(完整版)盈亏问题试题及答案

合集下载

(完整word版)小学奥数盈亏问题及答案

(完整word版)小学奥数盈亏问题及答案

1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下 12 棵时不够每人分一棵了,若是再拿来 8 棵,那么每个同学正好栽 10 棵。

问参加栽树的有多少名同学?原有树苗多少棵?2、少先队员去植树,若是每人挖 5 个树坑,还有 3 个树坑没人挖;若是其中两人各挖 4 个树坑,其余每人挖 6 个树坑,就恰好挖完全部的树坑。

请问,共有多少名少先队员?共挖了多少树坑?3、学校安排学生到会议室听报告。

若是每 3 人坐一条长椅,那么剩下48 人没有坐;若每 5 人坐一条长椅,则恰好空出两条长椅。

问听报告的学生有多少人?4、钢笔与圆珠笔每支相差 1 元 2 角,小明带的钱买 5 支钢笔差 1 元 5 角,买 8 支圆珠笔多 6 角。

问小明带了多少钱?5、幼儿园将一筐苹果分给小朋友。

若是分给大班的小朋友每人 5 个则余 10 个;若是分给小班的小朋友每人 8 个则缺 2 个。

已知大班比小班多 3 个小朋友,问这筐苹果共有多少个?6、某校到了一批再生,若是每个寝室安排8 个人,要用33 个寝室;若是每个寝室少安排 2 个人,寝室就要增加10 个,问这批学生可能有多少人?7、幼儿园老师给小朋友分糖果。

若每人分8 块,还剩10 块;若每人分9 块,最后一人分不到9 块,但最少可分到一块。

那么糖果最多有多少块?8、有48 本书分给两组小朋友,已知第二组比第一组多 5 人。

若是把书全部分给第一组,那么每人4本,有节余;每人 5 本,书不够。

若是把书全分给第二组,那么每人 3 本,有节余;每人 4 本,书不够。

问第二组有多少人?9、在若干盒卡片,每盒中卡片数同样多。

把这些卡片分给一些小朋友,若是只分一盒,每人均最少可得 7 张,但若都分8 张则还缺少 5 张。

现在把全部卡片都分完,每人都分到60 张,而且还多出 4 张。

问共有小朋友多少人?10、用绳测井深,把绳三折,井外余 2 米,把绳四折,还差 1 米不到井口,那么井深多少米?绳长多少米?11、有两根同样长的绳子,第一根平均剪成 5 段,第二根平均剪成7 段,第一根剪成的每段比第二根剪成的每段长 2 米。

小学数学《盈亏问题》练习题(含答案)

小学数学《盈亏问题》练习题(含答案)

