人教版九年级数学反比例函数知识点归纳99358

合集下载

反比例函数知识点知识点总结

反比例函数知识点知识点总结

反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。

其中,x 是自变量,y 是因变量,k 叫做比例系数。

需要注意的是,反比例函数中自变量 x 的取值范围是x≠0,因为在分母中,分母不能为 0。

二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x(k 为常数,k≠0),这是最基本的形式。

2、 xy = k(k 为常数,k≠0),通过对 y = k/x 两边同时乘以 x 得到。

3、 y = kx^(-1)(k 为常数,k≠0),这是用幂的形式表示。

三、反比例函数的图像反比例函数的图像属于双曲线。

当 k>0 时,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小。

当 k<0 时,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大。

反比例函数的图像是以原点为对称中心的中心对称的两条曲线。

四、反比例函数的性质1、单调性当 k>0 时,函数在区间(∞,0)和(0,+∞)上分别单调递减;当 k<0 时,函数在区间(∞,0)和(0,+∞)上分别单调递增。

2、对称性反比例函数的图像既是轴对称图形,又是中心对称图形。

它有两条对称轴,分别是直线 y = x 和 y = x;对称中心是原点(0,0)。

3、渐近线当 x 趋近于正无穷或负无穷时,曲线无限接近坐标轴,但永远不会与坐标轴相交。

4、取值范围当 k>0 时,y>0 或 y<0;当 k<0 时,y<0 或 y>0。

五、反比例函数中 k 的几何意义1、过反比例函数 y = k/x(k≠0)图像上任意一点 P 作 x 轴、y 轴的垂线 PM、PN,垂足分别为 M、N,则矩形 PMON 的面积 S =PM×PN =|y|×|x| =|xy| =|k|。

初三数学反比例函数知识点归纳-复习必备打印背熟

初三数学反比例函数知识点归纳-复习必备打印背熟

反比例函数是什么?反比例函数相关知识1:反比例函数是什么?反比例函数的定义域和值域因为x在分母上,所以x≠0,即自变量X的取值范围为非零实数。

而且常数k≠0,因此y≠0,即因变量y的`取值范围为非零实数。

反比例函数的图像及其性质形状:反比例函数的图象是两条双曲线,每一条曲线都无限向X轴Y轴延伸但不与坐标轴相交。

增减性:当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每个象限内y随x的增大而增大。

对称性:反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x和y=-x,对称中心是坐标原点。

2:反比例函数知识点1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k?1/xxy=ky=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k?1/xxy=ky=k?x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的.绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。

反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。

新人教版九年数学下第二十六章-反比例函数知识点总结

新人教版九年数学下第二十六章-反比例函数知识点总结

新人教版九年数学下第二十六章 反比例函数知识点总结26.1知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠),③k y x =⋅(定值)(0k ≠);⑸函数x k y =(0k ≠)与ykx =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。

(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

26.2知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

26.4知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数xky =(0k ≠) k 的符号0k >0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。

人教版九年级数学反比例函数知识点归纳

人教版九年级数学反比例函数知识点归纳

例如,在矩形面积一定的情况下,长与宽成反比。
工程技术和科学研究领域应用举例
电路设计
在电子工程中,电阻、电容等元 件的参数之间往往存在反比关系 。利用反比例函数可以优化电路
设计,提高电路性能。
经济学研究
在经济学中,价格与需求之间通 常存在反比关系。价格越高,需 求量越低;反之亦然。反比例函
数可用于描述这种经济现象。
转化思想
将复杂问题转化为简单问题,如将非标准形式的一元二次方程转化为 标准形式,再利用反比例函数的性质进行求解。
05
拓展延伸:反比例函数在 高等数学中地位和作用
高等数学中反比例函数概念引入
01
在高等数学中,反比例函数 作为一种基本的函数类型被 引入,它描述了两个变量之
间的反比关系。
02
反比例函数的一般形式为 y=k/x(k≠0),其中k是常
一元二次方程求解方法回顾
01
配方法
通过配方将一元二次方程转化 为完全平方形式,进而求解。
02
公式法
利用一元二次方程的求根公式 进行求解。
03
因式分解法
将一元二次方程进行因式分解 ,得到两个一元一次方程,分
别求解。
反比例函数在一元二次方程中应用
01
02
03
判别式应用
利用反比例函数的性质, 判断一元二次方程的根的 情况,如判别式的正负等 。
物理学应用
在物理学中,许多物理量之间存 在反比关系。例如,万有引力定 律中两物体之间的引力与它们质 量的乘积成正比,与它们距离的
平方成反比。
跨学科综合问题挑战
环境科学
在研究环境污染问题时,污染物的排放量与治理成本之间 往往存在反比关系。利用反比例函数可以制定合理的治理 方案,实现经济效益和环境效益的平衡。

