数字图像处理知识点总结

合集下载

数字图像处理基本知识

数字图像处理基本知识

数字图像处理基本知识1、数字图像:数字图像,又称为数码图像或数位图像,是二维图像用有限数字数值像素的表示。

数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用数字计算机或数字电路存储和处理的图像。

2、数字图像处理包括内容:图像数字化;图像变换;图像增强;图像恢复;图像压缩编码;图像分割;图像分析与描述;图像的识别分类。

3、数字图像处理系统包括部分:输入(采集);存储;输出(显示);通信;图像处理与分析。

4、从“模拟图像”到“数字图像”要经过的步骤有:图像信息的获取;图像信息的存储;图像信息处理;图像信息的传输;图像信息的输出和显示。

5、数字图像1600x1200什么意思?灰度一般取值范围0~255,其含义是什么?数字图像1600x1200表示空间分辨率为1600x1200像素;灰度范围0~255指示图像的256阶灰阶,就是通过不同程度的灰色来来表示图像的明暗关系,8bit的灰度分辨率。

6、图像的数字化包括哪两个过程?它们对数字化图像质量有何影响?采样:采样是将空间上连续的图像变换成离散的点,采样频率越高,还原的图像越真实。

量化:量化是将采样出来的像素点转换成离散的数量值,一幅数字图像中不同灰度值得个数称为灰度等级,级数越大,图像越是清晰。

7、数字化图像的数据量与哪些因素有关?图像分辨率;采样率;采样值。

8、什么是灰度直方图?它有哪些应用?从灰度直方图中你可可以获得哪些信息?灰度直方图反映的是一幅图像中各灰度级像素出现的频率之间的它可以用于:判断图像量化是否恰当;确定图像二值化的阈值;计算图像中物体的面积;计算图像信息量。

从灰度直方图中你可可以获得:- 暗图像对应的直方图组成成分几种在灰度值较小的左边一侧- 明亮的图像的直方图则倾向于灰度值较大的右边一侧- 对比度较低的图像对应的直方图窄而集中于灰度级的中部- 对比度高的图像对应的直方图分布范围很宽而且分布均匀9、什么是点处理?你所学算法中哪些属于点处理?在局部处理中,输出值仅与像素灰度有关的处理称为点处理。

数字图像处理_第三版_(冈萨雷斯_整理的知识点)

数字图像处理_第三版_(冈萨雷斯_整理的知识点)

1.1 图像与图像处理的概念图像(Image):使用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接作用于人眼并进而产生视觉的实体。

包括:·各类图片,如普通照片、X光片、遥感图片;·各类光学图像,如电影、电视画面;·客观世界在人们心目中的有形想象以及外部描述,如绘画、绘图等。

数字图像:为了能用计算机对图像进行加工,需要把连续图像在坐标空间和性质空间都离散化,这种离散化了的图像是数字图像。

图像中每个基本单元叫做图像的元素,简称像素(Pixel)。

数字图像处理(Digital Image Processing):是指应用计算机来合成、变换已有的数字图像,从而产生一种新的效果,并把加工处理后的图像重新输出,这个过程称为数字图像处理。

也称之为计算机图像处理(Computer Image Processing)。

1.2 图像处理科学的意义1.图像是人们从客观世界获取信息的重要来源·人类是通过感觉器官从客观世界获取信息的,即通过耳、目、口、鼻、手通过听、看、味、嗅和接触的方式获取信息。

在这些信息中,视觉信息占70%。

·视觉信息的特点是信息量大,传播速度快,作用距离远,有心理和生理作用,加上大脑的思维和联想,具有很强的判断能力。

·人的视觉十分完善,人眼灵敏度高,鉴别能力强,不仅可以辨别景物,还能辨别人的情绪。

2.图像信息处理是人类视觉延续的重要手段非可见光成像。

如:γ射线、X射线、紫外线、红外线、微波。

利用图像处理技术把这些不可见射线所成图像加以处理并转换成可见图像,可对非人类习惯的那些图像源进行加工。

3.图像处理技术对国计民生有重大意义图像处理技术发展到今天,许多技术已日益趋于成熟,应用也越来越广泛。

它渗透到许多领域,如遥感、生物医学、通信、工业、航空航天、军事、安全保卫等。

1.3 数字图像处理的特点1. 图像信息量大每个像素的灰度级至少要用6bit(单色图像)来表示,一般采用8bit(彩色图像),高精度的可用12bit 或16bit。

