M序列的产生和性能分析
通信原理精品课-第七章m序列(伪随机序列)

04
m序列在扩频通信中的应用
扩频通信的基本原理和特点
扩频通信的基本原理
扩频通信是一种利用信息信号对一个很宽频带的载波进行调制,以扩展信号频谱 的技术。通过扩频,信号的频谱被扩展,从而提高了信号的抗干扰能力和隐蔽性 。
扩频通信的特点
扩频通信具有抗干扰能力强、抗多径干扰能力强、抗截获能力强、可实现码分多 址等优点。同时,扩频通信也存在一些缺点,如信号的隐蔽性和保密性可能受到 影响,信号的带宽较宽,对信道的要求较高。
在无线通信中,由于信号传播路径的不同,接收端可能接收到多个不同路径的信号,形成多径干 扰。
抗多径干扰
m序列具有良好的自相关和互相关特性,可以用于抗多径干扰。通过在发射端加入m序列,可以 在接收端利用相关器检测出原始信号,抑制多径干扰的影响。
扩频通信
m序列可以用于扩频通信中,将信息信号扩展到更宽的频带中,提高信号的抗干扰能力和隐蔽性 。
离散性
m序列是一种周期性信号,其 功率谱具有离散性,即只在某 些特定的频率分量上有能量分 布。
带宽有限
m序列的功率谱具有有限的带 宽,其带宽与序列的长度和多 项式的系数有关。
旁瓣抑制
m序列的功率谱具有较好的旁 瓣抑制特性,即除了主瓣外的 其他频率分量的能量较小。
m序列在多径干扰抑制中的应用
多径干扰
抗截获能力
m序列扩频通信系统具有较强 的抗截获能力。由于信号的频 谱被扩展,敌方难以检测和识 别信号,从而提高了通信的保 密性。
码分多址能力
m序列扩频通信系统具有较强 的码分多址能力。不同的用户 可以使用不同的扩频码进行通 信,从而实现多用户共享同一 通信信道。
05
m序列的未来发展与研究方向
m序列与其他通信技术的融合应用
M序列的产生和性能分析

M序列的产生和性能分析本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.MarchM序列的产生和性能分析摘要在扩频函数中,伪随机信号不但要求具有尖锐的互相关函数,互相关函数应接近于零,而且具有足够长的码周期,以确保抗侦破、抗干扰的要求;由足够多的独立地址数,以实现码分多址的要求。
M序列是伪随机序列的一种,可由m序列添加全0状态而得到。
m序列与M序列对比得出在同级移位寄存器下M序列的数量远远大于m序列数量,其可供选择序列数多,在作跳频和加密码具有极强的抗侦破能力。
本文在matlab中的Simulink下用移位寄存器建立了4级、5级、6级M序列的仿真模型,进行了仿真,画出其时域图、频谱图、互相关性图。
通过时域图和频域图可看出,经过扩频后的信号频带明显的被扩展;由M 序列互相关性图,得出M序列有较小的互相关性,较强的自相关性,但相关性略差于m序列。
最后,本文又将M序列应用于CDMA扩频通信仿真系统中,得到下列结论:当使用与扩频时相同的M序列做解扩操作与用其他序列做解扩的输出有巨大的差别。
使用相同的序列进行解扩时系统输出值很大,而使用其他序列解扩时输出值在零附近变化。
这就是扩频通信的基础。
关键词:伪随机编码, 扩频通信自相关函数,互相关函数M SEQUENCE GENERATION AND PERFORMANCE ANALYSISABSTRACTIn spread-spectrum communication, pseudo-random sequence must have high autocorrelation value, low cross correlation, long code period and lots of dependent address to satisfy code division mul tipleaccess(CDMA). M sequence is one kind of the pseudo-random sequences. It can be may obtained through adding entire 0 states to m sequence. The number of M sequence is greater than the m-sequence under the same level shift register. It may supply the more choice. The M-sequence is often applied to the frequency hopping and adds the password to have greatly strengthened anti- solves the ability.At first, M sequences which has n=4、5、7 levels of shift registers are produced under Simulink of Matlab. The t ime domain chart, the spectrograph, the mutual correlation chart are plotted. Through the time domain chart and the spectrograph, we could see how the bandwidth of the information signal is expanded. The pseudo-random symbol speed rate higher noise signal