小学数学《盈亏问题》练习题(含答案)盈亏问题是一类生活中很常见的问题.按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义.解盈亏问题的窍门可以用下面的公式来概括:(盈+亏)÷两次分得之差=人数或单位数;(盈-盈)÷两次分得之差=人数或单位数;(亏-亏)÷两次分得之差=人数或单位数.上面的公式不能盲目套用,在真正掌握其内涵以后再运用公式解题将会使你面临盈亏问题时而游刃有余,不可盲目套用公式.(一)直接计算型【例1】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?分析:猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11-10=1(条),由盈亏问题公式得,有小猫:8÷1=8(只),猫妈妈有8×10+8=88(条)鱼.[巩固]学而思学校三年级基础班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位同学分多少粒糖果?分析:第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是5-4=1(粒),由盈亏问题公式得,参与分糖的同学有:9÷1=9(人),有糖果9×5=45(粒).【例2】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,朝阳小学一共有多少个班?买来多少个足球?分析:第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分配之差是4-2=2(个),由盈亏问题公式得,朝阳小学有:66÷2=33(个)班,买来足球33×2=66(个).[巩固]学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?分析:第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是4-3=1(个),由盈亏问题公式得,参与分玩具的同学有:9÷1=9(人),有小玩具9×3=27(个).【例3】学而思学校新近一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?分析:“差9本”和“差2本”两者相差9-2=7(本),每个人要多发10-9=1(本),因此就知道,共有老师7÷1=7(人),书有7×10-9=61(本).[巩固]王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还差30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?分析:本题购物的两个方案,每一个方案都出现钱不足的情况,买7把差110元,买5把还差30元,从买7把变成买5把,少买了7-5=2(把),而钱的差额减少了110-30=80(元),即80元可以买2把小提琴,可见小提琴的单价是每把40元,王老师一共带了40×7-110=170(元).【例4】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?分析:“多8元”与“多4元”两者相差8-4=4(元),每个人要多出 8-7=1(元),因此就知道,共有4÷1=4(人),蛋糕价钱是8×4-8=24(元).[巩固]老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?分析:老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏总和是9-2=7(个),两次分配之差是11-10=1(个),由盈亏问题公式得,有小猴子:7÷1=7(只),老猴子有7×10+9=79(个)桃子.【例5】点点妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?分析:题中告诉我们每天吃4个,多出48个苹果;每天吃6个,少8个苹果.观察每天吃的个数与苹果剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个),从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个苹果了.吃的天数是(48+8)÷(6-4)=56÷2=28(天),苹果数是6×28-8=160(个)或 4×28+48=160(个).[巩固]学而思学校三年级基础班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?分析:由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).[总结] 以上是最基本的盈亏问题题目,要求老师在教学过程中引导学生理解掌握其解法并能让学生熟练运用公式,这是解答后面其他类型盈亏问题的基础.(二)条件转化型【例6】猪妈妈带着孩子去野餐,如果每张餐布周围坐4只小猪就有6只小猪没地方坐,如果每张餐布周围多坐一只小猪就会余出4个空位子,问:一共有多少只小猪,猪妈妈一共带了多少张餐布?分析:这种类型的题目不能直接计算,要将其中的一个条件转化,使之转化为为基本的盈亏问题.已知每张餐布周围多坐一只小猪就是坐5只小猪,余出4个空位子就是少4只小猪,所以原问题可以转化为:如果每张餐布周围坐4只小猪,则多出6只没处坐;如果每张餐布周围坐5只,还少4只,求有多少只小猪多少张餐布?所以餐布数是:(6+4)÷1=10(张),有小猪:10×4+6=46(只).[巩固]中关村一小学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?分析:每车多坐5人,实际是每车可坐5+65=70(人),恰好多余了一辆车,也就是还差一辆汽车的人,即70人.因而原问题转化为:如果每车坐65人,则多出5人无车乘坐;如果每车坐70人,还少70人,求有多少人和多少辆车?车数是(5+5+65)÷5=15(辆),人数是65×15+5=980(人)或(5+65)×(15-1)=980(人).【例7】国庆节快到了,学而思学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花盆?分析:这是一道有难度的盈亏问题,主要难在对第二个已知条件的理解上:如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完,这组条件中包含着两种摆花盆的情况——2人各摆4盆,其余的人各摆6盆.如果我们把它统一成一种情况,让每人都摆6盆,那么,就可以多摆(6-4)×2=4(盆).因此,原问题就转化为:如果每人各摆5盆花,还有3盆没人摆;如果每人摆6盆花,还缺4盆.问有多少少先队员,一共摆多少花盆?人数: [3+(6-4)×2]÷(6-5)=7(人),盆数:5×7+3=38(盆)或6×7-4=38(盆).[拓展]兔子妈妈分白菜:如果其中2只小兔子每只分4棵,其余每只分2棵,则多4棵白菜;如果其中一只小兔子分6棵,其余每只分4棵,则差12棵白菜,问:一共有多少只小兔子?一共有多少棵白菜?分析:由已知条件,第一种分配:其中2只每只分4棵,其余每只分2棵,则多4棵白菜,我们假设,如果所有的小兔子每只都分2棵,就会多出2×2=4(棵),这样将条件转化为:每只分2棵,则多出4+2×2=8(棵);第一种分配,如果假设每只小兔子分4棵,就会多出6-4=2(棵),这样将条件转化为:每只分4棵,则差12-2=10(棵),第一次与第二次分配相差8+10=18(棵),两次分配每只小兔子相差4-2=2(只),所以小兔子的总数为:18÷2=9(只),一共有白菜:2×9+8=26(棵).