(完整版)数字图像处理知识点总结

(完整版)数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。

2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。

3.图像处理:对图像进行一系列操作,以到达预期目的的技术。

4.图像处理三个层次:狭义图像处理、图像分析和图像理解。

5.图像处理五个模块:采集、显示、存储、通信、处理和分析。

第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0<i(x,y)<∞,反射分量0<r(x,y)<1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

8.将空间上连续的图像变换成离散点的操作称为采样。

采样间隔和采样孔径的大小是两个很重要的参数。

采样方式:有缝、无缝和重叠。

9.将像素灰度转换成离散的整数值的过程叫量化。

10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。

12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。

但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。

例如对细节比较丰富的图像数字化。

14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。

2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。

数字图像处理-知识点总结

数字图像处理-知识点总结

图像分类:根据图像空间坐标和幅度(亮度或色彩)的连续性可分为模拟(连续)图像和数字图像。

模拟图像是空间坐标和幅度都连续变化的图像,而数字图像是空间坐标和幅度均用离散的数字(一般是整数)表示的图像。

图像的数学表示:一幅图像所包含的信息首先表现为光的强度(intensity),即一幅图像可看成是空间各个坐标点上的光强度I 的集合,其普遍数学表达式为:I = f (x,y,z,λ,t) 式中(x,y,z)是空间坐标,λ是波长,t是时间,I是光点(x,y,z)的强度(幅度)。

上式表示一幅运动的(t)、彩色/多光谱的(λ)、立体的(x,y,z)图像。

图像的特点:1.空间有界:人的视野有限,一幅图像的大小也有限。

2.幅度(强度)有限:即对于所有的x,y都有0≤f(x,y) ≤Bm其中Bm为有限值。

图像三大类:在每一种情况下,图像的表示可省略掉一维,即1.静止图像:I = f(x,y,z, λ)2.灰度图像:I = f(x,y,z,t )3.平面图像:I = f(x,y,λ,t)而对于平面上的静止灰度图像,其数学表达式可简化为:I = f(x,y)数字图像处理的基本步骤:1.图像信息的获取:采用图像扫描仪等将图像数字化。

2.图像信息的存储:对获取的数字图像、处理过程中的图像信息以及处理结果存储在计算机等数字系统中。

3.图像信息的处理:即数字图像处理,它是指用数字计算机或数字系统对数字图像进行的各种处理。

4.图像信息的传输:要解决的主要问题是传输信道和数据量的矛盾问题,一方面要改善传输信道,提高传输速率,另外要对传输的图像信息进行压缩编码,以减少描述图像信息的数据量。

5.图像信息的输出和显示:用可视的方法进行输出和显示。

数字图像处理系统五大模块:数字图像处理系统由图像输入、图像存储、图像通信、图像处理和分析五个模块组成。

1.图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机、数码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计算机处理的数字图像。

数字图像处理知识点总结

数字图像处理知识点总结

定小于任何其他排列形式.
矢量量化原理
第7章
矢量量化的编码就是根据一定的失真测度 在码书搜索出与输入矢量失真最小的码字的索引。
用Canny算子进行边缘检测的主要步骤
① 用高斯滤波器平滑图像 第9章
② 计算滤波后图像梯度的幅值和方向
③ 对梯度幅值应用非极大值抑制,其过程为找处图像梯度中的局 部极大值点,把其它非局部极大值点置零以得到得到细化的边 缘 ④ 用双阈值算法检测和连接边缘,使用两个阈值T1和T2(T1>T2), T1用来找到每条线段,T2用来在这些线段的两个方向上延伸寻 找边缘的断裂处,并连接这些边缘。
背景差分法 如何利用多幅运动图像构造一个 第9章 基准图像
• 找出多幅对应像素点灰度值变化在一定阈值范围内的部 分为基准图像,可通过检测图像序列相邻两帧之间的变 化,保留对应像素点灰度值变化在一定阈值范围内的部 分,再与下一帧的图像对比,重复上述过程,最终取得 基准图像。
• I=imread(‘原图像名.tif’); % 读入原图像,tif格式 • whos I • imshow(I) % 显示图像I的基本信息 % 显示图像
自动阈值 迭代式阈值选择算法的基本思想
第9章
• 开始时选择一个阈值作为初始估计值,然后按某种策略 不断地改进这一估计值,直到满足给定的准则为止。在 迭代过程中,关键之处在于选择什么样的阈值改进策略, 好的阈值的改进策略应该具备两个特征,一是能够快速 收敛,二是在每一个迭代过程中,新产生阈值优于上一 次的阈值。
• title(‘原图像’);
• %对原图像进行屏幕控制;显示直方图均衡化后 的图像 • figure;imshow(J); • %给直方图均衡化后的图像加标题名 • title(‘直方图均衡化后的图像’) ;

