《点到直线的距离》公开课课件
人教版四年级数学上册《5-3 点到直线的距离》课堂教学课件PPT小学公开课

人教版 数学 四年级 上册平形四边形和梯形5点到直线的距离过直线外一点画已知直线的垂线。
1.边线重合。
2.平移到点。
3.画线标号。
交流:从直线外一点A,到这条直线画几条线段。
A交流:从直线外一点A,到这条直线画几条线段。
A量一量这些线段的长度,哪一条最短?77mm74mm 90mm65mm交流:从直线外一点A,到这条直线画几条线段。
A量一量这些线段的长度,哪一条最短?77mm65mm 74mm90mm65mm<74mm<77mm<90mm从直线外一点到这条直线所画的垂直线段最短。
它的长度叫作点到直线的距离。
交流:下图中,a ∥b。
在a上任选几个点,分别向b 画垂直的线段。
ab交流:量一量这些线段的长度。
a42mm42mm42mmb交流:量一量这些线段的长度。
ab42mm 42mm 42mm你发现了什么?端点分别在两条平行线上,且与平行线垂直的所有线段的长度都相等。
下图中,小明如果从A点过马路,怎样走路线最短?为什么?把最短的路线画出来。
沿着A点到对面马路垂直线段走。
从直线外一点到这条直线所画的垂直线段最短。
请用在例3中发现的规律,检验下面各组直线a 、b是否平行。
4cm4cm 4cm请用在例3中发现的规律,检验下面各组直线a 、b是否平行。
4cm4cm4cm 2cm 2cm 2cm请用在例3中发现的规律,检验下面各组直线a 、b是否平行。
4cm4cm4cm 2cm 2cm 2cm 3cm 3cm 3cm平行线间的垂直线段的长度都相等,直线a 、b 平行。
判断题。
(正确的画“√”,错误的画“✕”)(1)同一平面内,如果两条直线都与同一条直线垂直, 那么它们互相平行。
( )(2)两条平行线间的线段长度都相等。
( )√×垂线段“西气东输”是国家“十五”重点工程。
康庄村和娄营村分别要铺一条管道与输气管道相连接,怎样铺管道成本最低?在图中画出来。
下图中,游泳运动员如果从南岸游到北岸,怎样游路线最短?为什么?把最短的路线画出来。
点到直线的距离 课件

上任意一点,那么|PQ|的最小值是( )பைடு நூலகம்
A.1
B.2
2 C. 2
D. 2
(2)已知点 P 为 x 轴上一点,且点 P 到直线 3x-4y+
6=0 的距离为 6,则点 P 的坐标为________.
解析:(1)|PQ|的最小值是点 P(1,1)到直线 x+y-1
=0 的距离,
所以|PQ|min=|1+121+-112|=
2.点 P 在直线 l 上时,点到直线的距离为 0,公式 仍然适用.
3.直线方程 Ax+By+C=0 中,A=0 或 B=0 时公 式也成立,但由于直线是特殊直线(与坐标轴垂直),故也 可用数形结合求解.
类型 2 两条平行直线间的距离 [典例 2] 求与两条平行直线 l1:2x-3y+4=0 与 l2: 2x-3y-2=0 距离相等的直线 l 的方程. 解:设所求直线 l 的方程为 2x-3y+C=0, 由直线 l 与两条平行线的距离相等, 得 |C22-+43|2= |C22++23|2, 即|C-4|=|C+2|, 解得 C=1. 故直线 l 的方程为 2x-3y+1=0.
即直线 l 过点 B2,-23.(2 分) ①当 l 与 x 轴垂直时,方程为 x=2,点 A(-3,1)到 l 的距离 d=|-3-2|=5,满足题意. (4 分) 失分警示:若忽略对斜率k的讨论,扣去2分. ②当 l 与 x 轴不垂直时,设斜率为 k, 则 l 的方程为 y+23=k(x-2), 即 kx-y-2k-23=0,(5 分)
2 2.
(2)设 P(a,0),则有 |33a2-+4(×-0+4)6|2=6,
解得 a=-12 或 a=8,
所以点 P 的坐标为(-12,0)或(8,0).
青岛版数学四上《点到直线的距离》课件

