七年级期末试卷测试卷(解析版)
统编版(2024新版)七年级上册语文期末基础复习测试卷(含答案)

统编版(2024新版)七年级上册语文期末基础复习测试卷1.根据拼音写出相应的汉字。
(3分)亲爱的同学们,一个学期的语文学习,是否让你发现了生活的可爱之处?你看,有情致丰富的万物,有真zhì热忱的人们,还有那份童趣盎然和哲思之美。
这一切,都让我们感受到了生命的滚tàng 和重量。
下面,让我们继续跟随文字的脚印,去发现生活的péng 勃,人间的温暖……万物有灵诗句作者与出处深情之月,托付对友人的深切关怀。
(1),随君直到夜郎西。
李白《闻王昌龄左迁龙标遥有此寄》不羁之山,寄托个性解放的少年意气。
河流大野犹嫌束,(2)。
谭嗣同《潼关》愁苦之雨,见证羁旅中的苦涩与无奈君问归期未有期,(3)。
李商隐《夜雨寄北》坚韧之菊,不负秋阳,竞相怒放。
(4),应傍战场开。
岑参《行军九日思长安故园》凌云之鹤,承载一腔豪情,直冲云霄。
(5),(6),刘禹锡《秋词(其一)》奔流之水,提醒时光流逝,且行且珍惜。
(7),(8),《〈论语〉十二章》【热身活动:“书”里有乾坤】(12分)1.以下是小组开展的有关“书”的研讨活动,请你一试身手,补充空白内容。
(12分)小语:最早出现在甲骨文中的“书”的字样是一只手抓住一个东西(刀或者笔)在器物上刻写,可见,“书”最早的意思是(1)。
后来,人们把写的东西装订成册,“书”就引申为成册的著作,如春秋战国时期儒家学派的经典著作(2)《》,它是记录孔子及其弟子言行的一部书。
书中“(3),(4)”一句,说的是几个人一起走路,其中必定有可以做我老师的人。
小文:“书”还有其他意思呢,如诸葛亮的《诫子书》,这个“书”的意思是(5)。
不仅如此,古代诗人还常常借“书”来寄托情思,如王湾在《次北固山下》中用“(6)?(7)”传递思乡之情;李商隐在给妻子的“书”(《夜雨寄北》)中,用“(8),(9)”把眼前的凄苦兑换成未来团聚的欢乐。
小嘉:在梳理“书”的相关义项时,我感受到了中华文化的博大精深,作为中华儿女的自豪感yóu rán ér sh ēng(10)。
人教版初中数学七年级上册期末测试卷(标准难度)(含答案解析)

人教版初中数学七年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.有理数a,b,c在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab>0;③b+c<0;④b−a>0.上述结论中,所有正确结论的序号是( )A. ①②B. ②③C. ②④D. ③④2.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,用你所发现的规律得出22022+22023的末位数字是( )A. 2B. 4C. 8D. 63.下列说法:①两个数互为倒数,则它们的乘积为1;②若a、b互为相反数,则b=−1;③a 若a为任意有理数,则a−|a|≤0;④两个有理数比较,绝对值大的反而小;⑤若A是一个三次多项式,B是一个四次多项式,则A+B一定是四次多项式;⑥−5πR2的系数是−5.其中正确的有( )A. 2个B. 3个C. 4个D. 5个4.多项式1x|m|−(m−4)x+7是关于x的四次三项式,则m的值是( )2A. 4B. −2C. -4D. 4或-45.一个两位数的个位数字与十位数字都是x,如果将个位数字与十位数字分别加2和1,所得的新数比原数大12,则可列的方程是( )A. 2x+3=12B. 10x+2+3=12C. (10x+x)−10(x+1)−(x+2)=12D. 10(x+1)+(x+2)=10x+x+126.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程( )A. 4(x−1)=2x+8B. 4(x+1)=2x−8C. x4+1=x+82D. x4−1=x−827.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为( )A. 28°B. 112°C. 28°或112°D. 68°8.如图,点B为线段AC上一点,AB=11cm,BC=7cm,D、E分别是AB、AC的中点,则DE 的长为( )A. 3.5cmB. 4cmC. 4.5cmD.5cm9.已知,a,b是不为0的有理数,且|a|=−a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是( )A.B.C.D.10.已知点A,B,C,D在数轴上的位置如图所示,且相邻两点之间的距离均为1个单位长度.若点A,B,C,D分别表示数a,b,c,d,且满足a+d=0,则b的值为( )A. −1B. −12C. 12D. 111.如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为( )A. 252B. 253C. 336D. 33712.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,−a,b,−b按照从小到大的顺序排列,正确的是( )A. a<−b<b<−aB. a<b<−b<−aC. a<−b<−a<bD. −b<a<b<−a第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.《九章算术》是中国古代第一部数学专著,不仅最早提到分数问题,也首先记录了盈不足等问题,在第七章“盈不足”中有这样一个问题:“今有蒲生一日,长三尺;莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”其意思是“有蒲和莞两种植物,蒲第一日长了3尺,莞第一日长了1尺,以后蒲每日生长的长度是前一日的一半,莞每日生长的长度是前一日的2倍,问几日蒲、莞上涨的长度相等.”请计算出第三日后,蒲、莞的长度相差为尺.14.若5x3n y|m|+4与−3x9y6是同类项,那么m+n的值为.15.小红在解关于x的方程:−3x+1=3a−2时,误将方程中的“−3”看成了“3”,求得方程的解为x=1,则原方程的解为.16.如图1是边长为18cm的正方形纸板,剪掉阴影部分后将其折叠成如图2所示的长方体盒子.已知该长方体的宽是高的2倍,则它的体积是cm3.三、解答题(本大题共9小题,共72.0分。
人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。
天津市2023-2024学年七年级下册语文期末模拟测试卷 (考试卷+解析卷)

天津市2023-2024学年七年级下册语文期末模拟测试卷考试时间120分钟,满分120分第Ⅰ卷一、(本大题共11小题,共29分。
1-4小题,每题2分;5-11小题,每题3分)(一)积累与运用1.(22-23七年级下·天津西青·期末)下面各组词语中加点字的读音,不完全正确的一项是()A.炽热(chì)污秽(huì)鲜为人知(xiān)B.殷红(yān)笨拙(zhuō)深恶痛疾(wù)C.教诲(huì)驿路(yì)吹毛求疵(cī)D.修葺(qì)枯槐(huái)销声匿迹(nì)【答案】A【解析】本题考查字音。
A.鲜为人知(xiān)——xiǎn;故选A。
2.(22-23九年级下·天津和平·七)依次填入下面一段文字横线处的词语,最恰当的一项是()口袋公园是丰富城市绿化景观的重要方式。
近年来,随着城市化___________加快,人民生活水平日益提升,“推窗可见绿、出门即入园”成为市民的普遍____________。
作为面向公众开放、形状多样、具有一定游憩功能的公园绿化活动场地,口袋公园因其小巧多样、环境友好、方便使用等特点,也被不少人称为“袖珍公园”。
尽管“口袋”不大,但胜在星罗棋布、绿意盎然,满足着人们对宜居宜业的要求,在___________的城市中勾勒出一片片休憩的空间。
A.过程愿望川流不息B.进程渴望车水马龙C.进程愿望车水马龙D.过程渴望川流不息【答案】C【解析】本题考查词义辨析。
过程:指事情进行或事物发展所经过的程序。
进程:事物发展变化或进行的过程。
选段中表示的是城市化发展变化或进行的过程,故应选填“进程”;渴望:迫切地希望。
愿望:原心的期望。
选段中表示的是市民期望“推窗可见绿、出门即入园”,故应选填“愿望”;车水马龙:车如流水,马如游龙一般,形容热闹繁华的景象。
川流不息:事物像水流一样连续不断。
七年级下册期末试卷测试卷(含答案解析)