frequency spectrum is proliferated widely, the output power spectrum scope is lower. This can explain the spread-spectrum communication system principle from the frequency range. Through the M sequence’s auto correlation chart we can see that the auto correlation of M-sequence is quite good but is inferior to the m sequence. Finally, the M sequence is applied to the code division multiple access (CDMA) communication system. This is the spread-spectrum communication foundation.KEY WORDS:Pseudo-random code, auto-correlation, cross-correlation目录前言 ......................................................... 错误!未定义书签。
M序列产生及其特性仿真实验报告

M序列产生及其特性仿真实验报告一、三种扩频码序列简介1.1 m序列它是由多级移位寄存器或其他延迟元件通过线性反馈产生的最长的码序列。
m序列的特性1、最长周期序列:N=2n-12、功率平衡性:‘1’的个数比‘0’的个数多13、‘0’、‘1’随机分布:近似高斯噪声4、相移不变性:任意循环移位仍是m序列,仅初相不同5、离散自相关函数:‘0’->+1,‘1’->-11.2 Gold序列Gold序列是两个等长m序列模二加的复合序列两个m序列应是“优选对”特点:1、包括两个优选对m序列,一个Gold序列族中共有2n+1个Gold序列2、Gold序列族中任一个序列的自相关旁瓣及任意两个序列的互相关峰值均不超过两个m序列优选对的互相关峰值1.3OVSF序列又叫正交可变扩频因子,系统根据扩频因子的大小给用户分配资源,数值越大,提供的带宽越小,是一个实现码分多址(CDMA)信号传输的代码,它由Walsh函数生成,OVSF码互相关为零,相互完全正交。
OVSF序列的特点1、序列之间完全正交2、极适合用于同步码分多址系统3、序列长度可变,不影响正交性,是可变速率码分系统的首选多址扩频码4、自相关性很差,需与伪随机扰码组合使用二、三种扩频码序列产生仿真一、M序列的产生代码:X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初T态(0101), Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0U(i)=-1;elseU(i)=Y4;endendM=U%绘图i1=ik=1:1:i1;plot(k,U,k,U,'rx')xlabel('k')ylabel('M序列')title('移位寄存器产生的M序列')用阶梯图产生表示:X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初T态(0101),Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0U(i)=-1;elseU(i)=Y4;endendM=U%绘图stairs(M);二、GOLD序列的产生:M序列A的生成:X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初T态(1010), Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0A(i)=0;elseA(i)=Y4;endendM=A%绘图i1=ik=1:1:i1;plot(k,A,k,A,'rx')xlabel('k')ylabel('M序列')title('移位寄存器产生的M序列')M序列B的生成:X1=0;X2=1;X3=0;X4=1; %移位寄存器输入Xi初T态(0101), Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0B(i)=0;elseB(i)=Y4;endendN=B%绘图i1=ik=1:1:i1;plot(k,B,k,B,'rx')xlabel('k')ylabel('M序列')title('移位寄存器产生的M序列') 生成gold序列:c=xor(A,B);stairs(c);三、OVSF序列的产生:%Function [OVSF_Codes]=OVSF_Generator(Spread_Fator,Code_Number)%Code_Number=-1 表示生成所有扩频因子=Spread_Factor的ovsf码Code_Number=-1;Spread_Fator=8;OVSF_Codes=1;if Spread_Fator==1return;endfor i=1:1:log2(Spread_Fator)Temp=OVSF_Codes;for j=1:1:size(OVSF_Codes,1)if