本课件介绍了《点到直线的距离》的知识点和计算方法,帮助学生理解点到 直线的概念,并且通过丰富的题型练习培养解题能力和创新思维。
点到直线的距离的定义
1
基本定义与图像表示
学习点到直线距离的基本定义及其图像表示,帮助学生理解几何概念。
行实例演练。
点到直线的公式推导
公式推导方法
学习点到直线的公式推导方法,理解几何推理过程。
距离计算实例
熟练使用点到直线公式进行距离计算,并通过示例练习加深理解。
点到平面的距离
1 概念理解
2 距离计算方法
了解点到平面的概念,并通过图示进行说明。
掌握点到平面距离的计算方法,并进行相关 练习。
题型练习
1
典型题目
给出一些典型的点到直线、点到平面的题目,培养学生解题能力。
2
创新思维
引导学生创造性地运用所学知识解决实际问题,锻炼思维能力。
总结
总结本课所学知识点,温习和强化所学内容,鼓励学生创造性地运用所学知 识解决实际问题。
小学四年级数学上册《点到直线的距离》PPT课件

4、右图是人行横道线。 如果从A点穿过马路, 怎样走路线最短?为什 么?把最短的路线画出 来。
A
从直线外一点到这条直线所画的垂直线段 的长度,叫做这点到这条直线的距离。
1、量出A点到已知直线的距离。
A
1.7cm
3.4cm
A
2、在两条平行线之间画几条与平行线垂直 的线段。
两条平行线之间的垂直线段有无数条,长 度都相等。
认识平行线之间的垂直线段长度相等
3、看一看测量身高和跳远成绩的照片,你 知道为什么这样测量吗?
点到直线的
距离
想一想:
复习概念
1、在同一平面内两条直线的位置关系 有哪两种?
平行 相交
2、垂直是哪一种位置关系的特殊情况?
特殊在哪里?
两条直线相交成直角时,这两条直 线互相垂直。
画一画:
复习画平行线,垂线的方法
你会分别画一组平行线和一组 互相垂直的线吗?
从A点向已知直
点到直线的距离PPT教学课件

用于暗反应
水的光解:
2H2O
光 色素
O2+4H++4e-
酶
NADPH的形成: NADP++2e+H+
NADPH
ATP的形成: ADP+Pi + 电能 酶(A活T跃P化学能)
碳反应
二氧化碳还原为糖的一系列反应成为碳 循环,又称卡尔文循环。
(二)碳反应阶段
碳反应总结
场所: 叶绿体的基质中
条件:
多种酶、 [H] 、ATP
)
2ab a 2 b2
A到BC的距离h=( a 2 b2 )
因为|PE|+|PF|=h,所以原命题得证。
点到直线的距离
d Ax0 By0 C A2 B2
1.此公式的作用是求点到直线的距离; 2.此公式是在A、B≠0的前提下推导的; 3.如果A=0或B=0,此公式恰好也成立; 4.如果A=0或B=0,一般不用此公式; 5.用此公式时直线要先化成一般式。
②图中C是[H——] ,它被传递到叶绿体的基——质部位,用于—C—3的。还原
③图中DA是T—P—,在叶绿体中合成D所需的能量来自色—的素—光吸能收 ④图光中反的应H表示——,NAHD为PIH提和供A—T—P
4. 光合作用过程中,产生ADP和消耗ADP的
部位在叶绿体中依次为
(B )
①外膜
②内膜
③基质
能用无机 物制造有
机物
举例 绿色植物 光合细菌
硫细菌 铁细菌 硝化细菌
异养型
摄取的有 机物中储 存的能量
摄取现成 的有机物
人、动物和 营寄生、腐
生的菌类
相同点
都是从外界 摄取物质, 经过极其复 杂的变化, 转变成自身 组成成分, 并且储存能
高中数学必修二《 点到直线的距离》ppt课件

新课探究
一、点到直线的距离
过点 P 作直线 l 的
垂线,垂足为 Q 点,线 段 P Q 的长度叫做点 P
到直线 l 的距离.
.
y
Q·
·P
O
x
问题1 当A=0或B=0时,直线为y=y1或 x=x1的形式.如何求点到直线的距离?
y y=y1
o
P (x0,y0)
Q(x0,y1) x
y (x1,y0)
4 (2)点P(-1,2)到直线3y=2的距离是___3 ___.
.
练习2 求原点到下列直线的距离:
(1) 3x+2y-26=0 2 13 (2) y=x 0 练习3 (1)A(-2,3)到直线 9 3x+4y+3=0的距离为_____. 5
(2)B(-3,5)到直线 2y+8=0的距离为
______. 9
=0
所以l1:
Byx-Ay-Bx0+Ay0=0
P0(x0, y0)
B x1-Ay1-Bx0+Ay0=0
太麻烦!
x1
B2x0
AB0yAC A2B2
换y1个A角BA 0度2xBB 思02y考BC !
|P| Q (x 0x 1)2 (y0y 1)2
Q
O
x
l:AxByC0
.
Ax1+By1+C=0
B x1-Ay1-Bx0+Ay0=0
.
[思路二] 构造直角三角形求其高。
y
S Q
O
P(x0,y0)
R
x
L:Ax+By+C=0
.
y
S P(x0,y0)
Q
《点到直线的距离》25张ppt