七年级下册期末试卷测试卷(含答案解析)一、选择题1.2的平方根是()A .﹣1.414B .±1.414C .2D .2± 2.下列现象属于平移的是() A .投篮时的篮球运动B .随风飘动的树叶在空中的运动C .刹车时汽车在地面上的滑动D .冷水加热过程中小气泡变成大气泡 3.在平面直角坐标系中,点P (-3,0)在( ) A .第二象限 B .第三象限 C .x 轴上 D .y 轴上 4.给出以下命题:①对顶角相等;②在同一平面内, 垂直于同一条直线的两条直线平行;③相等的角是对顶角;④内错角相等.其中假命题有( )A .1个B .2个C .3个D .4个 5.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是( )A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒ 6.下列说法中正确的是( )A .有理数和数轴上的点一一对应B .0.304精确到十分位是0.30C .立方根是本身的数只有0D .平方根是本身的数只有07.如图,//a b ,160∠=︒,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒8.在平面直角坐标系中,对于点P (x ,y ),我们把点P’(-y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(a ,b ),则点A 2021的坐标为( ) A .(a ,b )B .(-b +1,a +1)C .(-a ,-b +2)D .(b -1,-a +1)二、填空题 9.已知x ,y ()2120x y --=,则x-y =___________.10.点(,1)a 关于x 轴的对称点的坐标为(5,)b ,则+a b 的值是______.11.如图,在△ABC 中,∠A=50°,∠C=72°,BD 是△ABC 的一条角平分线,求∠ADB=__度.12.如图,已知AB //EF ,∠B =40°,∠E =30°,则∠C -∠D 的度数为________________.13.如图,在长方形纸片ABCD 中,点E 、F 分别在AD 、BC 上,将长方形纸片沿直线EF 折叠后,点D 、C 分别落在点D 1、C 1的位置,如果∠1AED =40°,那么∠EFB 的度数是_____度.14.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 15.若点P (a +3,2a +4)在y 轴上,则点P 到x 轴的距离为________.16.如图,一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点()0,0运动到()0,1,然后接着按图中箭头所示方向运动,即()()()()0,00,11,11,0→→→,…,且每秒运动一个单位,到()1,1点用时2秒,到()2,2点用时6秒,到()3,3点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.三、解答题17.(133181254(2)3|12|427-+-(3)2(22)3(21)+-+18.已知m +n =2,mn =-15,求下列各式的值.(1)223m mn n ++;(2)2()m n -.19.完成下面的证明:已知:如图, //AB CD , CD 和BE 相交于点O , DE 平分CDF ∠,DE 和BE 相交于点E ,2E ∠=∠.求证:22B ∠=∠.证明:2E ∠=∠(已知),//BE DF ∴(______________),CDF ∴∠=∠________(两直线平行,同位角相等).又//AB CD (已知),B ∴∠=∠______(________)B CDF ∴∠=∠(等量代换) .DE 平分CDF ∠(已知) ,2CDF ∴∠=∠_______(角平分线的定义).22B ∴∠=∠(_________).20.已知在平面直角坐标系中有三点A (﹣2,1)、B (3,1)、C (2,3).请回答如下问题:(1)在坐标系内描出点A 、B 、C 的位置;(2)求出以A 、B 、C 三点为顶点的三角形的面积;(3)在y 轴上是否存在点P ,使以A 、B 、P 三点为顶点的三角形的面积为10,若存在,请直接写出点P 的坐标;若不存在,请说明理由.21.计算:(1)239(6)27----; (2)﹣12+(﹣2)3×31127()89--⨯-; (3)已知实数a 、b 满足1a -+|b ﹣1|=0,求a 2017+b 2018的值.(4)已知5+1的整数部分为a ,5﹣1的小数部分为b ,求2a+3b 的值.二十二、解答题22.如图,用两个面积为28cm 的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm ;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm 的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.二十三、解答题23.如图1,AB //CD ,点E 、F 分别在AB 、CD 上,点O 在直线AB 、CD 之间,且100EOF ∠=︒.(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值;(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且50FMN ENM ∠-∠=︒,直接写出m 的值.24.已知直线//AB CD ,M ,N 分别为直线AB ,CD 上的两点且70MND ∠=︒,P 为直线CD 上的一个动点.类似于平面镜成像,点N 关于镜面MP 所成的镜像为点Q ,此时,,NMP QMP NPM QPM MNP MQP ∠=∠∠=∠∠=∠.(1)当点P 在N 右侧时:①若镜像Q 点刚好落在直线AB 上(如图1),判断直线MN 与直线PQ 的位置关系,并说明理由;②若镜像Q 点落在直线AB 与CD 之间(如图2),直接写出BMQ ∠与DPQ ∠之间的数量关系;(2)若镜像PQ CD ⊥,求BMQ ∠的度数.25.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数.小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°.(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.26.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.D【分析】根据平方根的定义求解即可.【详解】解:2的平方根是故选:D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象;D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象.故选:C.【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.3.C【分析】根据点的坐标特点判断即可.【详解】解:在平面直角坐标系中,点P(-3,0)在x轴上,故选C.【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.4.B根据对顶角的性质、平行线的判定和性质进行判断即可.【详解】解:①对顶角相等,是真命题;②在同一平面内,垂直于同一条直线的两条直线平行,是真命题;③相等的角不一定是对顶角,原命题是假命题;④两直线平行,内错角相等,原命题是假命题.故选:B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的判定和性质,难度较小.5.B【分析】根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出1290∠+∠=︒.【详解】解:由翻折可知,∠DAE=21∠,∠CBF=22∠,∵//AD BC,∴∠DAB+∠CBA=180°,∴∠DAE+∠CBF=180°,∠+∠=°,即2122180∴1290∠+∠=︒,故选:B.【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.6.D【分析】根据实数与数轴、精确度、立方根及平方根的概念和性质逐项判断即可.【详解】解:A. 实数和数轴上的点一一对应,原说法错误;B. 0.304精确到十分位是0.3,原说法错误;C. 立方根是本身的数是0、±1,原说法错误;D. 平方根是本身的数只有0,正确,故选:D.【点睛】本题考查了实数与数轴、精确度、立方根及平方根的概念和性质,熟练掌握基础知识是解题关键.7.D【分析】根据同位角相等,两直线平行即可求解.【详解】解:如图:a b,∠1=60°,因为//所以∠3=∠1=60°.因为∠2+∠3=180°,所以∠2=180°-60°=120°.故选:D.【点睛】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.8.A【分析】据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:观察发现:A1(a,b),A2(解析:A【分析】据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:观察发现:A1(a,b),A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),A6(-b+1,a+1)…∴依此类推,每4个点为一个循环组依次循环,∵2021÷4=505……1,∴点A 2021的坐标与A 1的坐标相同,为(a ,b ),故选:A .【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.二、填空题9.