022
N m U R P =⨯=⨯Ω=⨯Ω∆ 变压器的励磁电抗为
22
330100100110101075625%0.820000
N m N U X I S ⨯=⨯=⨯Ω=Ω⨯ 变压器的励磁电感为
75625/(2)240.82 3.1450
m m L X f H H π===⨯⨯
变压器模块中的参数采用有名值则设置如图1-3所示
图1-3采用有名值时变压器模块的参数设置
如果要采用标幺值,则在Similink 的三相变压器模型中,一次、二次绕组漏感和电阻的标幺值以额定功率和一次、二次侧各自的额定线电压为基准值,励磁电阻和励磁电感以额定功率和一次额定线电压为基准值。

则一次侧的基准值为
221111060520
n base N U R S ⋅==Ω=Ω 2211110 1.9272202 3.1450
n base
N U L H H S f π⋅===⨯⨯⨯⨯ 二次侧的基准值为 22
2211 6.0520n base
N U R S ⋅==Ω=Ω 2222110.019272202 3.1450
n base N U L H H S f π⋅===⨯⨯⨯⨯ 因此,一次绕组漏感和电阻的标幺值为
11110.50.50.5 4.080.50.2020.0033,0.052605 1.927
T T base base R L R L R L ⋅⋅⋅⋅⨯⨯⨯⨯====== 同理,220.0033,0.052,909.09,106.3,m m R L R R ⋅⋅⋅⋅====则变压器的参数设置如图1-5所示
图1-5 采用标幺值时变压器模块的参数设置
输电线路L 采用“Three-phaseParallelRLCBranch ”模型。

根据给定的参数计算可得,
0.17508.5L I R r l =⨯=⨯Ω=Ω
200.45020,/20.0642 3.1450
L I L L X X l L X f H π=⨯=⨯Ω=Ω==
=⨯⨯ 输电线路模块的参数设置如图1-6所示
图1-6 输电线路模块的参数设置
三相电压电流测量模块“Three-PhaseV-I Measurement ”将在变压器低压侧测量到的电压电流信号转变成Simulink 信号,相当于电压、电流互感器的作用,其参数设置如图1-7所示。

图1-7 三相电压电流测量模块
仿真时,故障点的故障类型等参数采用三相线路故障模块“Three-Phase Fault ”来设置,如图1-8所示。

图1-8 三相线路故障模块参数设置
仿真结果及分析
得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小。

短路电流周期分量的幅值为
22222110/31010.63()()(4.088.5)(63.520)m t
m T L T L U k I A kA R R X X ⋅⨯⨯===++++++
时间常数为
()0.2020.0640.02114.088.5
T L a T L L L T s s R R ++===++
则短路冲击电流为
0.01/0.0211(1) 1.622517.3im m m i e I I kA -≈+==
通过模型窗口菜单中的“Simulation →Configuration Parameters ”命令打开设置仿真参数的对话框,选择ode23t 算法,仿真起始时间设置为0,终止时间设置为0.2s ,其他参数采用默认设置。

在三相线路故障模块中设置在0.02s 时刻变压器低压母线发生三相短路故障。

仿真运行,可得变压器低压侧的三相短路电流波形如图1-9所示。

图1-9 变压器低压侧三相短路电流波形图
可见,短路电流周期分量的幅值为10.64KA ,冲击电流为17.39KA ,与理论计算相比稍有差别,这是由于店员模块的内阻设置不同而造成的。

相关文档
最新文档