【例8】王海从家到实验一小,如果每分钟走50米,上课就要迟到3分钟;如果每分钟60米,就可以比上课时间提前2分钟到校,那么王海的家距离学校多远?分析:根据题意,每分钟走50米,上课就要迟到3分钟,就是还差50×3=150(米)到校;如果每分钟60米,就可以比上课时间提前2分钟到校,即到校后还可以多走60×2=120(米),第一种情况比第二种情况每分钟多走60-50=10(米),就可以多走150+120=270(米),王海从家到学校所用时间是:270÷10=27(分钟),家到学校的距离是:50×(27+3)=50×30=1500(米).[拓展]学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?分析:小明每分钟走60米,可提早10分钟到校,即到校后还可多走60×10=600(米);如果每分钟走50米,可提早8分钟到校,即到校后还可多走50×8=400(米),第一种情况比第二种情况每分钟多走60-50=10(米),就可以多走600-400=200(米),从而可以求出小明由家到校所需时间.(1)10分种走多少米?60×10=600(米),(2)8分种走多少米?50×8=400(米),(3)需要时间:(600-400)÷(60-50)=20(分钟),所以小明7时40分离家刚好8时到校.(4)由家到校的路程: 60×(20-10)=600(米)或:50×(20-8)=600(米).【例9】有一个班的同学去划船.他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人.问:这个班共有多少同学?分析:先增加一条船,那么正好每条船坐6人.然后去掉两条船,就会余下6×2=12(名)同学.改为每条船9人,也就是说,每条船增加9-6=3(人),正好可以把余下的12名同学全部安排上去,所以现在还有12÷3=4(条)船,而全班同学的人数是9×4=36(人).[巩固]有一个班的学生去公园划船,如果增加两条船,正好每条船坐6人;如果减少两条船,正好每条船坐9人,问:这个班一共有多少人?分析:增加两条船,正好每条船坐6人,然后去掉四条船,就会余下6×4=24(人),改为每只船9人,即每条船增加9-6=3(人),正好可以把余下的24人全部安排上去,所以现在船数为:24÷3=8(条),这个班的人数为:9×8=72(人).[总结] 这部分的题目不能直接运用公式计算,首先需要将一定的条件转化,使之成为跟第一部分相类似的题型,在运用公式计算.【例10】幼儿园阿姨将一些糖果分给若干个小朋友,每个小朋友分5个还余10个糖果,如果小朋友数增加到3倍,那么每小朋友分2个糖果还缺少8个,问有糖果多少个?分析:考虑小朋友数增加3倍后,相当于按原来小朋友数分给每小朋友2×3=6(个)糖果,每个小朋友给5个与给6个,总数相差10+8=18 (个),所以原有小朋友数 18÷(6-5)=18(小朋友),糖果总数是 5×18+10=100(个).[拓展]一些桔子分给若干个人,每人5个还多余10个桔子,如果人数增加到3倍还少5个人,那么每人分2个桔子还缺少8个,问有桔子多少个?分析:使人感到困难的是条件“3倍还少5人”.先要转化这一条件,假设还有 10个桔子,10=2×5,就可以多有 5个人,把“少5人”这一条件暂时搁置一边,只考虑3倍人数,也相当于按原人数每人给2×3=6(个),每人给5个与给6个,总数相差10+10+8=28 (个),所以原有人数 28÷(6-5)=28(人),桔子总数是 5×28+10=150(个).【例11】军队分配宿舍,如果每间住3人,则多出20人;如果每间住6人,余下2人可以每人各住一个房间,现在每间住10人,可以空出多少个房间?分析:每间住6人,余下2人可以每人各住一个房间,说明多出两个房间,同时多出两个人,即两次分配方案人数相差20+6×2-2=30(人),每间房间相差:6-3=3(人),所以共有房间:30÷3=10(间),一共有:3×10+20=50(人),即可以空出10-50÷10=5(间)房间.【例12】在桥上用绳子测桥离水面的高度.若把绳子对折垂到水面,则余8米;若把绳子三折垂到水面,则余2米.问:桥有多高?绳子有多长?分析:因为把绳子对折余8米,所以是余了8×2=16(米);同样,把绳子三折余2米,就是余了3×2=6(米).两种方案都是“盈”,故盈亏总额为16-6=10(米),两次分配数之差为3-2=1(折).所以,桥高(8×2-2×3)÷(3-2)=10(米),绳子的长度为2×10+8×2=36(米).[拓展]用一根绳子测井台到井水面的深度,把绳对折后垂到井水面,绳子超过井台9米;把绳子三折后垂到井水面,绳子超过井台2米.求绳长和井深.分析:把绳对折后垂到井水面,绳子超过井台9米,说明绳子余9×2=18(米),把绳子三折后垂到井水面,绳子超过井台2米,说明绳子余2×3=6(米),所以,井深:(18-6)÷(3-2)=12(米),绳子长:12×2+9×2=42(米).1.(例4)某校同学排队上操.如果每行站9人,则多69人;如果每行站12人,则多15人.一共有多少学生?分析:一共有(69-15)÷(12-9)=18(行),一共有学生9×18+69=231(人)2.(例5)小波到商店去买罐装可乐,她付给售货员的钱买3罐多1元,买5罐又差5元.每罐“可乐多少元?分析:“多1元”与“差5元”两者相差1+5=6(元),买的罐数相差5-3=2(罐),因此就知道每罐可乐(5+1)÷(5-3)=3(元)3.(例6)学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人?分析: 每个房间住3人,则多出23人,每个房间住5人,就空出3个房间,这3个房间如果住满人应该是5×3=15(人),由此可见,每一个房间增加5-3=2(人).两次安排人数总共相差23+15=38(人),因此,房间总数是:38÷2=19(间),学生总数是:3×19+23=80(人),或者5×19-5×3=80(人).3、(例7)学校进行大扫除,分配若干人擦玻璃,其中两人各擦4块,其余各擦5块,则余12块;若每人擦6块,则正好擦完,求擦玻璃的人数及玻璃的块数?分析:由其中两人各擦4块、其余各擦5块则余12块,可知,若每人都擦5块,则余12-(5-4)×2=10块,而每人擦6块则正好.可见每人多擦一块可把余下的10块擦完.则擦玻璃人数是[12-(5-4)×2]÷(6-5)=10(人),玻璃的块数是6×10=60(块).4、(例6)王老师由家里到学校,如果每分钟骑车500米,上课就要迟到3分钟;如果每分钟骑车600米,就可以比上课时间提前2分钟到校.王老师家到学校的路程是多少米?分析:迟到3分钟转化成米数:500×3=1500(米),提前两分钟到校转化成米数:600×2=1200(米),(1500+1200)÷(60-50)=270(分钟),500×(270+3)=136500(米)5、(例8)有若干个苹果和梨,苹果的个数是梨的个数的3倍,如果每天吃2个梨和5个苹果,那么梨吃完时还剩20个苹果.问:有多少个梨?分析:苹果的个数是梨的3倍,如果每天吃2个梨和3个苹果,相当于每天吃2×3=6(个)苹果,那么刚好吃完,这样总盈亏数是20,所以吃的天数是20÷(6-5)=20天,这样梨的个数是2×20=40(个).。