-1【分析】根据算术平方根的非负性和平方的非负性即可求出x 和y ,代入求值即可.【详解】解:∵,∴解得:∴x-y=-1故答案为:-1.【点睛】此题考查的是非负性的应用,掌握算术平方解析:-1【分析】根据算术平方根的非负性和平方的非负性即可求出x 和y ,代入求值即可.【详解】解:∵()220y -=()20,20y -≥ ∴10,20x y -=-=解得:1,2x y ==∴x-y =-1故答案为:-1.【点睛】此题考查的是非负性的应用,掌握算术平方根的非负性和平方的非负性是解决此题的关键.10.4【分析】根据横坐标不变,纵坐标相反,确定a,b 的值,计算即可.【详解】∵点关于轴的对称点的坐标为,∴a=5,b= -1,∴a+b= 5-1=4,故答案为:4.【点睛】本题考查了坐解析:4【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可.【详解】∵点(,1)a关于x轴的对称点的坐标为(5,)b,∴a=5,b= -1,∴a+b= 5-1=4,故答案为:4.【点睛】本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键.11.101【分析】直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC中,∠A=50°,∠C=72°,∴∠ABC=180°−50°解析:101【分析】直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC中,∠A=50°,∠C=72°,∴∠ABC=180°−50°−72°=58°,∵BD是△ABC的一条角平分线,∴∠ABD=29°,∴∠ADB=180°−50°−29°=101°.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.12.10°【分析】过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解.【详解】解析:10°【分析】过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解.【详解】解:如图,过点C作CG∥AB,过点D作DH∥EF,∵AB//EF,∴AB∥CG∥DH∥EF,∵∠B=40°,∠E=30°,∴∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,∴∠BCD-∠CDE=∠BCG-∠EDH=40°-30°=10°.故答案为:10°.【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键.13.70【分析】先利用折叠的性质得出∠DEF=∠D1EF,再由利用平角的应用求出∠DEF,最后长方形的性质即可得出结论.【详解】解:如图,由折叠可得∠DEF=∠D1EF,∵∠AED1=40°解析:70【分析】先利用折叠的性质得出∠DEF=∠D1EF,再由利用平角的应用求出∠DEF,最后长方形的性质即可得出结论.【详解】解:如图,由折叠可得∠DEF=∠D1EF,∵∠AED 1=40°,∴∠DEF =180402︒-︒=70°, ∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠EFB =∠DEF =70°.故答案为:70.【点睛】考查了长方形的性质,折叠的性质,关键是利用折叠的性质得出∠DEF =∠D 1EF 解答. 14.①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c 2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.15.2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离解析:2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.16.【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,19,20解析:()【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,可得在x 轴上,横坐标为偶数时,所用时间为x 2秒,在y 轴上时,纵坐标为奇数时,所用时间为y 2秒,∵20×20=400∴第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.三、解答题17.(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式(2)原式(3)原式【点睛】此题主要考查了实解析:(1)172;(22;(3)1-【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式1112577222=++=+=(2)原式1232=+-=(3)原式231=+=-【点睛】此题主要考查了实数运算,关键是掌握数的开方,正确化简各数.18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n -=2()4m n mn +-=()22415-⨯- =464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.19.内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【分析】由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解.【详解】证明:(已知),(内解析:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【分析】由2E ∠=∠可判定//BE DF ,即得出1CDF ∠=∠,再根据//AB CD 得出1B ∠=∠,等量代换得到B CDF ∠=∠,再根据角平分线的定义等量代换即可得解.【详解】证明:2∠=∠(已知),EBE DF∴(内错角相等,两直线平行),//CDF∴∠=∠(两直线平行,同位角相等).1AB CD(已知),又//∴∠=∠(两直线平行,同位角相等),B1∴∠=∠(等量代换).B CDF∠(已知),DE平分CDF∴∠=∠(角平分线的定义).22CDF∴∠=∠(等量代换).B22故答案为:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【点睛】本题考查了平行线的判定与性质,解题的关键是熟记“内错角相等,两直线平行”、“两直线平行,同位角相等”.20.(1)见解析;(2)S△ABC=5;(3)存在,P点的坐标为(0,5)或(0,﹣3).【分析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,ABx轴,且AB=3﹣(﹣2)=5,点C到线解析:(1)见解析;(2)S△ABC=5;(3)存在,P点的坐标为(0,5)或(0,﹣3).【分析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,AB//x轴,且AB=3﹣(﹣2)=5,点C到线段AB的距离3﹣1=2,根据三角形面积公式求解;(3)因为AB=5,要求ABP的面积为10,只要P点到AB的距离为4即可,又P点在y 轴上,满足题意的P点有两个.【详解】解:(1)描点如图;(2)依题意,得AB//x轴,且AB=3﹣(﹣2)=5,∴S△ABC=1×5×2=5;2(3)存在;∵AB=5,S△ABP=10,∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,﹣3).【点睛】本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积.21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4)35.【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 ()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用253<的范围进而得出a ,b 的值,即可得出答案.【详解】 解:(2319(6)27--3630=-+=;()2331121(2)2789⎛-+-⨯- ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()451+的整数部分为a 51的小数部分为b , 3a ∴=,52b =,2366a b ∴+=+=【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键. 二十二、解答题22.(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm 2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.