j==1OVSF_Codes=[Temp(j,:),Temp(j,:) Temp(j,:),(-1)*Temp(j,:)];elseOVSF_Codes=[OVSF_Codes Temp(j,:),Temp(j,:) Temp(j,:),(-1)*Temp(j,:)];endendend%if Code_Number>-1% OVSF_Codes=OVSF_Codes((Code_Number+1),:);%endfigure(3)[b4,t4]=stairs([1:length(OVSF_Codes)],OVSF_Codes); plot(b4,t4);axis([0 130 -1.1 1.1]);title('OVSF序列')三、三种扩频码序列特性仿真(一)M序列自相关函数X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初T态(0101), Yi为移位寄存器各级输出m=2^8-1; %置M序列总长度for i=1:m %1#Y4=X4; Y3=X3; Y2=X2; Y1=X1;X4=Y3; X3=Y2; X2=Y1;X1=xor(Y3,Y4); %异或运算if Y4==0U(i)=-1;elseU(i)=Y4;y = xcorr(U);stairs(y);end互相关函数:输入两个m序列clcclear allclose allm1 = [0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1] m2 = [1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1]y = xcorr(m1,m2,'unbiased');stairs(y)(二)Gold码的自相关函数x2=[(2*c)-1];%将运行结果Gold序列c从单极性序列变为双极性序列y1=xcorr(x2,'unbiased');%求自相关性stairs(y1);gridxlabel('t')ylabel('相关性')title('移位寄存器产生的Gold序列的相关性')互相关性gold序列和m序列的互相关性y1=xcorr(c,m1,'unbiased'); stairs(y1);(三)ovsf码的互相关和自相关a=[1 -1 1 1 -1 1 -1 -1];b=[1 -1 -1 1 1 -1 -1 1];P=length(a);%求序列a的自相关函数Ra(1)=sum(a.*a);for k=1:P-1Ra(k+1)=sum(a.*circshift(a,[0,k])); end%求序列b的自相关函数Rb(1)=sum(b.*b);for k=1:P-1Rb(k+1)=sum(b.*circshift(b,[0,k])); end%求序列a和b的互相关函数Rab(1)=sum(a.*b);for k=1:P-1Rab(k+1)=sum(a.*circshift(b,[0,k])); endx=[0:P-1];figure(9)subplot(3,1,1);stem(x,Rab);ylabel('a和b的互相关函数');axis([0 P-1 -10 12]);grid;xlabel('偏移量');subplot(3,1,2);stem(x,Ra);ylabel('a自相关函数');xlabel('偏移量');%axis([0 P-1 -5 30]);subplot(3,1,3);stem(x,Rb);%plot(x,Rb)xlabel('偏移量');ylabel('b的自相关函数');四、总结一、M序列自相关函数近似于冲激函数的形状,不同序列间的互相关特性一致性不好。
试验八:M序列产生及特性分析实验

试验八:m序列产生及特性分析实验一实验目的1.了解m序列的性质和特点;2.熟悉m序列的产生方法;3.了解m序列的DSP或CPLD实现方法。
二实验内容1.熟悉m序列的产生方法;2.测试m序列的波形;3*.用DSP或CPLD编程产生m序列。
三实验原理m序列是最长线性反馈移存器序列的简称,是伪随机序列的一种。
它是由带线性反馈的移存器产生的周期最长的一种序列。
m序列在一定的周期内具有自相关特性。
它的自相关特性和白噪声的自相关特性相似。
虽然它是预先可知的,但性质上和随机序列具有相同的性质。
比如:序列中“0”码与“1”码等抵及具有单峰自相关函数特性等。
1.m序列的产生m序列是由带线性反馈的移存器产生的。
结构如图:图1-1-1 反馈移位寄存器的结构其中an-i为移位寄存器中每位寄存器的状态,C i为第i位寄存器的反馈系数。
C i=1表示有反馈,C i=0表示无反馈。
我们先给出一个m序列的例子。
在图1-1-1中示出一个4级反馈移存器。
若其初始状态为(a3, a2, a1, a)=(1,0,0,0),则在移位一次时,由a3和a模2相加产生新的输入a4=1⊕0=1新的状态变为(a4, a3, a2, a1)=( 1, 1, 0, 0)这样移位15次后又回到初始状态(1,0,0,0),不难看出,若初始状态为全“0”,即“0,0,0,0”,则移位后得到的仍为全“0”状态。
这就意味着在这种反馈移存器中应避免出现全“0”状态。
不然移存器的状态将不会改变。
因为4级移存器共有24=16种可能的不同状态。
除全“0”状态外,只剩15种状态可用。
即由任何4级反馈移存器产生的序列的周期最长为15。
我们常常希望用尽可能小的级数产生尽可能长的序列。
由上例可见,一般说来,一个n 级反馈移存器可能产生的最长周期等于(2n –1)。