三年级下册数学试题-奥数练习:基本盈亏问题(含答案)全国通用

三年级下册数学试题-奥数练习:基本盈亏问题(含答案)全国通用

基本盈亏问题(分配中的比较、基本盈盈问题、基本盈亏问题、基本亏亏问题)1.老师给学生发巧克力,每人发了同样多的巧克力后,还剩下10 块.后来又来了 2 个同学,老师也发给他们同样多的巧克力后,巧克力刚好分完.那么每个同学分到__________块巧克力.2.老师给学生发巧克力,每人发了同样多的巧克力后,还剩下18 块.后来又来了 3 个同学,老师也发给他们同样多的巧克力后,巧克力刚好分完.那么每个同学分到__________块巧克力.3.旦旦把一捆捆的草分给羊,每只羊分到的一样多,剩下了18 捆草.后来又来了 3 只羊,分给它们同样的草后,只剩下了 6 捆草.那么每只羊分到__________捆草.4.旦旦把一捆捆的草分给羊,每只羊分到的一样多,剩下了20 捆草.后来又来了 5 只羊,分给它们同样的草后,只剩下了10 捆草.那么每只羊分到__________捆草.5.雁雁带了一些胡萝卜分给8 只兔子,每只兔子分到的一样多,剩下了5 根胡萝卜.后来又来了5 只兔子,如果分给它们同样多的胡萝卜,就会少10 根胡萝卜.那么雁雁开始共带了__________根胡萝卜.6.旦旦准备了一些面包分给同学,每袋面包有12 片.开始旦旦给8 个同学每人分了同样多片面包,还剩下 1 袋.后来又来了 4 个同学,旦旦发现还要再买 1 袋面包,才能正好给新来的同学每人分同样多的面包,那么旦旦开始准备了__________袋面包.7.老师给班里同学发棒棒糖,如果给每个同学多发3 个,老师剩下的棒棒糖就变少30 个,那么班里共有__________个同学.8.老师给班里同学发棒棒糖,如果给每个同学多发4 个,老师剩下的棒棒糖就变少60 个,那么班里共有__________个同学.9.旦旦给兔子分一些青菜.如果每只兔子分2 颗青菜,还会剩下18 颗青菜;如果每只兔子分5 颗青菜,刚好分完所有青菜.那么,共有_________只兔子.10.雁雁把一些香蕉分给猴子们.如果每只猴子分5 根香蕉,还剩下30 根香蕉;如果每只猴子分8 根香蕉,还剩下3 根香蕉.那么共有__________只猴子.11.运动会上,班长给每个参赛选手发矿泉水.如果每名选手分4 瓶矿泉水,还剩下25 瓶矿泉水;如果每名选手分7 瓶矿泉水,还剩下7 瓶矿泉水.那么班长共准备了__________瓶矿泉水.12.老师拿来一些树苗,分给同学们去种.如果每人分8 棵树苗,刚好分完所有树苗;如果每人分10 棵树苗,就少了18 棵树苗.那么共有__________个同学.13.队长给战士们发子弹.如果发给每名战士4 颗子弹,还剩下30 颗子弹;如果发给每名战士10 颗子弹,就会缺24 颗子弹.那么一共有__________名战士.14.旦旦给兔子分一些青草.如果每只兔子6 捆青草,还剩下11 捆青草;如果每只兔子9 捆青草,还少10 捆青草.那么,旦旦原来共有_________捆青草.15.小高准备了一些棒棒糖分给班里的同学,每盒12 根,如果给每个同学9 根棒棒糖,那么最后少1 盒;如果给每个同学6 根棒棒糖,那么最后还剩下 1 盒.那么小高一共准备了__________盒棒棒糖.16.老师给同学们分练习本,第一次分完后少4 本,第二次分完后少16 本,那么两次分配结果相差_________本.17.东东要把一些玫瑰花插到花瓶里.如果每瓶插入6 朵玫瑰花,就会少5 朵;如果每瓶插入8 朵,就会少15 朵.那么,东东共有__________个花瓶.答案:1.(5) 2.(6) 3.(4)4.(2)5.(29)6.(5)7.(10)8.(15)9.(6)10.(6)11.(49)12.(9)13.(9)14.(53)15.(5)16.(12)17.(5)。