【详解】解:(1)两个正方形面积之和为:2×8=16(cm 2),∴拼成的大正方形的面积=16(cm 2),∴大正方形的边长是4cm ;故答案为:4;(2)设长方形纸片的长为2xcm ,宽为xcm ,则2x •x =14,解得:x =2x ,∴不存在长宽之比为2:1且面积为214cm 的长方形纸片.【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键.二十三、解答题23.(1) ;(2)的值为40°;(3).【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解; (2)过点M 作MK ∥AB ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM解析:(1)260BEO DFO ∠+∠=︒ ;(2)EMN FNM ∠-∠的值为40°;(3)53. 【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解;(2)过点M 作MK ∥A B ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM =∠OEM =x ,∠CFN =∠OFN =y ,由∠BEO +∠DFO =260°可求x -y =40°,进而求解;(3)设直线FK 与EG 交于点H ,FK 与AB 交于点K ,根据平行线的性质即三角形外角的性质及50FMN ENM ∠-∠=︒,可得50KFD AEG ∠-∠=︒,结合260AEG n OEG DFK n OFK BEO DFO ∠=∠=∠∠+∠=︒,,,可得11180100AEG AEG KFD KFD n n∠+∠+︒-∠-∠=︒, 即可得关于n 的方程,计算可求解n 值.【详解】证明:过点O 作OG ∥AB ,∵AB ∥CD ,∴AB ∥OG ∥CD ,∴180180BEO EOG DFO FOG ∠+∠=︒∠+∠=︒,,∴360BEO EOG DFO FOG ∠+∠+∠+∠=︒,即360BEO EOF DFO ∠+∠+∠=︒,∵∠EOF =100°,∴∠260BEO DFO +∠=︒;(2)解:过点M 作MK ∥AB ,过点N 作NH ∥CD ,∵EM 平分∠BEO ,FN 平分∠CFO ,设BEM OEM x CFN OFN y ∠=∠=∠=∠=,,∵260BEO DFO ∠+∠=︒∴21802260BEO DFO x y ∠+∠=+︒-=︒,∴x -y =40°,∵MK ∥AB ,NH ∥CD ,AB ∥CD ,∴AB ∥MK ∥NH ∥CD ,∴EMK BEM x HNF CFN y KMN HNM ∠=∠=∠=∠=∠=∠,,,∴EMN FNM EMK KMN HNM HNF ∠+∠=∠+∠-∠+∠()x KMN HNM y =+∠-∠-=x -y=40°,故EMN FNM ∠-∠的值为40°;(3)如图,设直线FK 与EG 交于点H ,FK 与AB 交于点K ,∵AB ∥CD ,∴AKF KFD ∠=∠,∵AKF EHK HEK EHK AEG ∠=∠+∠=∠+∠,∴KFD EHK AEG ∠=∠+∠,∵50EHK NMF ENM ∠=∠-∠=︒,∴50KFD AEG ∠=︒+∠,即50KFD AEG ∠-∠=︒,∵AEG n OEG ∠=∠,FK 在∠DFO 内,DFK n OFK ∠=∠. ∴1180180CFO DFK OFK KFD KFD n∠=︒-∠-∠=︒-∠-∠ , 1AEO AEG OEG AEG AEG n∠=∠+∠=∠+∠, ∵260BEO DFO ∠+∠=︒,∴100AEO CFO ∠+∠=︒, ∴11180100AEG AEG KFD KFD n n∠+∠+︒-∠-∠=︒, 即(180)1KFD AEG n ⎛⎫ ⎪⎝∠⎭+-∠︒=, ∴115080n ⎛⎫ ⎪⨯⎭︒︒⎝+=, 解得53n = .经检验,符合题意, 故答案为:53. 【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 24.(1)①,证明见解析,②,(2)或.【分析】(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,解析:(1)①//MN PQ ,证明见解析,②70DPQ BMQ ∠∠+=︒,(2)160︒或20︒.【分析】(1) ①根据//AB CD 和镜像证出NMP QPM ∠=∠,即可判断直线MN 与直线PQ 的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证DPQ BM MQP Q ∠=∠∠+即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,分类讨论,依据平行线的性质求解即可.【详解】(1)①//MN PQ ,证明:∵//AB CD ,∴NPM QMP ∠=∠,∵,NMP QMP NPM QPM ∠=∠∠=∠,∴NMP QPM ∠=∠,∴//MN PQ ;②过点Q 作QF ∥CD ,∵//AB CD ,∴////AB CD QF ,∴1BMQ ∠=∠,2QPD ∠=∠,∴DPQ BM MQP Q ∠=∠∠+,∵70MNP MQP ∠=∠=︒,∴70DPQ BMQ ∠∠+=︒;(2)如图,当点P 在N 右侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,∴180NP FQP Q ∠=∠+︒,FQM BMQ ∠=∠,∵PQ CD ⊥,∴90NPQ ∠=︒,∴90FQP ∠=︒,∵70MND PQM ∠=∠=︒,∴20FQM ∠=︒,∴20BMQ ∠=︒,如图,当点P 在N 左侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,同理可得,90FQP ∠=︒,∵70MND ∠=︒,∴110MNP PQM ∠=∠=︒,∴20FQM ∠=︒,∵//AB QF ,∴180BM FQM Q ∠=∠+︒,∴160BMQ ∠=︒;综上,BMQ ∠的度数为160︒或20︒.【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.25.(1),理由见解析;(2)当点P 在B 、O 两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C∠=∠+∠,理由见解析;解析:(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE -∠CPE =∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.26.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A +∠APB =50°,∴∠APB =40°;如图③,当2∠APB +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠APB =20°;如图④,当2∠A +∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。
2022-2023学年七年级(下)期末数学试卷 解析版

七年级(下)期末数学试卷一、选择题(每小题3分,共42分)1.(3分)下列各式中,正确的是()A.=±5 B.=﹣6 C.=﹣3 D.﹣=3 2.(3分)下列调查,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班男同学进行调查B.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解某小区居民的防火意识,对你们班同学进行调查3.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.﹣>﹣D.3a>3b4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个5.(3分)如图,OA⊥OB,∠BOC=50°,OD平分∠AOC,则∠BOD 的度数是()A.20o B.30o C.40o D.50o 6.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°7.(3分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°8.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.9.(3分)用加减法解方程组时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣①D.②×2+①10.(3分)如图,A,B的坐标为(1,0),(0,2),若将线段AB 平移至A1B1,则a﹣b的值为()A.1 B.﹣1 C.0 D.2 11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣2 12.(3分)已知,满足方程组,则n﹣m的值是()A.2 B.﹣1 C.﹣D.