我们将这种最长的序列称为最长线性反馈1 1 1 1 0 1 0 1 1 0 0 1 0 0 00 1 1 1 1 0 1 0 1 1 0 0 1 0 00 0 1 1 1 1 0 1 0 1 1 0 0 1 00 0 0 1 1 1 1 0 1 0 1 1 0 0 1移存器序列,简称m 序列。
m序列产生及其特性实验

3G移动通信实验报告实验名称:扩频码仿真学生姓名:学生学号:学生班级:所学专业:实验日期:1.实验目的1.掌握m序列的特性、产生方法及应用。
2.. 掌握Gold序列的特性、产生方法及应用。
3. 掌握Gold序列与m序列的区别。
4. 掌握Walsh码的产生原理及特性。
5. 了解它们在3G系统中的应用。
2.实验内容找一个127长度的m序列,验证其特性自相关性之+互相关性质m+m=goldwalsh 128位长度求 2个互相关自相关m+walsh 互相关自相关3.实验代码clear all;A1=[0 0 0 0 0 1 1];A1=A1';D1=[0 0 0 0 0 0 1];Dm1=zeros(1,127);A2=[0 0 0 1 0 0 1];A2=A2';D2=[0 0 0 0 0 0 1];Dm2=zeros(1,127);for i=1:127;Dm1(1,i)=D1(1,7);Dm2(1,i)=D2(1,7);Dr1=mod(D1*A1,2);Dr2=mod(D2*A2,2);for n=7:-1:2D1(1,n)=D1(1,n-1);D2(1,n)=D2(1,n-1);endD1(1,1)=Dr1;D2(1,1)=Dr2;end%m序列自相关特性验证Dm11=zeros(1,127)Dm12=zeros(1,127)Dm1n=[Dm1,Dm1,Dm1];p1=zeros(1,253);Dm11=Dm1n(1,128:254);for i=-126:1:126n1=i+128;Dm12=Dm1n(1,n1:1:(n1+126));Dm1s=mod(Dm11+Dm12,2);sum0=0;sum1=0;for i1=1:127if Dm1s(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendp1(1,i+127)=(sum0-sum1)/127;endsubplot(4,2,1);plot(-126:1:126,p1);title('m序列自相关特性');%m序列互相关特性验证Dm21=zeros(1,127)Dm22=zeros(1,127)Dm2n=[Dm2,Dm2,Dm2];p2=zeros(1,253);pmax=0;pmax_n1=0;pmin=0;pmin_n1=0;Dm21=Dm2n(1,128:254);for i=-126:1:126n1=i+128;Dm22=Dm1n(1,n1:1:(n1+126));Dm2s=mod(Dm21+Dm22,2);sum0=0;sum1=0;for i1=1:127if Dm2s(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendp=(sum0-sum1)/127;if p>pmaxpmax=p;pmax_n1=n1;endif p>pminpmin=p;pmin_n1=n1;endp2(1,i+127)=p;endsubplot(4,2,2);plot(-126:1:126,p2);title('m序列互相关特性');%gold序列的自相关特性Dmg11=Dm21;Dmg12=Dm1n(1,pmax_n1:1:(pmax_n1+126)); Dmg1=mod(Dmg11+Dmg12,2);Dmg1n=[Dmg1,Dmg1,Dmg1];pg1=zeros(1,253);Dmg11=Dmg1n(1,128:254);for i=-126:1:126n1=i+128;Dmg12=Dmg1n(1,n1:1:(n1+126));Dmg1s=mod(Dmg11+Dmg12,2);sum0=0;sum1=0;for i1=1:127if Dmg1s(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendpg1(1,i+127)=(sum0-sum1)/127;endsubplot(4,2,3);plot(-126:1:126,pg1);title('gold序列自相关特性');%gold序列的互相关特性Dmg21=Dm21;Dmg22=Dm1n(1,pmin_n1:1:(pmin_n1+126)); Dmg2=mod(Dmg21+Dmg22,2);Dmg2n=[Dmg2,Dmg2,Dmg2];pg2=zeros(1,253);for i=-126:1:126n1=i+128;Dmg22=Dmg2n(1,n1:1:(n1+126));Dmg2s=mod(Dmg1+Dmg22,2);sum0=0;sum1=0;for i1=1:127if