小学数学 专题 盈亏问题 例题+练习 带详细答案

小学数学 专题 盈亏问题 例题+练习 带详细答案

小学数学拓展专题盈亏问题(带答案)例题一、某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。

乒乓球队共有多少名学生?解答:(1)由“少一个女生,增加一个男生,则男生为总人数的一半”可知:女生比男生多2人;(2)“少一个男生,增加一个女生”后,女生就比男生多2+2=4人,这时男生为女生人数的一半,即现在女生有4×2=8人。

原来女生有8-1=7人,男生有7-2=5人,共有7+5=12人。

练习一1、学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。

学校买来两种粉笔各多少盒?解答:白比彩多:10+8=18(盒)如果再买10盒白粉笔,此时白比彩多:18+10=28(盒)此时彩色粉笔:28÷(5-1)=7(盒)原来白粉笔:7x5-10=25(盒)原来彩粉笔:7盒2、操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。

两堆货物一共有多少吨?解答:原来甲比乙少:80-25=55(吨)此时的甲:55÷(3-1)=27.5(吨)一共:27.5x4+10=120(盒)3、五(1)班的优秀学生中,若增加2名男生,减少1名女生,则男、女生人数同样多;若减少1名男生,增加1名女生,则男生是女生的一半。

这些优秀学生中男、女生各多少人?解答:原来女生比男生多:1+2=3(名)此时女生比男生多:3+1+1=5(名)此时男生:5÷(2-1)=5(名)原来男生:5+1=6(名)原来男生:6+3=9(名)例题二、幼儿园老师拿出苹果发给小朋友。

如果平均分给小朋友,则少4个;如果每个小朋友只发给4个,则老师自己也能留下4个。

有多少个小朋友?共有多少个苹果?解答:如果平均分给小朋友,则少4个,说明小朋友人数大于4;如果每个小朋友只发给4个,则教师也能留下4个,说明每人少拿若干个,就少拿4+4=8个苹果。

小学数学应用专题--- 盈亏问题(含答案)

小学数学应用专题--- 盈亏问题(含答案)

小学数学应用题专题盈亏问题知识点复习:1、盈亏问题:把若干物体平均分给一定数量的对象,并不是每次都能正好分完。

如果物体不够分,少了,叫亏;如果物体还有剩余,就叫盈。

2、盈亏问题的解题方法:(1)公式法:前提人、房间、船或车的数量不变(盈+亏)+两次分差=份数;(大盈-小盈)+两次分差=份数;(大亏-小亏)+两次分差=份数(2)方程法:(最好的方法)根据被分的物体数量相等列方程,设分东西的(比如人,房间,船,车)为未知数。