﹣2 13.(3分)若关于x的一元一次不等式组的解集是x <5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<5 14.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E 是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE =α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本题5个小题,每小题3分,共15分)15.(3分)两个同样的直角三角板如图所示摆放,使点F,B,E,C 在一条直线上,则有DF∥AC,理由是.16.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.17.(3分)已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.18.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是.19.(3分)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是.三、解答题(本题7个小题,共63分)20.(12分)(1)计算2+++|﹣2|;(2)解方程组:;(3)解不等式组:,并把解集在数轴上表示出来.21.(8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?22.(10分)已知点P(2a﹣2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ∥y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2022+2022的值.23.(10分)如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(﹣2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD 先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.(3)求四边形ABCD的面积.24.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?25.(12分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案与试题解析一、选择题(每小题3分,共42分)1.(3分)下列各式中,正确的是()A.=±5 B.=﹣6 C.=﹣3 D.﹣=3 【分析】直接利用立方根以及算术平方根的定义分析得出答案.【解答】解:A、=5,故此选项错误;B、=6,故此选项错误;C、=﹣3,正确;D、﹣=﹣3,故此选项错误;故选:C.2.(3分)下列调查,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班男同学进行调查B.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解某小区居民的防火意识,对你们班同学进行调查【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、了解全校同学对课程的喜欢情况,对某班男同学进行调查,不具代表性、广泛性,故A错误;B、了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查,调查具有代表性、广泛性,故B正确;C、了解商场的平均日营业额,选在周末进行调查,调查不具有代表性、广泛性,故C错误;D、了解某小区居民的防火意识,对你们班同学进行调查,调查不具代表性、广泛性,故D错误;故选:B.3.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.﹣>﹣D.3a>3b【分析】根据①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解答】解:A、若a>b,则a﹣5>b﹣5,故原题计算错误;B、若a>b,则2+a>2+b,故原题计算错误;C、若a>b,则﹣<﹣,故原题计算错误;D、若a>b,则3a>3b,故原题计算正确;故选:D.4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①=10,故说法错误;②数轴上的点与实数成一一对应关系,故说法正确;③﹣2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与﹣的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②③④⑥共4个.故选:C.5.(3分)如图,OA⊥OB,∠BOC=50°,OD平分∠AOC,则∠BOD 的度数是()A.20o B.30o C.40o D.50o【分析】根据垂线的定义,可得∠AOB,根据角的和差,可得∠AOC,根据角平分线的定义,可得∠COD,根据角的和差,可得答案.【解答】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOC=∠AOB+∠BOC,∠BOC=50°,∴∠AOC=50°+90°=140°.∵OD平分∠AOC,∴∠COD=∠AOC=×140°=70°.∵∠BOD=∠COD﹣∠BOC=70°﹣50°=20°,故选:A.6.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°【分析】如图,证明∠AEF+∠BFE=180°;借助翻折变换的性质求出∠BFE,即可解决问题.【解答】解:如图,∵四边形ABCD为长方形,∴AE∥BF,∠AEF+∠BFE=180°;由折叠变换的性质得:∠BFE=∠HFE,而∠1=50°,∴∠BFE=(180°﹣50°)÷2=65°,∴∠AEF=180°﹣65°=115°.故选:B.7.(3分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵直角三角板的直角顶点在直线a上,∠1=30°,∴∠3=60°,∵a∥b,∴∠2=∠3=60°,故选:D.8.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:由已知得方程组,解得,代入,得到,解得.故选:A.9.(3分)用加减法解方程组时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣①D.②×2+①【分析】利用加减消元法判断即可.【解答】解:用加减法解方程组时,如果消去y,最简捷的方法是②×2+①.故选:D.10.(3分)如图,A,B的坐标为(1,0),(0,2),若将线段AB 平移至A1B1,则a﹣b的值为()A.1 B.﹣1 C.0 D.2【分析】根据点A和A1的坐标确定出横向平移规律,点B和B1的坐标确定出纵向平移规律,然后求出a、b,再代入代数式进行计算即可得解.【解答】解:∵A(1,0),A1(3,b),B(0,2),B1(a,4),∴平移规律为向右3﹣1=2个单位,向上4﹣2=2个单位,∴a=0+2=2,b=0+2=2,∴a﹣b=2﹣2=0.故选:C.11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣2【分析】根据已知规定及两式,确定出m、n的值,再利用新规定化简原式即可得到结果.【解答】解:根据题意得:3⊕(﹣5)=3m+5n=15,4⊕(﹣7)=4m+7n=28∴,解得:∴(﹣1)⊕2=﹣m﹣2n=35﹣48=﹣13故选:A.12.(3分)已知,满足方程组,则n﹣m的值是()A.2 B.﹣1 C.﹣D.﹣2【分析】把代入,再让两式相减,即可得出n﹣m的值,继而可得答案.【解答】解:根据题意知,①﹣②,得:﹣m+n=﹣2,即n﹣m=﹣2,∴n﹣m=(n﹣m)=﹣1,故选:B.13.(3分)若关于x的一元一次不等式组的解集是x <5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<5 【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定m的范围.【解答】解:解不等式2x﹣1>3(x﹣2),得:x<5,∵不等式组的解集为x<5,∴m≥5,故选:A.14.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE =α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【解答】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.(5)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.故选:D.二、填空题(本题5个小题,每小题3分,共15分)15.