数字图像处理知识点

数字图像处理知识点

数字图像处理知识点课程重点:图像数字化,图像变换,图像增强,图像的恢复与重建,图像的编码,图像的分割与特征提取,图像识别。

数字图像处理的基本内容:1、图像获取。

举例:摄像机+图像采集卡、数码相机等。

2、图像增强。

显示图像中被模糊的细节,或是突出图像中感兴趣的特征。

3、图像复原。

以图像退化的数学模型为基础,来改善图像质量。

4、图像压缩。

减小图像的存储量,或者在图像传输时降低带宽。

5、图像分割。

将一幅图像划分为几个组成部分或分割出目标物体。

6、图像的表达与描述。

图像分割后,输出分割标记或目标特征参数。

7、目标识别。

把目标进行分类的过程。

8、彩色图像处理。

9、形态学处理。

10、图像的重建。

第一章导论图像按照描述模型可以分为:模拟图像和数字图像。

1)模拟图像,模拟图像可用连续函数来描述。

其特点:光照位置和光照强度均为连续变化的。

2)数字图像,数字图像是图像的数字表示,像素是其最小的单位,用矩阵或数组来描述图像处理:对图像进行一系列的操作,以达到预期的目的的技术。

内容:研究图像信息的获取、传输、存储,变换、显示、理解与综合利用”的一门崭新学科。

三个层次:狭义图像处理,图像分析,图像理解。

狭义图像处理主要指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。

图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。

图像分析是一个从图像到数值或符号的过程。

图像理解则是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,从而指导和规划行动;图像分析主要是以观察者为中心研究客观世界,图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界。

图像处理的三个层次:低级图像处理内容:主要对图像进行各种加工以改善图像的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

《数字图像处理》期末考试重点总结(5篇材料)

《数字图像处理》期末考试重点总结(5篇材料)

《数字图像处理》期末考试重点总结(5篇材料)第一篇:《数字图像处理》期末考试重点总结*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。

(1)处理精度高,再现性好。

(2)易于控制处理效果。

(3)处理的多样性。

(4)图像数据量庞大。

(5)图像处理技术综合性强。

*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。

图像增强不存在通用理论。

图像增强的方法:空间域方法和变换域方法。

*图像反转:S=L-1-r 1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。

*对数变换 S=C*log(1+r)c为常数,r>=0 作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。

对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。

*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。

*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。

直方图均衡化变换函数必须为严格单调递增函数。

直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。

获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。

*平滑滤波器用于模糊处理和减小噪声。

平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。

优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。

负面效应:模糊了图像的边缘,因为边缘也是由图像灰度的尖锐变化造成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真.2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。

3.图像处理:对图像进行一系列操作,以到达预期目的的技术。

4.图像处理三个层次:狭义图像处理、图像分析和图像理解。

5.图像处理五个模块:采集、显示、存储、通信、处理和分析。

第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)< ∞ ,反射分量0 <r(x,y)〈1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

8.将空间上连续的图像变换成离散点的操作称为采样。

采样间隔和采样孔径的大小是两个很重要的参数。

采样方式:有缝、无缝和重叠。

9.将像素灰度转换成离散的整数值的过程叫量化。

10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。

12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。

例如对细节比较丰富的图像数字化.14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。

2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。

3)光传感器:通过采样孔测量图像的每一个像素的亮度。

4)量化器:将传感器输出的连续量转化为整数值。

5)输出存储体:将像素灰度值存储起来。

它可以是固态存储器,或磁盘等.15.灰度直方图反映的是一幅图像中各灰度级像素出现的频率。

以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图。

16.直方图的性质:1)灰度直方图只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像素的位置信息。

2)一幅图像对应唯一的灰度直方图,反之不成立。

不同的图像可对应相同的直方图3)一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图.17.直方图的应用:1)用于判断图像量化是否恰当2)用于确定图像二值化的阈值3)计算图像中物体的面积4)计算图像信息量:熵H18.图像处理基本功能的形式:单幅图像→单幅图像,多幅图像→单幅图像,单(或多)幅图像→数字或符号。