盈亏问题复习试题时间:1小时总分:60分姓名:一、单选题(共5题;共10分)1.一次数学竞赛,共15道题,每做对一道题得8分,做错一道题倒扣4分,小平共得72分,他做对了()道题.A. 9B. 8C. 11D. 102.米奇专卖店以100元的单价卖出两套不同的童装,其中一套赚20%,另一套亏本20%,那么这个童装店卖这两套服装总体核算是()A. 亏本B. 赚钱C. 不亏也不赚D. 不能确定亏本或赚钱3.妈妈买来一箱桔子,若每天比计划多吃一个,则比计划少吃2天;若每天比计划少吃一个,则计划的时间过去后,还剩12个,那么这一箱桔子共()个.A. 50B. 60C. 70D. 804.有一批正方形砖,如拼成一个长与宽之比为5:4的大长方形,则余38块,如改拼成长与宽各增加1块的大长方形,则少53块,那么,这批砖共有()块.A. 1838B. 2038C. 1853D. 20535.有一个班的同学去划船.他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人.问:这个班共有________同学?A. 54B. 36C. 27D. 18二、填空题(共4题;共5分)6.有一批树苗,如果每组种3棵,则剩5棵;如果每组种4棵,则缺2棵.有________个组在种树?有________棵树?7.老师买回一些练习本,每人发5本,则缺6本;如果每人发3本,则多出8本.老师计划发给________个同学.8.幼儿园的老师给小朋友发苹果,每位小朋友4个,就多出12个,每个小朋友6个,就少12个,共有苹果________ 个.9.一盘草莓约20个左右,几位小朋友分.若每人分3个,则余下2个;若每人分4个,则差3个.这盘草莓有________ 个.三、应用题(共9题;共45分)10.有一筐苹果,分给幼儿园的小朋友,如果每人分3个就多出12个;如果每人分4个则少34个。

初中盈亏问题试题及答案

初中盈亏问题试题及答案

初中盈亏问题试题及答案1. 某商店购进一批商品,进价为每件50元,标价为每件80元。

如果全部售出,商店可以获得利润2000元,那么商店购进了多少件商品?答案:设商店购进了x件商品。

根据题意,每件商品的利润为标价减去进价,即80元 - 50元 = 30元。

总利润为2000元,因此可以列出方程:30x = 2000。

解方程得x = 66.67,由于商品数量必须是整数,所以商店购进了67件商品。

2. 某工厂生产一批零件,成本为每件10元,售价为每件15元。

如果全部售出,工厂可以获得利润3000元,那么工厂生产了多少件零件?答案:设工厂生产了y件零件。

根据题意,每件零件的利润为售价减去成本,即15元 - 10元 = 5元。

总利润为3000元,因此可以列出方程:5y = 3000。

解方程得y = 600,所以工厂生产了600件零件。

3. 某书店购进一批图书,进价为每本20元,标价为每本30元。

如果全部售出,书店可以获得利润1500元,那么书店购进了多少本图书?答案:设书店购进了z本图书。

根据题意,每本图书的利润为标价减去进价,即30元 - 20元 = 10元。

总利润为1500元,因此可以列出方程:10z = 1500。

解方程得z = 150,所以书店购进了150本图书。

4. 某服装店购进一批服装,进价为每件40元,标价为每件60元。

如果全部售出,服装店可以获得利润4800元,那么服装店购进了多少件服装?答案:设服装店购进了w件服装。

根据题意,每件服装的利润为标价减去进价,即60元 - 40元 = 20元。

总利润为4800元,因此可以列出方程:20w = 4800。

解方程得w = 240,所以服装店购进了240件服装。

小学数学盈亏问题练习题及答案

小学数学盈亏问题练习题及答案

小学数学盈亏问题练习题及答案1、假设有x名同学参加栽树,原有树苗y棵。

根据题意,有以下方程组:x * (x+1) / 2 = yy-12+8) / x = 102、假设有x名少先队员,共挖了y个树坑。

根据题意,有以下方程组:x * 5 + 3 = y2 * 4 + (x-2) * 6 = y3、假设有x名学生听报告。

根据题意,有以下方程组:x % 3 = 0,x。

48x % 5 = 34、假设___带了x元钱。

根据题意,有以下方程组:5 * (x-1.5) = 8 * (x-0.6)5、假设这筐苹果共有x个。

根据题意,有以下方程组:x % (a+3) = 10,x % (a+8) = 6a + 3 = a + 8 - 3x6、假设有x名学生。

根据题意,有以下方程组:8 * 33 = x * y6 * (33+10) = x * (y+10)7、假设有x块糖果。

根据题意,有以下方程组:x % 8 = 10,x % 9 = 18、假设第二组有x名小朋友。

根据题意,有以下方程组:48 = 4 * (x-5),48 = 3 * (x+5)9、假设有x个卡片。

根据题意,有以下方程组:x % n = 7,x % n + 5 = 8x = 60 * y + 4,n * y = x10、假设绳长为x米,井深为y米。

根据题意,有以下方程组:3 * (x/8) + 2 = y4 * (x/16) + 1 = y11、假设每根绳子长x米。

根据题意,有以下方程组:x / 5 - 2 = x / 7x = 2 * (x/5 - 2)12、假设这个班共有x名同学。

根据题意,有以下方程组:x+1) / y = 6x-1) / (y+1) = 913、假设上课时间为x小时y分钟。

根据题意,有以下方程组:7*60+20-x*60-y) / (x*60+y) = 507*60+20-x*60-y) / (x*60+y) = 35解得x=8,y=30.因此,学校的上课时间为8小时30分钟。

