物理学9刚体定轴转动定律的应用举例
大学物理 第5章刚体定轴转动

赵 承 均
转动平面 某质点所在的圆周平面,称为转动平面。
参考线
转心 矢径
转动平面内任一过转轴的直线,如选 x 轴。
某质点所在的轨迹圆的圆心,称为转心。 某质点对其转心的位矢,称为该质点的矢径。
第一篇
力学
重 大 数 理 学 院
显然:转动刚体内所有点有相同的角量,故用角量描述刚体 的转动更方便,只需确定转动平面内任一点的角量即可。 1.角坐标— 描写刚体转动位臵的物理量。 角坐标 转动平面内刚体上任一点 P 到转轴 O 点的连线与 参考线间的夹角 。
赵 承 均
第二类问题:已知J和力矩M:求出运动情况和 b及 F 。
第三类问题:已知运动情况和力矩M,求刚体转动惯量 J 。
第一篇
力学
重 大 数 理 学 院
第一类问题:已知运动情况和 J ,确定运动学和动力学的联 系 例 :长为 l,质量为 m 的细杆,初始时的角速 度为 ωo ,由于细杆与 桌面的摩擦,经过时间 t 后杆静止,求摩擦力 矩 Mf 。
Fi cos i Fi cos i mi ain mi ri 2 法向:
e i
第一篇
力学
重 大 数 理 学 院
由于法向力的作用线穿过转轴,其力矩为零。可在切向 方程两边乘以 ri ,得到:
Fi e ri sin i Fi i r i sin i mi ri 2
4.角加速度— 描写角速度变化快慢和方向的物理量。 ⑴ 平均角加速度 t
即:刚体的角速度变化与发生变化所用的时间之比。
赵 承 均
⑵ 角加速度 ①用平均角加速度代替变化的角加速度; ②令 t 0 取极限;
d d lim 2 t 0 t dt dt
定轴转动刚体的转动定律度力矩角动量转动惯量

Iz Ix Iy
z
定理证明:
对于质量平面分布的刚体, 绕 x 轴的转动惯量为:
o
yy
Ix y2dm
x
dm
绕 y 轴的转动惯量为:
I y x2dm
x
绕 z 轴的转动惯量为:
19
z
Iz z2dm (x 2 y2 )dm
y2dm x 2dm I x I y 证毕
o
yy
x z dm
0
M
绕圆环质心轴的转动惯量为
dm
oR
I MR2
例2:在无质轻杆的 b 处 3b 处各系质量为 2m 和 m 的 质点,可绕 o 轴转动,求:质点系的转动惯量I。
解:由转动惯量的定义
I
2
mi ri 2
2mb 2
m
(3b)2
11mb 2
i 1
9
例3: 如图所示,一质量为m、长为l的均质空心圆柱
体(即圆筒圆筒)其内、外半径分别为R1和R2。试求
的质元受阻力矩大,
细杆的质量密度 m
l
质元质量 dm dx
o
xl dm m dx
x
质元受阻力矩:
dM 阻 dmgx
细杆受的阻力矩
m l
M阻
dM
阻
0l
gxdx
1 2
gl 2
1 2
mgl
4
二、定轴转动刚体的角动量
1 .质点对点的角动量
L
r
P
r
mv
作圆周运动的质点的角动量L=rmv;
l
x2dm
L
x2dx
1 L3
0
1 mL2
0
3
A
刚体定轴转动定律

o
P
x
2.角位移
描写刚体位置变化的物理量。
角坐标的增量:
称为刚体的角位移
y v2 p v1
P
3.角速度
R
x
描写刚体转动快慢和方向
的物理量。
角速度 lim d
t0 t dt 方向:满足右手定则,沿刚体转动方向右旋大拇指指向。
角速度是矢量,但对于刚体定轴 转动角速度的方向只有两个,在表 示角速度时只用角速度的正负数值 就可表示角速度的方向,不必用矢 量表示。
11mb 2
例4、半径为 R 质量为 M 的 圆环,绕垂直于圆环平面的 质心轴转动,求转动惯量J。
解: J R2dm MR 2
M o R dm
例5、半径为 R 质量为 M 的圆盘,绕垂直于圆盘 平面的质心轴转动,求转动惯量 J。
解:分割圆盘为圆环
dm
M
R2
2
rdr
J r2dm
M
dr
R
0
t 细杆绕一端的转动惯量
J 1 ml 2 3
摩擦阻力
t
例8、质量为 m1 和m2 两个物体, 跨在定滑轮上 m2 放在光滑的桌 面上,滑轮半径为 R,质量为 M,求:m1 下落的加速度,和 绳子的张力 T1、T2。
解:m1 g T1 m1a (1)
T2 m2a
b)作圆周运动的质点的角动量 L= r m v
c)角动量是描述转动状态的物理量;
P L
d)质点的角动量又称为动量矩。
or
dL
d (r mv)
dr
mv
r
d (mv)
r
F
dt
物理学9-刚体定轴转动定律的应用举例