九年级数学反比例函数知识点

九年级数学反比例函数知识点

九年级数学反比例函数知识点数学属于形式科学,而不是自然科学。

不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。

下面是整理的九年级数学反比例函数知识点,仅供参考希望能够帮助到大家。

九年级数学反比例函数知识点(1)反比例函数:如果(k是常数,k≠0),那么y叫做x的反比例函数。

(2)反比例函数的图象:反比例函数的图象是双曲线。

(3)反比例函数的性质①当k0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小。

②当k0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大。

③反比例函数图象关于直线y=±x对称,关于原点对称。

(4)k的两种求法①若点(x0,y0)在双曲线上,则k=x0y0。

②k的几何意义:若双曲线上任一点A(x,y),AB⊥x轴于B,则S⊥AOB。

(5)正比例函数和反比例函数的交点问题若正比例函数y=k1x(k1≠0),反比例函数,则当k1k20时,两函数图象无交点;当k1k20时,两函数图象有两个交点,由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称。

初中数学有理数知识点1、正整数、负整数和零统称整数;正分数和负分数统称分数;整数和分数统称有理数。

2、规定了原点、正方向和单位长度的直线叫做数轴。

在数轴上的数,左边的比右边的大,从左到右分别为负数、零、正数。

3、正负号不同,值相同的数叫相反数,零的相反数是零。

4、数轴上表示的数a到原点的距离叫做数a的绝对值,记作|a|。

正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值零。

5、两个负数比较,绝对值大的反而小。

6、有理数加减法法则:①同号两数相加,取相同符号,绝对值相加。

②绝对值不同的异号两数相加,取绝对值大的数的符号,并用较大数绝对值减去较小数绝对值。

③互为相反数的两个数相加得零。

④一个数与零相加,仍得这个数。

7、有理数加法运算律:①交换律:a+b=b+a②结合律:(a+b)+c=a+(b+c)8、有理数减法法则:减去一个数等于加上这个数的相反数。

(word版)反比例函数知识点归纳(重点)

(word版)反比例函数知识点归纳(重点)

中考复习反比例函数根底知识〔一〕反比例函数的概念1.〔〕可以写成〔〕的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.〔〕也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.〔二〕反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点〔关于原点对称〕.〔三〕反比例函数及其图象的性质1.函数解析式:〔〕2.自变量的取值范围:3.图象:〔1〕图象的形状:双曲线.(越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴2〕图象的位置和性质:与坐标轴没有交点,当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.〔3〕对称性:图象关于原点对称,即假设〔a,b〕在双曲线的一支上,那么〔,〕在双曲线的另一支上.图象关于直线对称,即假设〔a,b〕在双曲线的一支上,那么〔,〕和〔,〕在双曲线的另一支上.4.k的几何意义如图1,设点P〔a,b〕是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,那么矩形PBOA的面积是〔三角形PAO和三角形PBO的面积都是〕.如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,那么有三角形PQC 的面积为.图1图25.说明:1〕双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.〔2〕直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.〔四〕实际问题与反比例函数1.求函数解析式的方法:〔1〕待定系数法;〔2〕根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.〔五〕充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念〔1〕以下函数中,y是x的反比例函数的是〔〕.A.y=3x B.C.3xy=1D.〔2〕以下函数中,y是x的反比例函数的是〔〕.A.B.C.D.2.图象和性质〔1〕函数是反比例函数,①假设它的图象在第二、四象限内,那么k=___________.②假设y随x的增大而减小,那么k=___________.〔2〕一次函数y=ax+b的图象经过第一、二、四象限,那么函数的图象位于第______象限.〔3〕假设反比例函数经过点〔,2〕,那么一次函数的图象一定不经过第_____象限.〔4〕a·b<0,点P〔a,b〕在反比例函数的图象上,那么直线不经过的象限是〔〕.A.第一象限B.第二象限C.第三象限D.第四象限〔5〕假设P〔2,2〕和Q〔m,〕是反比例函数图象上的两点,那么一次函数y=kx+m的图象经过〔〕.A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限〔6〕函数和〔k≠0〕,它们在同一坐标系内的图象大致是〔〕.A.B.C.D.3.函数的增减性〔1〕在反比例函数的图象上有两点,,且,那么的值为〔〕.A.正数B.负数C.非正数D.非负数〔2〕在函数〔a为常数〕的图象上有三个点,,,那么函数值、、的大小关系是〔〕.A.<<B.<<C.<<D.<<〔3〕以下四个函数中:①;②;③;④.y随A.0个x的增大而减小的函数有〔B.1个〕.C.2个D.3个〔4〕反比例函数时,这个反比例函数的函数值的图象与直线y随x的增大而y=2x和y=x+1的图象过同一点,那么当〔填“增大〞或“减小〞〕.x>04.解析式确实定〔1〕假设与A.正比例函数成反比例,与成正比例,那么B.反比例函数y是z的〔〕.C.一次函数D.不能确定〔2〕假设正比例函数y=2x 与反比例函数的图象有一个交点为〔2,m〕,那么m=_____,k=________,它们的另一个交点为________.〔3〕反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.〔4〕一次函数y=x+m与反比例函数〔〕的图象在第一象限内的交点为P〔x,3〕.①求x的值;②求一次函数和反比例函数的解析式.。