鼓励学生坚持,培养学生知难而上, 顽强拼搏的意志品质。 鼓励学生另辟蹊径,设问“垂足的坐 标能不能设而不求呢?”希望学生能 探究出教材中推导方法。培养学生的 创新意识。
得到点 P到 l 的距离 d PQ
合作探究 形成新知
问题2 求点 P( x1 , y1 )到直线 l : Ax By C 0的距离.
合作探究 形成新知
探究公式 初探方法
优化解法
合作探究 形成新知
问题1 求点 P (1,1) 到直线 l : x y 4 0 的距离.
渗透由特殊到一般的思想
合作探究 形成新知
问题1 求点 P (1,1) 到直线 l : x y 4 0 的距离.
定 义 法
合作探究 形成新知
x5 2
(3) x 2
实践应用 拓展新知
题组2 (1)求平行线l1 : 3x 4 y 8 0, 与l2 : 3x 4 y 2 0 之间的距离. (2)平行线 l1 : Ax By C1 0, 与l2 : Ax By C2 0之间的距离 为 .并证明.
启发2:我们准备怎么做?即制定计划
启发3:我们已知什么?即梳理条件
PQ l Bx0 x1 A y0 y1 0 Q l Ax0 By0 C 0
启发4:我们如何使用条件以达到 目标呢?即沟通已知与未知的联系
合作探究 形成新知
展示成果 优化思维
解:设Q( x0 , y0 ), PQ l B( x0 x1 ) A( y0 y1 ) 0 (1) 又 Q l , Ax0 By0 C 0 (2) (3)
回顾反思 布置作业
学会了…的知识
掌握了…的方法
点到直线的距离 课件

2. 求点B(-5,7)到直线12x+5y+3=0的距离.
3、求点P0(-1,2)到直线2x+y-10=0的距离.
例:已知点A(1,3),B(3,1),C(-1,0),求的 ABC面积
y
A
h
C O
B
x
两条平行直线间的距离:
两条平行直线间的距离是指夹在两条平行直
线间的公垂线段的长.
y
P l1
l2
Q
点到直线的距离
点到直线的距离
如图,P到直线l的距离,就是指从点P到直线l 的垂线段PQ的长度,其中Q是垂足.
y
P
l
Q
o
x
思考:已知点P0(x0,y0)和直线l:Ax+By+C=0, 怎
样求点P到直线l的距离呢?
当A=0或B=0时,直线方程为 y=y1或x=x1的形式.
y y=y1
o
P (x0,y0)
[思路一] 利用两点间距离公式:
y
P
l
Q
o
x
[思路二] 构造直角三角形求其高.
y
R Q
O
P(x0,y0)
S
x
L:Ax+By+C=0
点到直线的距离:
P0(x0,y0)到直线l:Ax+By+| A2 B2
1、求点A(-2,3)到直线3x+4y+3=0的距离.
Q(x0,y1) x
y (x1,y0)
Q
P(x0,y0)
o
x
PQ = y0 - y1
x=x1 PQ = x0 - x1
练习1
5 (1)点P(-1,2)到直线3x=2的距离是__3____.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想一想:
复习概念
1、在同一平面内两条直线的位置关系一种位置关系的特殊 情况?特殊在哪里? 两条直线相交成直角时,这两 条直线互相垂直。
画一画:
复习画平行线,垂线的方法
你会分别画一组平行线和一组 互相垂直的线吗?
从A点向已知直线画一条垂直的线段 和几条不垂直的线段,量一量这些线 段的长度,你有什么发现?
4、右图是人行横道线。 如果从A点穿过马路, 怎样走路线最短?为什 么?把最短的路线画出 来。
A
从直线外一点到这条直线所画的垂直线段 的长度,叫做这点到这条直线的距离。
1、量出A点到已知直线的距离。
A
1.7cm 3.4cm
A
2、在两条平行线之间画几条与平行线垂直 的线段。
两条平行线之间的垂直线段有无数条,长 度都相等。
认识平行线之间的垂直线段长度相等
3、看一看测量身高和跳远成绩的照片,你 知道为什么这样测量吗?