Dmg2s(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendpg2(1,i+127)=(sum0-sum1)/127;;endsubplot(4,2,4);plot(-126:1:126,pg2);title('gold序列自相关特性');%walsh序列产生H1=0;H2=[H1,H1;H1,H1*(-1)+1];H4=[H2,H2;H2,H2*(-1)+1];H8=[H4,H4;H4,H4*(-1)+1];H16=[H8,H8;H8,H8*(-1)+1];H32=[H16,H16;H16,H16*(-1)+1];H64=[H32,H32;H32,H32*(-1)+1];H128=[H64,H64;H64,H64*(-1)+1];%walsh序列的自相关特性W11=H128(2,1:128);W1n=[W11,W11,W11]pw1=zeros(1,253);for i=-126:1:126n1=i+128;W12=W1n(1,n1:1:(n1+127));W1s=mod(W11+W12,2);sum0=0;sum1=0;for i1=1:128if W1s(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendpw1(1,i+127)=(sum0-sum1)/128;endsubplot(4,2,5);plot(-126:1:126,pw1);title('walsh序列自相关特性');%walsh序列的互相关特性W21=W11;W22=H128(8,1:128);W2n=[W22,W22,W22];pw2=zeros(1,253);for i=-126:1:126n1=i+128;W22=W1n(1,n1:1:(n1+127));W2s=mod(W21+W22,2);sum0=0;sum1=0;for i1=1:128if W2s(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendpw2(1,i+127)=(sum0-sum1)/128;endsubplot(4,2,6);plot(-126:1:126,pw2);title('walsh序列互相关特性');%m+walsh序列产生mw1=mod([Dm1,0]+H128(2,1:128),2);mw2=mod([Dm2,0]+H128(8,1:128),2);%mw序列的自相关特性mwa1=mw1;mwan=[mwa1,mwa1,mwa1];pmwa=zeros(1,253);for i=-126:1:126n1=i+128;mwa2=mwan(1,n1:1:(n1+127));mwas=mod(mwa1+mwa2,2);sum0=0;sum1=0;for i1=1:128if mwas(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendpmwa(1,i+127)=(sum0-sum1)/128; endsubplot(4,2,7);plot(-126:1:126,pmwa);title('m+walsh序列自相关特性');%mw序列的互相关特性mwb1=mw1;mwb2=mw2;mwbn=[mwb2,mwb2,mwb2];pmwb=zeros(1,253);for i=-126:1:126n1=i+128;mwb2=mwbn(1,n1:1:(n1+127));mwbs=mod(mwb1+mwb2,2);sum0=0;sum1=0;for i1=1:128if mwbs(1,i1)==0 sum0=sum0+1;else sum1=sum1+1;endendpmwb(1,i+127)=(sum0-sum1)/128;endsubplot(4,2,8);plot(-126:1:126,pmwb);title('m+walsh序列互相关特性'); 4.实验结果。
M序列的产生及特性分析实验

M 序列的产生及特性分析实验一:实验目的1、了解m 序列的特性及产生。
二:实验模块1、 主控单元模块2、 14号 CDMA 扩频模块3、示波器三:实验原理1、14号模块的框图14号模块框图2、14号模块框图说明(m 序列)127位128位该模块提供了四路速率为512K 的m 序列,测试点分别为PN1、PN2、PN3、PN4。
其中,PN2和PN4分别由PN 序列选择开关S2、S3控制;不同的开关码值,可以设置m 序列码元的不同偏移量。
开关S6是PN 序列长度设置开关,可选127位或128位,其中127位是PN 序列原始码长,128位是在原始码元的连6个0之后增加一个0得到。
Gold 序列测试点为G1和G2,其中G1由PN1和PN2合成,G2由PN3和PN4合成。
拨码开关S1和S4是分别设置W1和W2产生不同的Walsh 序列。
实验中还可以观察不同m 序列(或Gold 序列)和Walsh 序列的合成波形。
注意,每次设置拨码开关后,必须按复位键S7。
3、实验原理框图m 序列相关性实验框图为方便序列特性观察,本实验中将Walsh 序列码型设置开关S1和S4固定设置为某一种。
4、实验框图说明 m 序列的自相关函数为()R A D τ=-式中,A 为对应位码元相同的数目;D 为对应位码元不同的数目。
自相关系数为()A D A DP A Dρτ--==+ 对于m 序列,其码长为P=2n -1, 在这里P 也等于码序列中的码元数,即“0”和“1”个数的总和。
其中“0”的个数因为去掉移位寄存器的全“0”状态,所以A 值为121n A -=-“1”的个数(即不同位)D 为12n D -=m 序列的自相关系数为1 0()1 0,1,2,p τρτττ=⎧⎪=⎨-≠=⎪⎩…,p-1cT τm 序列的自相关函数四:实验步骤(注:实验过程中,凡是涉及到测试连线改变或者模块及仪器仪表的更换时,都需先停止运行仿真,待连线调整完后,再开启仿真进行后续调节测试。