初三反比例函数知识点

初三反比例函数知识点

初三反比例函数知识点反比例函数知识点概述一、反比例函数的定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。

二、反比例函数的图象1. 形状:反比例函数的图象是一组双曲线。

2. 位置:当 k > 0 时,图象位于第一和第三象限;当 k < 0 0 时,图象位于第二和第四象限。

3. 对称性:反比例函数的图象关于原点对称。

三、反比例函数的性质1. 单调性:在每一象限内,随着 x 的增大,y 也增大;随着 x 的减小,y 也减小。

2. 无界性:当 x 趋向于 0 时,y 趋向于无穷大;当 x 趋向于无穷大时,y 趋向于 0。

3. 交点:反比例函数的图象不与 x 轴和 y 轴相交。

四、反比例函数的应用反比例函数常用于描述两个变量间的反比关系,如物理中的压力与体积的关系(波义耳定律),化学中的浓度与体积的关系等。

五、反比例函数的运算1. 复合函数:若有两个反比例函数 y = k1/x 和 w = k2/z,它们的复合函数为 v = (k1/x) / (k2/z) = (k1/k2) * z/x。

2. 反函数:反比例函数的反函数仍然是一个反比例函数,形式为 x =k/y。

六、反比例函数的图像变换1. 平移:若原函数为 y = k/x,将其向右平移 a 个单位,向上平移b 个单位,新函数为 y = k/(x-a) + b。

2. 伸缩:若原函数为 y = k/x,将其横向伸缩 m 倍,纵向伸缩 n 倍,新函数为 y = k/(m*x)。

七、反比例函数的极值问题反比例函数没有最大值和最小值,但可以通过求导数来分析函数的增减性。

八、反比例函数的积分与微分1. 微分:对于函数 y = k/x,其导数为 dy/dx = -k/x^2。

2. 积分:对于函数 y = k/x,其不定积分为∫(k/x)dx = k*ln|x| + C。

九、反比例函数的方程求解1. 解析解:通过交叉相乘法等代数方法求解。

(完整word版)初三数学九下反比例函数所有知识点总结和常考题型练习题,推荐文档

(完整word版)初三数学九下反比例函数所有知识点总结和常考题型练习题,推荐文档

反比例函数知识点k k 1. 定义:一般地,形如y (k为常数,k o)的函数称为反比例函数。

y 还可x x 以写成y kx 1,xy=k, (k为常数,k o).2. 反比例函数解析式的特征:⑴等号左边是函数y,等号右边是一个分式。

分子是不为零的常数k (也叫做比例系数k),分母中含有自变量x,且指数为1.⑵比例系数k 0 ⑶自变量x的取值为一切非零实数。

⑷函数y的取值是一切非零实数。

3. 反比例函数的图像⑴图像的画法:描点法①列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数)②描点(有小到大的顺序③连线(从左到右光滑的曲线)k⑵反比例函数的图像是双曲线,y (k为常数,k 0 )中自变量x 0,函数值xy 0,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

⑶反比例函数的图像是是轴对称图形(对称轴是y x或y x )。

k k⑷反比例函数y (k 0)中比例系数k的几何意义是:过双曲线y (k 0)x x 上任意引x轴y轴的垂线,所得矩形面积为k。

4. 反比例函数性质与k的符号有关:5. 反比例函数解析式的确定:利用待定系数法(只需一组对应值或图像上一个点的坐标即可求出k)6•“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比k例函数y 中的两个变量必成反比例关系。

X反比例函数练习选择题1.函数y(m 2)x m2m 9是反比例函数,贝U m的值是()A.m4或m 2B.m 4 C.m 2 D. m 12.下列函数中,是反比例函数的是( )A .yX2B. y1 C.2x1 D 1 y 1 D. yXX3.函数y kx与y k /(kX0)的图象的交点个数是/ )A.0 B. 1 C. 2 D.不确定4.函数y kx b 与yk—(kb0)的图象可能是()Xy iyA B C DA . 4 二.填空题1. _________________________ 已知y 是x 的反比例函数,当 件的函数表达式 _________________________2. 已知反比例函数 y 2,当y 6时,X __________________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1☆.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)☆为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③ 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)☆如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)☆如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x轴,△ABC的面积S,则().A.S=1 B.1<S<2 C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)☆已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.① 求B点坐标和k的值;② 当时,求点P的坐标;③ 写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).① 求反比例函数和一次函数的解析式;② 根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.① 求点A、B、D的坐标;② 求一次函数和反比例函数的解析式.(4)☆如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).① 利用图中条件,求反比例函数的解析式和m的值;② 双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.答案:(1)D.(2)① 反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。

相关文档
最新文档