(3分)两个同样的直角三角板如图所示摆放,使点F,B,E,C 在一条直线上,则有DF∥AC,理由是内错角相等两直线平行或(垂直于同一条直线的两直线平行).【分析】根据平行线的判定定理填空即可.【解答】解:依题意得:∠DFE=∠ACB,则DF∥AC(内错角相等两直线平行.或(垂直于同一条直线的两直线平行))故答案是:内错角相等两直线平行.或(垂直于同一条直线的两直线平行)16.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积48 .【分析】根据平移的性质可知:AB=DE,BE=CF;由此可求出EH和CF的长.由于CH∥DF,根据平分线分线段成比例定理,可求出EC的长.已知了EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可求出阴影部分的面积.【解答】解:根据题意得,DE=AB=10;BE=CF=6;CH∥DF.∴EH=10﹣4=6;EH:HD=EC:CF,即6:4=EC:6,∴EC=9.∴S△EFD=×10×(9+6)=75;S△ECH=×6×9=27.∴S阴影部分=75﹣27=48.故答案为48.17.(3分)已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为(﹣2,2)或(8,2).【分析】根据B点位置分类讨论求解.【解答】解:已知AB∥x轴,点B的纵坐标与点A的纵坐标相同,都是2;在直线AB上,过点A向左5单位得(﹣2,2),过点A向右5单位得(8,2).∴满足条件的点有两个:(﹣2,2),(8,2).故答案填:(﹣2,2)或(8,2).18.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是 4 .【分析】首先根据频率的计算公式求得第五组的频数,然后利用总数减去其它组的频数即可求解.【解答】解:第五组的频数是40×0.2=8,则第六组的频数是40﹣5﹣10﹣6﹣7﹣8=4.故答案是:4.19.(3分)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是(2021,1).【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【解答】解:半径为1个单位长度的半圆的周长为×2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故答案为:(2021,1).三、解答题(本题7个小题,共63分)20.(12分)(1)计算2+++|﹣2|;(2)解方程组:;(3)解不等式组:,并把解集在数轴上表示出来.【分析】(1)先计算算术平方根和立方根、去绝对值符号,再计算加减可得;(2)整理方程组,再利用加减消元法求解可得;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=2+3﹣2+2﹣=3+;(2)方程组整理,得:,①+②,得:4x=12,解得x=3,将x=3代入①,得:3+4y=14,解得y=,∴方程组的解为;(3)解不等式x﹣3(x﹣1)<7,得:x>﹣2,解不等式x﹣2x<,得:x>0.6,则不等式组的解集为x>0.6,将不等式的解集表示在数轴上如下:21.(8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?【分析】(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;(2)利用360乘以对应的比例即可求解;(3)利用总人数6500乘以对应的比例即可求解.【解答】解:(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣80=280人,;(2)360°×=36°;(3)反对中学生带手机的大约有6500×=4550(名).22.(10分)已知点P(2a﹣2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ∥y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2022+2022的值.【分析】(1)根据x轴上的点的纵坐标为0,可得关于a的方程,解得a的值,再求得点P的横坐标即可得出答案.(2)根据平行于y轴的直线的横坐标相等,可得关于a的方程,解得a的值,再求得其纵坐标即可得出答案.(3)根据第二象限的点的横纵坐标的符号特点及它到x轴、y轴的距离相等,可得关于a的方程,解得a的值,再代入要求的式子计算即可.【解答】解:(1)∵点P在x轴上,∴a+5=0,∴a=﹣5,∴2a﹣2=2×(﹣5)﹣2=﹣12,∴点P的坐标为(﹣12,0).(2)点Q的坐标为(4,5),直线PQ∥y轴,∴2a﹣2=4,∴a=3,∴a+5=8,∴点P的坐标为(4,8).(3)∵点P在第二象限,且它到x轴、y轴的距离相等,∴2a﹣2=﹣(a+5),∴2a﹣2+a+5=0,∴a=﹣1,∴a2022+2022=(﹣1)2022+2022=2021.∴a2022+2022的值为2021.23.(10分)如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(﹣2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD 先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.(3)求四边形ABCD的面积.【分析】(1)直接利用平移规律丰碑得出对应点位置进而得出答案;(2)利用平移规律进而得出对应点坐标的变化规律;(3)利用四边形ABCD所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:A′(﹣4,1),B′(﹣2,7),C′(2,5),D′(0,1);(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标为:(a﹣2,b+1);(3)四边形ABCD的面积为:6×6﹣×2×6﹣×2×4﹣×2×4=22.24.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.25.(12分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系∠A+∠C=90°;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD =∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC =∠ABE+∠ABC=15°+90°=105°.【解答】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.。
2024-2025学年新北师大版(2024年新教材)七年级上册数学期末达标测试卷含解析

北师大版(2024年新教材)七年级上册数学期末达标测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣的绝对值是()A.B.C.﹣D.﹣2.(3分)今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.80.16×108B.8.016×109C.0.8016×1010D.80.16×10103.(3分)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.4.(3分)下列调查中,最适合抽样调查的是()A.调查某校七年级一班学生的课余体育运动情况B.调查某班学生早餐是否有喝牛奶的习惯C.调查某种面包的合格率D.调查某校足球队员的身高5.(3分)若单项式﹣3x2y的系数是m,次数是n,则mn的值为()A.9B.3C.﹣3D.﹣96.(3分)下列不属于一元一次方程的是()A.2x+3=1B.2x+3x=5C.+6=0D.=07.(3分)一个正方体的平面展开图如图所示,则原正方体中与“洗”字所在面相对的面上的汉字是()A.手B.戴C.口D.罩8.(3分)已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上9.(3分)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,《孙子算经》中有这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何.这道题的意思是:今有若干人乘车,每三人共乘一辆车,则剩余两辆车是空的;每两人共乘一辆车,则剩余九个人无车可乘,问车和人各多少.若我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=10.(3分)幻方的历史悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方.三阶幻方的每行、每列、每条对角线上的三个数之和相等,如图是另一个三阶幻方,则a﹣b的值为()A.3B.4C.5D.7二.填空题(共5小题,满分15分,每小题3分)11.