m序列原理

m序列原理m序列是一种特殊的伪随机序列,具有良好的随机性质和周期性,广泛应用于通信、密码学、雷达、遥感等领域。
m序列的原理是基于线性反馈移位寄存器(LFSR)的工作原理,通过适当的初值和反馈多项式,可以生成具有良好随机性质的序列。
m序列的生成原理是基于LFSR的工作原理。
LFSR是一种线性反馈移位寄存器,它由若干个存储单元和适当的反馈电路组成。
在LFSR中,存储单元中的数据按照时钟信号不断移位,同时根据反馈电路的控制,将某些位上的数据进行异或运算,得到新的输入数据,从而实现序列的生成。
通过适当选择LFSR的初值和反馈多项式,可以得到不同长度的m序列。
m序列具有良好的随机性质和周期性。
由于m序列的生成原理是基于LFSR的移位和异或运算,使得序列中的数据呈现出随机分布的特性。
同时,由于LFSR的结构和反馈多项式的选择,m序列具有很长的周期,甚至可以达到最大周期2^n-1,其中n为LFSR的位数。
这使得m序列在伪随机序列中具有较好的性能。
m序列在通信、密码学、雷达、遥感等领域有着广泛的应用。
在通信系统中,m序列可以作为扩频序列,用于码分多址(CDMA)通信系统中的信道编码和解码,提高通信系统的抗干扰能力和安全性。
在密码学中,m序列可以作为密钥序列,用于数据加密和解密,保障通信的安全性。
在雷达和遥感领域,m序列可以作为调制序列,用于信号的调制和解调,提高信号的分辨率和抗干扰能力。
总之,m序列作为一种特殊的伪随机序列,具有良好的随机性质和周期性,在通信、密码学、雷达、遥感等领域有着广泛的应用前景。
通过深入理解m序列的生成原理和特性,可以更好地应用于实际系统中,提高系统的性能和安全性。
m序列实验报告

实验报告--m序列的产生及其特性实验班级:XXXXXX学号:XXXXX姓名:XXXXXM序列的产生及其特性实验一、实验目的掌握m序列的特性、产生方法及运用二、实验内容(1)编写MATLAB程序生成并观察m序列,识别其特征(2)观察m序列的相关特性三、实验原理m序列是有n级线性移位寄存器产生的周期为2n −1的码序列,是最长线性移位寄存器序列的简称。
码分多址系统主要采用两种长度的m序列:一种是周期为215 −1的m序列,又称短PN序列;另一种是周期为242 −1的m序列,又称为长PN码序列。
m序列主要有两个功能:①扩展调制信号的带宽到更大的传输带宽,即所谓的扩展频谱;②区分通过多址接入方式使用同一传输频带的不同用户的信号。
四、实验分析在实验中我选择的是n=6的级数,选择了103、147、155这三个反馈系数1:当反馈系数会Ci=(103)8=(1000011)2原理框图2: 当反馈系数会Ci=(147)8=(1100111)2原理框图3: 当反馈系数会Ci=(155)8=(1101101)2原理框图五、实验程序clearclose all;clcG=127;%使用多项式(103)8=(1000011)2产生第一个m序列sd1=[0 0 0 0 0 1];%寄存器的初始状态PN1=[];%第一个序列for j=1:GPN1=[PN1 sd1(1)];if sd1(1)==sd1(2)temp1=0;else temp1=1;endsd1(1)=sd1(2);sd1(2)=sd1(3);sd1(3)=sd1(4);sd1(4)=sd1(5);sd1(5)=sd1(6);sd1(6)=temp1;endsubplot(3,1,1)stem(PN1)title('使用生成多项式(103)8=(1000011)2产生第一个m序列')%使用生成多项式(147)8=(1100111)2产生第二个m序列sd2=[0 0 0 0 0 1];%寄存器的初始状态PN2=[];%第一个序列for j=1:GPN2=[PN2 sd2(1)];if sd2(1)==sd2(2)temp1=0;else temp1=1;endif sd2(5)==temp1temp2=0;else temp2=1;endif sd2(6)==temp2temp3=0;else temp3=1;endsd2(1)=sd2(2);sd2(2)=sd2(3);sd2(3)=sd2(4);sd2(4)=sd2(5);sd2(5)=sd2(6);sd2(6)=temp3;endsubplot(3,1,2)stem(PN2)title('使用生成多项式(147)8=(1100111)2产生第二个m序列')%使用生成多项式(155)8=(1101101)2产生第三个m序列sd3=[0 0 0 0 0 1];%寄存器的初始状态PN3=[];%第一个序列for j=1:GPN3=[PN3 sd3(1)];if sd3(1)==sd3(2)temp1=0;else temp1=1;endif sd3(4)==temp1temp2=0;else temp2=1;endif sd3(5)==temp2temp3=0;else temp3=1;endsd3(1)=sd3(2);sd3(2)=sd3(3);sd3(3)=sd3(4);sd3(4)=sd3(5);sd3(5)=sd3(6);sd3(6)=temp3;endsubplot(3,1,3)stem(PN3)title('使用生成多项式(155)8=(1101101)2产生第三个m序列')六、实验结果七、m序列的相关性质PN1 =0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1PN2 =0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 1 1PN3 =0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 11)均衡性在m序列的一个周期中,0和1的数目基本相等,1的数目比0的数目多一个,由PN1可知总共有32个1和31个0.2)游程分布M序列中取值相同的那些相继的元素合称为一个“游程”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M序列的产生和性能分析摘要在扩频函数中,伪随机信号不但要求具有尖锐的互相关函数,互相关函数应接近于零,而且具有足够长的码周期,以确保抗侦破、抗干扰的要求;由足够多的独立地址数,以实现码分多址的要求。
M序列是伪随机序列的一种,可由m序列添加全0状态而得到。
m序列与M序列对比得出在同级移位寄存器下M序列的数量远远大于m序列数量,其可供选择序列数多,在作跳频和加密码具有极强的抗侦破能力。
本文在matlab中的Simulink下用移位寄存器建立了4级、5级、6级M 序列的仿真模型,进行了仿真,画出其时域图、频谱图、互相关性图。
通过时域图和频域图可看出,经过扩频后的信号频带明显的被扩展;由M序列互相关性图,得出M序列有较小的互相关性,较强的自相关性,但相关性略差于m序列。
最后,本文又将M序列应用于CDMA扩频通信仿真系统中,得到下列结论:当使用与扩频时相同的M序列做解扩操作与用其他序列做解扩的输出有巨大的差别。
使用相同的序列进行解扩时系统输出值很大,而使用其他序列解扩时输出值在零附近变化。
这就是扩频通信的基础。
关键词:伪随机编码, 扩频通信自相关函数,互相关函数M SEQUENCE GENERATION AND PERFORMANCEANALYSISABSTRACTIn spread-spectrum communication, pseudo-random sequence must have high autocorrelation value, low cross correlation, long code period and lots of dependent address to satisfy code division multiple access(CDMA). M sequence is one kind of the pseudo-random sequences. It can be may obtained through adding entire 0 states to m sequence. The number of M sequence is greater than the m-sequence under the same level shift register. It may supply the more choice. The M-sequence is often applied to the frequency hopping and adds the password to have greatly strengthened anti- solves the ability.At first, M sequences which has n=4、5、7 levels of shift registers are produced under Simulink of Matlab. The time domain chart, the spectrograph, the mutual correlation chart are plotted. Through the time domain chart and the spectrograph, we could see how the bandwidth of the information signal is expanded. The pseudo-random symbol speed rate higher noise signal frequency spectrum is proliferated widely, the output power spectrum scope is lower. This can explain the spread-spectrum communication system principle from the frequency range. Through the M sequence’s auto correlation chart we can see that the auto correlation of M-sequence is quite good but is inferior to the m sequence. Finally, the M sequence is applied to the code division multiple access (CDMA) communication system. This is the spread-spectrum communication foundation.KEY WORDS:Pseudo-random code, auto-correlation, cross-correlation目录前言 (1)第1章扩展频谱通信 (3)§1.1 扩展频谱通信 (3)§1.2 扩展频谱技术 (5)第2章 M序列的产生方法和性质 (6)§2.1 M序列的产生方法 (7)§2.1.1由m序列构成M序列 (7)§2.2 搜索法产生M序列 (8)§2.3 M序列的性质 (12)§2.3.1 M序列的性质 (12)§2.3.2 M序列的相关特性 (13)第3章MATLAB仿真 (14)§3.1反馈移位寄存器产生M序列的仿真 (14)§3.2 M序列在扩频通信领域的仿真 (25)结论 (29)参考文献 (31)致谢 (33)前言扩展频谱通信最早始于军事通信,直到80年代末,美国FCC规划出了ISM频段,并且可以由采用扩频通信机制的商用通信使用。