19.邻域:对于任一像素(i,j),该像素周围的像素构成的集合{(i+p,j+q),p、q取合适的整数},叫做该像素的邻域。

20.图像处理的几种具体算法:1)局部处理:移动平均平滑、空间域锐化.2)点处理:图像对比度增强、图像二值化。

3)大局处理:傅里叶变换.4)迭代处理:细化。

5)跟踪处理6)位置不变处理和位置可变处理:输出像素JP(i,j)的值的计算方法与像素的位置(i,j)无关的处理称为位置不变处理或位移不变处理7)窗口处理和模板处理。

21.图像的数据结构与特征:1)组合方式:一个字长存放多个像素灰度值的方式。

它能起到节省内存的作用,但导致计算量增加,使处理程序复杂。

2)比特面方式:按比特位存取像素,即将所有像素的相同比特位用一个二维数组表示,形成比特面。

3)分层结构:由原始图像开始依次构成像素数愈来愈少的一幅幅图像,就能使数据表示具有分层性,其代表有锥形(金字塔)结构.4)树结构:对于一幅二值图像的行、列接连不断地二等分,如果图像被分割部分中的全体像素都变成具有相同的特征时,这一部分则不再分割5)多重图像数据存储:逐波段存储,分波段处理时采用;逐行存储,行扫描记录设备采用;逐像素存储,用于分类。

22.图像的特征:1)自然特征:光谱特征、几何特征、时相特征;2)人工特征:直方图特征,灰度边缘特征,线、角点、纹理特征;3)特征的范围:点特征、局部特征、区域特征、整体特征.4)特征提取:获取图像特征信息的操作。

把从图像提取的m个特征量y1,y 2,…,y m,用m维的向量Y=[y1 y2…y m]t表示称为特征向量。

另外,对应于各特征量的m维空间叫做特征空间。

23.对比度:一幅图像中灰度反差的大小,对比度=最大亮度/最小亮度第三章图像变换24.图像变换通常是一种二维正交变换。

1)正交变换必须是可逆的;2)正变换和反变换的算法不能太复杂;3)正交变换的特点是在变换域中图像能量集中分布在低频率成分上,边缘、线状信息反映在高频率成分上,有利于图象处理。

25.图像变换的目的在于:1)使图像处理问题简化;2)有利于图像特征提取;3)有助于从概念上增强对图像信息的理解。

第四章图像增强26.图像增强是采用一系列技术去改善图像的视觉效果,或将图像转换成一种更适合于人或机器进行分析和处理的形式。

27.空间域增强是直接对图像各像素进行处理;28.频率域增强是先将图像经傅立叶变换后的频谱成分进行某种处理,然后经逆傅立叶变换获得所需的图像.29.灰度变换用来调整图像的灰度动态范围或图像对比度,是图像增强的重要手段之一。

1)线性变换:对图像每一个像素灰度作线性拉伸,将有效改善图像视觉效果.2)分段线性变换:为了突出感兴趣目标所在的灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段线性变换。

3)非线性灰度变换:对数变换(当希望对图像的低灰度区较大的拉伸而对高灰度区压缩时,可采用这种变换,它能使图像灰度分布与人的视觉特性相匹配).指数变换(对图像的高灰度区给予较大的拉伸)30.直方图修整法包括直方图均衡化及直方图规定化两类。

31.直方图均衡化:将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。

32.直方图均衡化变换函数,满足下列条件:1)在0≤r≤1内为单调递增函数,保证灰度级从黑到白的次序不变;2)在0≤r≤1内,有0≤T(r)≤1,确保映射后的像素灰度在允许的范围内。

33.直方图均衡化原理:输出图像的概率密度函数可以通过变换函数T(r)控制原图像灰度级的概率密度函数得到,并改善原图像的灰度层次.34.一幅图像的s k与r k之间的关系称为该图像的累积灰度直方图.35.直方图规定化是使原图像灰度直方图变成规定形状的直方图而对图像作修正的增强方法。