盈亏问题经典例题

盈亏问题经典例题

一、选择题1.小明去商店买铅笔,如果买5支则多出3元,如果买7支则还差1元。

每支铅笔的价格是多少元?A.1元B. 1.5元C. 2元D. 2.5元(答案)2.幼儿园老师给小朋友分糖果,如果每人分3颗则多出8颗,如果每人分5颗则还差14颗。

请问有多少位小朋友?A.8位B. 9位C. 10位D. 11位(答案)3.某校安排学生宿舍,如果每间住6人则多出34人,如果每间住8人则还有一间宿舍不空也不满。

问该校有多少间宿舍?可安排多少位学生?对于不空也不满的宿舍,住了多少人?(设宿舍间数为x)A.宿舍19间,学生150人,不空也不满的宿舍住了6人B.宿舍19间,学生150人,不空也不满的宿舍住了7人(答案)C.宿舍20间,学生150人,不空也不满的宿舍住了6人D.宿舍20间,学生154人,不空也不满的宿舍住了7人4.学校给参加夏令营的同学租了几辆大轿车,若每辆车乘28人则有13名同学上不了车,若每辆车乘32人则还有3个空座。

那么有多少名同学?A.121名B. 125名C. 129名D. 133名(答案)5.小红把自己的一些连环画借给她的几个同学。

若每人借5本,则差17本;若每人借3本,则差3本。

问小红的同学有几人?她一共有多少本连环画?A.同学7人,连环画32本B.同学7人,连环画38本(答案)C.同学8人,连环画32本D.同学8人,连环画38本6.将一些练习本分给若干名同学。

如果每人分4本,则多9本;如果每人分5本,则有一个同学无练习本。

问一共有多少个同学?有多少本练习本?A.同学6人,练习本21本B.同学7人,练习本37本(答案)C.同学8人,练习本29本D.同学9人,练习本36本7.猴王带领一群猴子去摘桃。

下午收工后,猴王开始分配。

若大猴分5个,小猴分3个,猴王可留10个。

若大、小猴都分4个,猴王能留下20个。

在这群猴子中,大猴(不包括猴王)比小猴多几只?A.3只B. 4只C. 5只D. 6只(答案)8.某校安排学生宿舍,如果每间4人,则有6人没有床位;如果每间6人,则空出2间宿舍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盈亏问题
例1:一个植树小组去栽树,如果每人栽3棵,还剩下15棵树苗;如果每人栽5棵,就缺少9棵树苗。

求这个小组有多少人?一共有多少棵树苗?
例2:悦悦每天早晨7点30分从家出发上学去,如果每分钟走45米,则迟到4分钟到校;如果每分钟走75米,则可以提前4分钟到校。

求从家出发需要走多少分钟才能准时到校?悦悦的家离学校有多少米?
例3:晶晶读一本故事书,原计划若干天读完。

如果每天读11页,可以比原计划提前2天读完;如果每天读13页,可以比原计划提前4天读完。

求原计划多少天读完?这本书共有多少页?
1、幼儿园把一箱苹果分给一批小朋友,如果每人2个,则多18个,如果每人3个,则少12个。

问幼儿园有多少个小朋友?一共有多少个苹果?
2、一堆桃子分给一群猴子,如果每只猴子分10个桃子,则有两只猴子没有分到;如果每只猴子分8个桃子,则刚好分完。

求有多少只猴子?多少个桃子?
3、实验小学学生乘车春游,如果每车坐60人,则有15人上不了车;如果每车坐65人,恰好多出一辆车。

问一共有几辆车?有多少个学生?
4、学生分练习本,如果每人分4本,则多8本;如果有1人分10本,其余每人分6本,则缺18本。

学生有多少人?练习本有多少本?
5、小强从家到学校,如果每分走50米,上课就要迟到3分;如果每分走60米,就可以比上课时间提前2分到校。

小强家到学校的路程是多少千米?
6、张华离家到县城去上学,他以每分50米的速度走了2分后,发现按这个速度走下去就要迟到8分。

于是他加快了速度,每分多走10米,结果到校时,离上课还有5分。

张华家到学校的路程是多少?
7、一组学生植树,每人栽6棵还剩4棵;如果其中3人各栽5棵,其余每人各栽7棵,正好栽完。

这一组学生有多少人?一共栽多少棵?
8、小红的爷爷买回一筐梨,分给全家人。

如果小红和小妹两人每人分4个,其余每人分两个,还多出4个;如果小红一人分6个,其余每人分4个,又差12个。

小红家有多少人?这筐梨有多少个?
9、学校有一批树苗,交给若干少先队员去栽,一次一次往下分,每次分一棵,最后剩下12棵不够分了;如果再拿来8棵树苗,那么每个少先队员正好栽10棵。