物理学9-刚体定轴转动定律的应用举例刚体定轴转动定律是描述刚体绕固定轴转动时的运动规律的重要定律。
它包括角动量定理、角动量守恒定律和动能定理三个部分,这些定理在物理学中有着广泛的应用。
以下是一些应用举例。
1.陀螺的稳定性陀螺是一种具有一定自旋的旋转体,它的转轴固定在空间中的一点上。
当陀螺开始旋转时,它的自旋轴并不和转轴重合,但是随着陀螺的旋转,自旋轴始终在垂直于转轴的平面内旋转。
根据角动量定理和角动量守恒定律可以说明,当外力瞬间作用在陀螺上时,它会使陀螺的自旋轴发生进动,即自旋轴绕着转轴做圆周运动。
而由于角动量守恒,陀螺的自旋速度不会发生改变,因此在一定条件下陀螺能够保持稳定旋转,虽然它的自旋轴始终在变化。
2.动物的奔跑在物理学中,奔跑的过程可以视为人体绕着重心做定轴转动。
根据角动量定理和动能定理,人体的角动量和动能随着奔跑的速度变化而改变。
如果奔跑速度比较慢,人体的重心不会发生太大的变化,因此可以近似地看作点质量绕着固定轴转动。
但是当奔跑速度比较快时,人体的重心会发生较大的偏移,因此需要考虑人体的形变和弹性来描述奔跑的过程。
3.滑冰在滑冰的过程中,滑冰鞋与冰面之间存在摩擦力,摩擦力使得滑冰鞋相对于冰面产生旋转。
根据角动量定理和动能定理,滑冰鞋的角动量和动能会不断地改变,从而导致身体的姿态和速度也在不断变化。
为了保持平衡和稳定性,滑冰运动员需要不断进行调整和控制。
4.扭曲摆扭曲摆是一种具有非线性运动特征的振动系统,它包括一个重物、一个弹簧和一个摆动的基座。
当扭曲摆发生振动时,重物会绕着摆动的基座旋转,同时弹簧也会发生形变。
根据扭曲摆的特征方程和能量守恒定律可以推导出扭曲摆的振动规律,从而用来描述一系列自然现象,比如地震、心脏跳动等。
5.自行车的平衡自行车是一种需要保持平衡的交通工具,它的平衡性和稳定性与骑车人的动作和机械结构密切相关。
根据角动量定理和动能定理可以推导出自行车的转动惯量和角加速度,并利用牛顿第二定律和动能定理求解车轮的角速度和匀速斜面上行驶的距离等问题。
大学物理一复习第四章刚体的转动-文档资料

mg FT2 ma2
FT1 FT2
R
mg FT1 r
m
a1
J
a1 r
a2 R
FT1 r R
FT1'
A
mg
β
FT2
FT2'
B
mg
mg(R r)
J mR2 mr2
a1
r
J
mgr(R r) mR2 mr2
40 半径减小角速度增加。
(2)拉力作功。请考虑合外力矩为0, 为什么拉力还作功呢?
W
0
Md
在定义力矩作功 时,我们认为只 有切向力作功, 而法向力与位移 垂直不作功。
但在例题中,小 球受的拉力与位 移并不垂直,小 球的运动轨迹为 螺旋线,法向力 要作功。
o
F
r d Fn F
解得
a2
R
mgR(R r) J mR2 mr2
FT1 mg ma1
FT2 mg ma2
例2:光滑斜面倾角为 ,顶端固定一半 径为 R ,质量为 M 的定滑轮,质量为 m 的物体用一轻绳缠在定滑轮上沿斜面 下滑,求:下滑的加速度 a 。
解:物体系中先以
物体 m 研究对象,
A
分别根据牛二定律和转动定律列方程:
角量、线量关系式
解得:
a
mB g
mA mB mC 2
T1
mAmB g
mA mB mC
2
T2
(mA mC 2)mBg mA mB mC 2
如令 mC 0,可得:
2.2 刚体定轴转动定律及其应用