由于扩频通信在提高信号接收质量,抗干扰,保密性,增加系统容量方面都有突出的优点。
扩频通信迅速地在民用,商用通信领域普及来。
近年来在国内,扩频通信技术如雨后春笋般发展起来,已经广泛应用在室内局域网互连,室外远程城域网互连等领域。
众多的国际无线扩频厂商纷纷加入了国内市场的竞争。
如今,扩频微波产品已经广泛应用于中国的电信,移动,金融,证卷,税务,电力,公安,水利,交通,油田,卫生,广电等部门,并已安装了上万套的扩频微波设备。
伪随机码,也称伪噪声码,是一种可以预先确定并可以重复地产生和复制,又具有随机统计特性的二进制码序列。
早在20世纪40年代末,香农(Shannon G E )等人就建立了“噪声通讯”理论, 证明了具有白噪声统计特性的信号对充分利用信道的容量与信号的功率、抗多路径干扰和测定距离等问题具有明显的优点。
但当时只是限于理论上的探讨。
到了20世纪60年代中期,由于发展了一些易于产生、加工、复制,又具有白噪声统计特性的伪随机码,噪声通讯理论才获得了许多实际应用。
在深空通信场合,利用伪随机编码信号可以实现低信噪比接收,大大改善了通信的可靠性,且可实现码分多址通信。
此外,利用伪随机编码信号可以实现高性能的保密通信。
这些特点正符合全球定位系统的技术要求。
伪随机码种类有许多,文中讨论了M序列。
M序列是由若干级带有某些特定反馈的移位寄存器产生的,也称最长非线性移位寄存器序列。
扩频谱编码是一种信道编码体制, 始于20 世纪80 年代初的无线电隐蔽式数字通信。
尽管该体制在无线电通信领域得到成功应用, 但它却很少应用于通信声呐, 甚至被认为不适合于水声通信, 因为声波在海洋中传播的衰减与声吸收、散射、反射、几何扩展等因素有关, 高频声波在水中传播的衰减系数近似与声波频率平方成正比, 信道对高频声波的衰减较大. 由于远距离水声信道的带宽只有十几千赫, 发射机和发射换能器的匹配带宽仅为几千赫兹, 限制了扩频频谱带宽和通信速率, 所以也限制了M序列扩频编码在声呐中的应用。
近年来, 包括美国、俄罗斯和英国在内的海军强国, 均对M序列扩频编码通信声呐进行了研究。
在对通信隐蔽性、可靠性和作用距离要求较高, 而对速率要求不高的场合(通常为每秒几个比特), 该体制有独特的可用性, 特别适合于潜艇间文本通信。
本文首先对伪随机码(M序列)的国内外状况进行了简单的介绍,接着又说明了M序列的基本概念,并在此基础上详细的阐述了M序列的产生方法和其性质(1.随机特性;2.条数;3.相关特性),最后又用MATLAB仿真出M序列及其基本的特性曲线。
第1章扩展频谱通信人类社会进入到了信息社会,通信现代化是人类社会进入信息时代的标志。
怎样在恶劣的环境条件下保证通信有效地、准确地、迅速地进行,是当今通信工作者所面临的一大课题。
扩展频谱通信是现代通信系统中的一种新兴的通信方式,其较强的抗干扰、抗衰弱和抗多径性能以及频谱利用率高、多址通信等诸多优点越来越为人们所认识,并被广泛地军事通信和民用通信的各个领域,从而推动了通信事业的迅速发展。
§1.1扩展频谱通信扩频通信的起源和发展与军事应用有密切关系。
从20世纪20年代起人们就已经开始研究许多具有扩频技术特征的电子设备。
雷达(Radar)诞生于20世纪20年代,主要用于检测无线电回波信号和测距;30年代诞生了FM无线电高度表。
第二次世界大战中脉冲雷达受到关注,主要原因是脉冲雷达比连续波雷达能更好地隔离收、发机。
在二战结束前,德国发明了线性调频脉冲压缩雷达和脉冲调频雷达。
匹配滤波器理论也是在二战期间由North,Van Vlek和Middleton等学者提出来的,这个理论告诉我们在白高斯噪声下最佳信号检测的性能仅决定于信号的能量与噪声功率谱密度。
因此人们可以选择波形来满足其他准则要求。
从20世纪70年代起,开始把军事通信中的扩频技术用于多址通信,提出了CDMA技术。
由于CDMA具有网络容量大,以及用户接入方便、灵活等优点,立刻成了地面公众移动通信的一个主流技术。
在第二代数字公众移动通信中,流行于北美和韩国的IS-95就采用CDMA技术。
目前第三代数字移动通信系统的几种实现方案,几乎全都采用CDMA技术。
在通信中遇到的干扰可分为两类:人为干扰和非人为干扰。
人为干扰是一种故意干扰,意在对敌方的通信实施干扰,达到破坏对方通信的目的。
而非人为干扰,是一种非故意干扰,大多为来自自然界的干扰,如天电干扰、噪声等,这些干扰都是客观存在的,非故意的。
由于非人为干扰是客观存在的,对其只能削弱,不能消除。
对于人为干扰,可以消除或削弱。
在通信中,不仅要尽可能消除或减少非人为的干扰,而且要对抗那些敌意的人为干扰,这些人为干扰主要有:(1) 单频干扰,或称为固频干扰。
这种干扰的干扰频率J f 对准对方的通信频率s f ,即s J f f ,形成同频干扰。