(3分)我国“奋斗者”号载人潜水器在马里亚纳海沟成功下潜,最大下潜深度为10909米.高于马里亚纳海沟所在海域的海平面100米的某地高度记为+100米,那么最大下潜深度10909米可记为米.12.(3分)定义一种新运算:a*b=a2﹣b+ab.例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]=.13.(3分)已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.14.(3分)如图,点A在点O的北偏西80°方向上,点B在点O的南偏东20°的方向上,则∠AOB =°.15.(3分)我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即,一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0.=x,由0.=0.4444…,得:x=0.4444…,10x=4.444…,于是10x﹣x=(4.44…)﹣(0.444…)=4,即:10x﹣x=4,解方程得:,于是得0.=,则无限循环小数0.化成分数为.三.解答题(共7小题,满分55分)16.(8分)计算(1)()×(﹣36);(2)﹣14﹣(1﹣0.5)×|1﹣(﹣5)2|.17.(6分)先化简,再求值:,其中.18.(8分)解方程:(1)2(x﹣1)=2﹣5(x+2);(2).19.(7分)为了解本市的空气质量情况,小王从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式,样本容量是;(2)补全图1的条形统计图,并求出扇形统计图中表示“轻度污染”的扇形的圆心角度数;(3)请估计2024年(366天)本币空气质量达到“优”和“良”的总天数.20.(8分)已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON 内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.21.(8分)现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?22.(10分)将两个直角三角形如图1摆放,已知∠CDE=∠ACB=90°,∠E=45°,∠B=30°,射线CM平分∠BCE.(1)如图1,当D、A、C三点共线时,∠ACM的度数为°.(2)如图2,将△DCE绕点C从图1的位置开始顺时针旋转,旋转速度为每秒6°,设时间为t s,作射线CN平分∠ACD.①若0<t<,∠MCN的度数是否改变?若改变,请用含t的代数式表示;若不变,请说明理由并求出值.②若<t<30,当t为何值时,∠BCN=2∠DCM?请直接写出t的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣的绝对值是()A.B.C.﹣D.﹣【答案】A2.(3分)今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.80.16×108B.8.016×109C.0.8016×1010D.80.16×1010【答案】B3.(3分)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.【答案】C4.(3分)下列调查中,最适合抽样调查的是()A.调查某校七年级一班学生的课余体育运动情况B.调查某班学生早餐是否有喝牛奶的习惯C.调查某种面包的合格率D.调查某校足球队员的身高【答案】C5.(3分)若单项式﹣3x2y的系数是m,次数是n,则mn的值为()A.9B.3C.﹣3D.﹣9【答案】D6.(3分)下列不属于一元一次方程的是()A.2x+3=1B.2x+3x=5C.+6=0D.=0【答案】C7.(3分)一个正方体的平面展开图如图所示,则原正方体中与“洗”字所在面相对的面上的汉字是()A.手B.戴C.口D.罩【答案】D8.(3分)已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上【答案】B9.(3分)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,《孙子算经》中有这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何.这道题的意思是:今有若干人乘车,每三人共乘一辆车,则剩余两辆车是空的;每两人共乘一辆车,则剩余九个人无车可乘,问车和人各多少.若我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=【答案】A10.(3分)幻方的历史悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方.三阶幻方的每行、每列、每条对角线上的三个数之和相等,如图是另一个三阶幻方,则a﹣b的值为()A.3B.4C.5D.7【答案】D二.填空题(共5小题,满分15分,每小题3分)11.(3分)我国“奋斗者”号载人潜水器在马里亚纳海沟成功下潜,最大下潜深度为10909米.高于马里亚纳海沟所在海域的海平面100米的某地高度记为+100米,那么最大下潜深度10909米可记为米.【答案】见试题解答内容12.(3分)定义一种新运算:a*b=a2﹣b+ab.例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]=.【答案】19.13.(3分)已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.【答案】7.14.(3分)如图,点A在点O的北偏西80°方向上,点B在点O的南偏东20°的方向上,则∠AOB =°.【答案】120°.15.(3分)我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即,一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0.=x,由0.=0.4444…,得:x=0.4444…,10x=4.444…,于是10x﹣x=(4.44…)﹣(0.444…)=4,即:10x﹣x=4,解方程得:,于是得0.=,则无限循环小数0.化成分数为.【答案】.三.解答题(共7小题,满分55分)16.(8分)计算(1)()×(﹣36);(2)﹣14﹣(1﹣0.5)×|1﹣(﹣5)2|.【答案】(1)25;(2)﹣5.17.(6分)先化简,再求值:,其中.【答案】见试题解答内容18.(8分)解方程:(1)2(x﹣1)=2﹣5(x+2);(2).【答案】见试题解答内容19.(7分)为了解本市的空气质量情况,小王从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式,样本容量是;(2)补全图1的条形统计图,并求出扇形统计图中表示“轻度污染”的扇形的圆心角度数;(3)请估计2024年(366天)本币空气质量达到“优”和“良”的总天数.【答案】(1)抽样调查,60;(2)18°;(3)305.20.(8分)已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON 内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.【答案】(1)40°;(2)45°.21.(8分)现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?【答案】(1)买卡合算,小张能节省400元;(2)这台冰箱的进价是2480元.22.(10分)将两个直角三角形如图1摆放,已知∠CDE=∠ACB=90°,∠E=45°,∠B=30°,射线CM平分∠BCE.(1)如图1,当D、A、C三点共线时,∠ACM的度数为°.(2)如图2,将△DCE绕点C从图1的位置开始顺时针旋转,旋转速度为每秒6°,设时间为t s,作射线CN平分∠ACD.①若0<t<,∠MCN的度数是否改变?若改变,请用含t的代数式表示;若不变,请说明理由并求出值.②若<t<30,当t为何值时,∠BCN=2∠DCM?请直接写出t的值.【答案】(1)67.5°;(2)①∠MCN的度数不改变,∠MCN的度数为67.5°.理由见解析;②t=15或25.。
【情境主题】2024年七年级语文下学期 期末测试卷 全国版(一)(解析版)

七年级语文下学期期末测试卷(一)时间:120分钟满分:120分卷首语:远处青山横卧,山间云雾,美不胜收;漫步在绿野间,清风拂面;泛舟湖上,波平如镜。
这一刻,真正拥有了安逸的心灵,这一刻,迎来了灿烂的阳光。
阳光、湖光、山色,构成了一副自然、优美的图画。
同学们,学校举办“登山临水·感悟自然”主题活动,让我们一起走进自然,感受山光水色的无穷魅力!一、积累(17分)【山光水色中孕育着中华民族磅礴的精神力量】1.阅读下面语段,完成各小题。
(9分)千年流淌的汨罗江,从亘.古走来,孕育了屈原炽烈而坚贞的爱国精神;奔腾万里的长江,从世界屋脊到江南水乡,塑造了文天祥的坚韧品格;掀起万丈狂 lán 的黄河,为中华民族筑起一道天然屏 zh àng,哺.育了光未然的一腔爱国热情……《离骚》《过零丁洋》《黄河颂》……一篇篇经典流传至今。