两边积分
2 k R 2 d dt 0 0 m
0
t
d
0
0
0
2 k R 2 d m
2 k R 2 0 m m0 m 0 N 2 2 2 k R 2 2 4 kR
例. 将一根质量为M,长为L的匀质细杆两端A、B用 等长的线水平地悬挂在天花板上,若突然剪断其中一 根,求此瞬间另一根绳内的张力有多大。 解: 突然剪断B线,棒AB受重力和A线对它的拉力作用 AB绕A点在竖直面内转动。 A线的拉力对A点的力矩为零 重力对A点的力矩为 转动定律
n0 30 270 弧度 2 20 . 4 270 N 43 圈 2
2
2
例、一轻绳跨过一质量为 m,半径为 r 的定滑轮,滑 轮视为匀质圆盘,绳的两端分别悬有质量为m1和m2的 物体, m1<m2 ,忽略滑轮轴处的摩擦。绳与滑轮之间 无相对滑动。求物体的加速度和绳的张力。 解: 认对象,看运动; 分析力和力矩; 定方向, 列方程 m1: T1 m1 g m1a m2: m 2 g T2 m2 a
其中
a
解方程得 MBg
1 2 Jc Mc r 2
a r
1 M A M B MC 2 1 M A MC M B g 2 T2 1 M A M B MC 2
M AM B g T1 1 M A M B MC 2
M C 0时
MBg a M A MB
M J
f
d
解:(1) 求
f N
d M f 2
以向外为正
由转动定律
刚体定轴转动的转动定律的应用重点

zi r i
O
2
mi Ri
vi
2
1
M Z d E K末
1 2 I 2 I1 2 2 W E K末 E K初 E K初
18
合外力矩对一个绕固定轴转动的刚体所做的功等于刚体 的转动动能的增量。称为定轴转动的动能定理。
刚体的重力势能
将重力看成是刚体受到的外部保守力,按质心的 定义,重力作的功等于质心势能的变化
第四章
刚体的运动规律
§4-3 刚体定轴转动的转动定律
刚体定轴转动的转动定律的应用
§4-4 刚体定轴转动的动能定理
4.1 力矩的功 4.2 刚体定轴转动中的动能 4.3 刚体定轴转动中的动能定理
作业:4-7,4-8,4-9
1
§4-3 刚体定轴转动的转动定律
作用于刚体上的力对转轴的力矩, 实际就是该力对原点力矩在转轴上 的分量。证明如下:
d o'
Ri
dm
c
适于刚体 的任一运动
17
4.3 刚体定轴转动中的动能定理
刚体定轴转动中动能变化的原因 是力矩做功;将定轴转动的转动 定律两边乘以d 再同时对 积分
z
2
1
M Z d
2
2
1
d I dt 1 dt 2 1 Id
1
d I d dt
I C mk 2
(0) 0 mk
2
( t ) ( 0 )
t
aF
aF ( t ) t 2 mk
(3) 在L系中若要
vQ 0
v C b
1 a k
2
F aF t t b 2 m mk
2.91刚体的定轴转动力矩 转动定律 转动惯量