参加栽树的少先队员有多少人?原有树苗多少棵?
10、有一批正方形的砖,排成一个大正方形,余下32块;如果将它们改排成每边比原来多一块砖的正方形,就要差49块。

这批砖原有多少块?
11、某年级同学春游时租船游湖,若每只船乘10人,还多2个座位;若每只船多坐2人,可少租一条船,这时每人可节省5角钱。

租一只船需要多少钱?
12、小李到市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元。

已知牛肉比猪肉每千克贵8角。

牛肉、猪肉各多少钱一千克?
13、学校买来一批篮球与排球分给各班,排球是篮球的2倍,若篮球每班分2个,多4个;若排球每班分5个,少2个。

学校有几个班?篮球与排球各买了几个?
例1:一个植树小组去栽树,如果每人栽3棵,还剩下15棵树苗;如果每人栽5棵,就缺少9棵树苗。

求这个小组有多少人?一共有多少棵树苗?
分析:已知如果每人栽3棵,还剩下15棵树苗,也就是说还有15棵树苗没有栽上,树苗余下了;又知如果每人栽5棵,就缺少9棵树苗,这就是说,树苗不够了。

按照第一种方案去栽,树苗余下了,若按照第二种方案去栽,树苗不足了。

一个是余下一个是不足,这两个方案之间相差多少棵呢?相差(15+9=)24棵,也就是说,如果按照第二种方案去栽的话,可以比第一种方案多栽24棵树。

为什么能多栽24棵树呢?因为每个人多栽(5-3=)2棵。

由于每一个人多栽2棵树,一共多栽24棵树,即“2棵树”对应于“1个人”。

这样,小组的人数可以求得。

随之,树苗的棵数也可以求得。

计算:(1)小组的人数:
(15+9)÷(5-3)
=24÷2
=12(人)
(2)树苗的棵数:
3×12+15=51(棵)
答:这个小组有12人,一共有51棵树苗。

在解题时,常常要找两个“差”。

一个是总棵数之差,即第一种方案同第二种方案所栽树苗的总差数;另一个是单量之差,即每个人所栽树苗的差。

有了这两个差即可求出结果。

因此,这种解题的思路也可以称作“根据两个差求未知数”。

例2:悦悦每天早晨7点30分从家出发上学去,如果每分钟走45米,则迟到4分钟到校;如果每分钟走75米,则可以提前4分钟到校。

求从家出发需要走多少分钟才能准时到校?悦悦的家离学校有多少米?
分析:已知如果悦悦每分钟走45米,则迟到4分钟,这就是说,按照规定到校的时刻来说,还距离学校有(45×4=)180米的路;又知如果每分钟走75米,则可以提前4分钟到校,这就是说,到校之后还可以多走出(75×4=)300米的路。

这样,一个慢一个快,在同样时间之内,速度快要比速度慢多走出(180+300=)480米的路。

又知每分钟多走(75-45=)30米。

总之,由于每分钟多走30米,一共多走出480米;因此,从家到学校所需要的时间就可以求出来了,随之,悦悦的家距离学校的米数也可以求出来了。

计算:
(1)准时到校需要多少分钟?
(45×4+75×4)÷(75-45)
=480÷30
=16(分钟)
(2)悦悦家与学校距离多少米?
45×16+45×4
=720+180
=900(米)
答:准时到校需要16分钟,悦悦家离学校900米。

例3:晶晶读一本故事书,原计划若干天读完。

如果每天读11页,可以比原计划提前2天读完;如果每天读13页,可以比原计划提前4天读完。

求原计划多少天读完?这本书共有多少页?
分析:已知如果每天读11页,可以比原计划提前2天读完,这就是说,如果继续读2天的话,还可以多读(11×2=)22页;又知如果每天读13页,可以比原计划提前4天读完,这就是说,如果继续读4天的话,还可以多读(13×4=)52页。

两种情况,虽然都可以多读,但是它们之间有差别。

就是说,在一定的日期之内,第二种方法比第一种方法多读(52-22=)30页。

为什么能多读30页呢?就是因为每天多读(13-11=)2页。

由于每天多读2页,结果一共可以多读30页。

这是多少天读的呢,问题不就解决了吗!
计算:(1)原计划多少天读完这本书?
(13×4-11×2)÷(13-11)
=(52-22)÷2
=30÷2=15(天)
(2)这本书共有多少页?
11×(15-2)
=11×13=143(页)。

相关文档
最新文档