先哲经典记录的中华文脉源远流长,投射出的家国情怀汇聚成中华民族磅礴的精神力量。
(1)字形相似,读音不同。
(1分)汉字中形声字居多,但读音不能生搬硬套。
如“亘.古”“恒(héng)心”“残垣(yuán)"“盘桓(huán)”的发音各不相同。
(2)口语误读,需要牢记。
(4分)在日常生活中,有些字音常常被误读,如“哺.育”“憎恨"沏(qī)茶”等。
(3)借助部首,巧学归类。
部首可以帮助我们推断字的含义,如“狂lán”是指巨大的波浪,故“l án"应写作;左耳刀旁是由“阜(fù)"字演变而来,“阜”字本义为“土山”,故部首为左耳刀旁的字多与山地、地形相关,如"屏 zhàng ”“险峻”等。
(4分)【答案】(1)gèn(2)bǔ zēng(3)澜;障【知识点】常用易错字字音;音形相近字字形辨析【解析】本题考查重要词语字音、字形的识记能力。
要求学生在平时对教材中所涉及的重要的字、词准确的识记,加强积累。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级期末试卷测试卷(解析版)一、选择题1.下列运算中,正确的是( ) A .325a b ab += B .325235a a a += C .22330a b ba -=D .541a a -=2.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( ) A .36.1728910⨯亿元 B .261.728910⨯亿元 C .56.1728910⨯亿元 D .46.1728910⨯亿元3.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120204.小明在某月的日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是( ) A .B .C .D .5.图中几何体的主视图是( )A .B .C .D .6.-5的相反数是( ) A .-5B .±5C .15D .57.某数x 的43%比它的一半还少7,则列出的方程是( ) A .143%72x ⎛⎫-= ⎪⎝⎭B .1743%2x x -= C .143%72x x -= D .143%72x -= 8.27-的倒数是( )A .72B .72-C .27D .27-9.如图,AB ∥CD ,AD 平分∠BAC ,且∠C=80°,则∠D 的度数为( )A .50°B .60°C .70°D .100° 10.下列各数中,比-4小的数是( ) A . 2.5- B .5- C .0D .211.下列合并同类项正确的是( ) A .2x +3x =5x 2 B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=012.下列计算正确的是( )A .2334a a a +=B .﹣2(a ﹣b)=﹣2a+bC .5a ﹣4a=1D .2222a b a b a b -=-13.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -14.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养15.下列各图中,是四棱柱的侧面展开图的是( ) A .B .C .D .二、填空题16.计算: x(x-2y) =______________17.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.18.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件____元.19.如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A 、B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是_________________________________.20.三味书屋推出售书优惠方案:(1)一次性购书不超过100元,不享受优惠;(2)一次性购书超过100元但不超过200元一律打九折;(3)一次性购书超过200元及以上一律打八折。
如果王明同学一次性购书162元,那么王明所购书的原价一定为________. 21.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.22.0的绝对值是_____.23.已知关于x 的一元一次方程2020342019x a x +=+的解为4x =,那么关于y 的一元一次方程2020(1)34(1)2019y a y -+=-+的解为y =___________. 24.已知∠α=28°,则∠α的余角等于___.25.如图所示,在P Q 、处把绳子AB 剪断,且::2:3:4AP PQ QB =,若剪断的各段绳子中最长的一段为16cm ,则绳子的原长为___________三、解答题26.计算:(1)253(3)-÷-; (2)1138842⎛⎫-⨯+- ⎪⎝⎭; (3)2357m n n m ---;(4)()2242x xy xy x xy ⎡⎤--+--⎣⎦. 27.解下列方程:(1)3(45)7x x --=; (2)5121136x x +-=-. 28.如图,已知线段AB ,延长AB 到C ,点D 是线段AB 的中点,点E 是线段BC 的中点.(1)若5BD =,4BC =,求线段EC 、AC 的长; (2)试说明:2AC DE =.29.(1)如图①,OC 是AOE ∠内的一条射线,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,120AOE ∠=︒,求BOD ∠的度数;(2)如图②,点A 、O 、E 在一条直线上,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,请说明OB OD ⊥.30.(1)如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站C ,使它到A 、B 两村庄的距离的和最小,请在图中画出点C 的位置,并保留作图痕迹.(探索)(2)如图,C 、B 两个村庄在一条笔直的马路的两端,村庄A 在马路外,要在马路上建一个垃圾站O ,使得AO +BO +CO 最小,请在图中画出点O 的位置.(3)如图,现有A 、B 、C 、D 四个村庄,如果要建一个垃圾站O ,使得AO +BO +CO +DO 最小,请在图中画出点O 的位置.31.小莉和她爸爸两人沿长江边扬子江步道匀速跑步,他们从渡江胜利纪念馆同时出发,终点是绿博园.已知小莉比她爸爸每步少跑 0.4m ,两人的运动手环记录时间和步数如下:出发 途中 结束时间 7:007:10a小莉的步数130831838808出发途中结束时间 7:007:107:25 爸爸的步数21684168b(1)表格中 a 表示的结束时间为 , b = ;(2)小莉和她爸爸两人每步分别跑多少米? (3)渡江胜利纪念馆到绿博园的路程是多少米?32.(1)根据如图(1)所示的主视图、左视图、俯视图,这个几何体的名称是 . (2)画出如图(2)所示几何体的主视图、左视图、俯视图.33.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.四、压轴题34.[ 问题提出 ]一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手 (1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个; 三面涂色的:在顶点处,每个顶点处有1个,共有8个. (2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个… [ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。
[ 问题应用 ]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm 的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.35.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5 t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)36.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?37.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =38.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.39.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.40.尺规作图是指用无刻度的直尺和圆规作图。