M r F
d
P
F
F
Fi 0 , M i 0
F
F
2.9刚体的定轴转动定律
讨论
第二章 守恒定律
1)若力 F 不在转动平面内,把力分解为平行和垂
直于转轴方向的两个分量 其中 Fz 对转轴的力 矩为零,故 F 对转轴的 力矩
代入初始条件积分 得
3g d sind 2l
3g (1 cos ) l
考虑到
7lg 12 v0 dr g cost cos( t) dt 2 24 v0 7l
t
2.9刚体的定轴转动定律
第二章 守恒定律
例4 一长为 l 质量为 m 匀质细杆竖直放置,其 下端与一固定铰链 O 相接,并可绕其转动 . 由于此 竖直放置的细杆处于非稳定平衡状态,当其受到微小 扰动时,细杆将在重力作用下由静止开始绕铰链O 转 动 .试计算细杆转动到与竖直线成 角时的角加速度 和角速度 .
刚体定轴转动的角动量定理
第二章 守恒定律
t2
t1
Mdt J 2 J1
3 刚体定轴转动的角动量守恒定律 若M 讨论 若 J 不变, 不变;若 J 变, 也变,但 L 内力矩不改变系统的角动量.
守 恒条件
0 ,则 L J 常量
M 0
J 不变.
在冲击等问题中
L mi ri vi (
i
2 mi ri )
L J
i
ri
mi
z
2 刚体定轴转动的角动量定理 dL d( J ) M dt dt
O
vi
t1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
dri
dri i
Fi
M i Fi ri
对i求和,得: dA ( Mi )d Md
A 2 Md 1
力矩的功率为:
P dA M d M
dt
dt
当输出功率一定时, 力矩与角速度成反比。
3、刚体定轴转动的动能定理
M I d I I d d I d
dt
d dt d
当θ=θ1时,ω=ω1 所以:
M
1 mgL cos
2
3g cos
I
1 mL2
2L
3
dm dl
gdm
2
1
Md
1 2
I22
1 2
I12
代入M=1 mgl cos
2
1 mgL cosd 1 I 2
02
2
1 mgL sin 1 I 2
2
2
mgL sin 3g轴转动的动能定律
1、转动动能
物理学 9 刚体定轴转动定律的应用举例
张宏浩
1
回顾第7讲的知识
回顾:刚体的转动定律
n
Miz
i 1
I
d
dt
I
n
i 1
M iz
d dt
(I )
dLz dt
刚体绕定轴转动时,它的角加速度与作用于刚
体上的合外力矩成正比,与刚体对转轴的转动惯量
成反比。
刚体定轴转动的转动定律
M=I
与
F
ma 地位相当
m反映质点的平动惯性,I反映刚体的转动惯性
力矩是使刚体转动状态发生改变而产生 角加速度的原因。
刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定滑
轮(当作均匀圆盘)上面绕有细绳,
绳的一端固定在滑轮边上,另一端挂
一质量为m的物体而下垂。忽略轴处
mg
摩擦,求物体m由静止下落高度h时
的速度和此时滑轮的角速度。
解: 对M:M =TR=I 对m : mg T ma
O 力矩为重力对O的力矩。 棒
上取质元dm,当棒处在下摆
l
角时,该质量元的重力对轴
的元力矩为
dm dl
gdm
dM l cosgdm gl cosdl
dM l cosgdm gl cosdl O
重力对整个棒的合力矩为
l
M=
dM
L
0
gl
cosdl
gL2 cos 1 mgL cos
2
2
代入转动定律,可得
I=1 MR2 2
a R
解方程得: a
m
m M
2
g
mg
4mgh v 2ah
2m M
v 1 4mgh
R R 2m M
例2、一根长为l、质量为m的均匀细直棒,其一端有 一固定的光滑水平轴,因而可以在竖直平面内转动。
最初棒静止在水平位置,求它由此下摆角时的角加
速度和角速度。
解:棒下摆为加速过程,外
2
1
Md
1 2
I
2 2
1 2
I12
刚体定轴转动的动能定理
合外力矩对定轴转动刚体所做的功等于刚体 转动动能的增量。
四、刚体组对轴的角动量守恒定律
n
i 1
Miz
d dt
(I )
dLz dt
t
L
(
t0
M z )dt L0 dLz I I0
冲量矩
定轴转动刚体的角动量的增量等于 合外力矩对冲量矩。
Ek
n i 1
1 2
mi
ri
2
2
1( n 2 i1
mi ri 2 ) 2
1 2
I 2
刚体绕定轴转动时转动动能等于刚体的转动惯量
与角速度平方乘积的一半。
比较:
Ek
1 2
I 2
Ek
1 2
mv 2
Ek
L2 2I
Ek
p2 2m
2、力矩的功
dAi Fidsi Firid Mid 式中 Fi Fi cos i
若 Mz 0 有I I0
对轴的角动量守恒定律 外力对某轴的力矩之和为零,则该物体对
同一轴的角动量守恒。
角动量守恒定律的两种情况:
1、转动惯量保持不变的刚体 当M 0时,I I0 ,则 0
例:回转仪
2、转动惯量可变的物体
当I增大时,就减小; 当I减小时, 就增大,从而 I保持不变
例:旋转的舞蹈演员