36.利用直方图规定化方法进行图像增强的主要困难在于要构成有意义的直方图。

图像经直方图规定化,其增强效果要有利于人的视觉判读或便于机器识别。

37.为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪.38.用邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平滑,又称邻域平均法.39.超限像素平滑法:将f(x,y)和邻域平均g(x,y)差的绝对值与选定的阈值进行比较,根据比较结果决定点(x,y)的最后灰度g´(x,y).40.灰度最相近的K个邻点平均法:可用窗口内与中心像素的灰度最接近的K个邻像素的平均灰度来代替窗口中心像素的灰度值。

41.最大均匀性平滑:为避免消除噪声引起边缘模糊,该算法先找出环绕图像中每像素的最均匀区域,然后用这区域的灰度均值代替该像素原来的灰度值。

具体可选任一像素(x,y)的5个有重叠的3*3邻域,用梯度衡量它们灰度变化的大小。

42.有选择保边缘平滑法:对图像上任一像素(x,y)的5×5邻域,采用9个掩模:一个3×3正方形、4个五边形和4个六边形.计算各个掩模的均值和方差,对方差进行排序,最小方差所对应的掩模的灰度均值就是像素(x,y) 的输出值.43.空间低通滤波法:应用模板卷积方法对图像每一像素进行局部处理。

不管什么样的掩模,必须保证全部权系数之和为单位值,这样可保证输出图像灰度值在许可范围内,不会产生“溢出”现象。

44.中值滤波:是对一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,因此它是一种非线性的图像平滑法。

离散阶跃信号、斜升信号没有受到影响.离散三角信号的顶部则变平了。

对于离散的脉冲信号,当其连续出现的次数小于窗口尺寸的一半时,将被抑制掉,否则将不受影响。

45.各种空间域平滑算法效果比较:1)局部平滑法算法简单,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别在边缘和细节处.而且邻域越大,在去噪能力增强的同时模糊程度越严重。

2)超限像素平滑法对抑制椒盐噪声比较有效,对保护仅有微小灰度差的细节及纹理也有效。

并且随着邻域增大,去噪能力增强,但模糊程度也大。

超限像元平滑法比局部平滑法去椒盐噪声效果更好。

3)灰度最相近的K个邻点平均法:较小的K值使噪声方差下降较小,但保持细节效果较好;而较大的K值平滑噪声较好,但会使图像边缘模糊。

4)最大均匀性平滑经多次迭代可增强平滑效果,在消除图像噪声的同时保持边缘清晰性.但对复杂形状的边界会过分平滑并使细节消失。

5)有选择保边缘平滑法既能够消除噪声,又不破坏区域边界的细节。

6)中值滤波对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊.但它对点、线等细节较多的图像却不太合适.中值滤波法能有效削弱椒盐噪声,且比邻域、超限像素平均法更有效。

46.图像空间域锐化增强图像的边缘或轮廓。

47.图像平滑通过积分过程使得图像边缘模糊,图像锐化则通过微分而使图像边缘突出、清晰。

48.梯度锐化法:梯度为grad(x,y)=Max(|f x′|,|f y′|) 或grad(x,y)=|f x’|+|f y′|。

有梯度算子、Roberts、Prewitt和Sobel算子计算梯度,来增强边缘。

placian增强算子:g(x,y)=f(x,y)—▽2f(x,y)=5f(x,y)—[ f(x+1,y)+ f(x-1,y)+f(x,y+1)+ f(x,y-1)]placian增强算子特点:1)在灰度均匀的区域或斜坡中间▽2f(x,y)为0,增强图像上像元灰度不变;2)在斜坡底或低灰度侧形成“下冲”;而在斜坡顶或高灰度侧形成“上冲”51.高通滤波法就是用高通滤波算子和图像卷积来增强边缘。

52.频率域平滑:由于噪声主要集中在高频部分,为去除噪声改善图像质量,滤波器采用低通滤波器H(u,v)来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的:53.频率域低滤波器H(u,v)有四种:理想低通滤波器、Butterworth低通滤波器、指数低通滤波器、. 梯形低通滤波器。

相关文档
最新文档