【最新】人教版七年级数学下册第五章《 三线八角》公开课课件.ppt

合集下载

七年级三线八角课件

七年级三线八角课件

2023七年级三线八角课件CATALOGUE 目录•引言•三线八角的定义和性质•基础概念和定理•习题解答和分析•课堂互动与拓展•教学反思和总结01引言1课程背景23学生在小学阶段已经接触过简单的图形知识七年级数学上册第一章已经学习了线段和角本课件是为了帮助学生巩固所学知识并深入理解三线八角相关内容掌握三线八角的概念及基本性质会用符号表示三线八角能利用三线八角解决实际问题课程目标教学内容三线八角的概念及基本性质三线八角的表示方法利用三线八角解决实际问题02三线八角的定义和性质三线八角的定义七年级数学中三线八角是指由同一条直线上的三条线段或射线组成的八个角。

底角: 在三角形中,相邻两边之间的夹角小于90度,这个角叫做底角。

顶角: 在三角形中,相邻两边之间的夹角大于90度,这个角叫做顶角。

等角: 如果两个角的度数相等,那么这两个角叫做等角。

如果两个角是等角,那么它们所对的边也是相等的。

等角对等边 在两条平行线被第三条直线所截的情况下,内错角相等。

内错角相等 在两条平行线被第三条直线所截的情况下,同位角相等。

同位角相等 对顶角相等是指如果两个角是对顶角,那么它们的度数相等。

对顶角相等在几何证明中,三线八角是一种常见的几何图形,常常被用来进行各种几何证明。

在解决一些实际问题时,三线八角也常常被用来作为辅助线或者构造一些几何形状。

03基础概念和定理基础概念射线一个点沿着一定方向无限延伸形成的图形。

直线一个或多个点沿着一定路径无限延伸形成的图形。

线段两个点之间的距离形成的图形。

平行线永远不会相交的两条直线。

相交线两条直线或射线在同一点相遇形成的交点。

定理的证明和解读对顶角相等两个相交的直线或射线在形成两个角,这两个角互为对顶角,它们的大小相等。

三角形内角和为180度一个三角形内的三个角的度数之和等于180度。

四边形内角和为360度一个四边形内的四个角的度数之和等于360度。

定理的应用利用对顶角相等,可以证明两个角是否相等。

三线八角课件新课标人教版七年级下

三线八角课件新课标人教版七年级下

教学案例三
案例内容:介绍 三线八角的基本 概念、性质和判 定方法
案例分析:通过 具体的教学案例, 分析三线八角在 几何中的应用和 解题思路
案例总结:总结 三线八角的教学 重点和难点,提 出教学建议和改 进措施
THANK YOU
汇报人:XX
汇报时间:20XX/XX/XX
教学目标
知识目标
掌握三线八角的 定义和性质
理解三线八角在 几何图形中的应 用
能够运用三线八 角的知识解决实 际问题
培养学生的空间 想象能力和逻辑 思维能力
能力目标
能够根据几何图形进行简单 的推理和证明
掌握三线八角的识别方法和 应用
培养学生的空间想象能力和 几何思维能力
提高学生解决实际问题的能 力和数学应用能力
重点与难点解析
重点:掌握三线八角的性质和应用 难点:理解三线八角在几何图形中的意义和作用 解析:通过实例和练习题,深入理解三线八角的性质和应用 总结:掌握三线八角是解决几何问题的重要基础
教学方法与手段
教学方法:直 观演示法、小 组讨论法、讲
授法
教学手段:多 媒体课件、实 物展示、教学
视频
强调实践操作, 注重学生动手
能力的培养
结合生活实例, 引导学生观察、 思考、解决问

教学资源
教材资源
教材内容:根据新课标要求,涵盖了数学、英语、物理等多个学科的 知识点,注重培养学生的综合素质和应用能力。
配套练习:每章节都配有相应的练习题,帮助学生巩固所学知识, 提高解题能力。
数字化资源:提供多媒体教学资源,如教学视频、PPT课件等,方便 教师进行教学和学生自主学习。
课件结构介绍
教学目标:明 确课程的教学 目标,为学生 提供清晰的学

5.2平行线(三线八角、判定、性质等共6课时的课件)

5.2平行线(三线八角、判定、性质等共6课时的课件)

∵ ∠2=∠B (已知)
∴ EF∥BC (同位角相等,两直线平行) ∴ MN∥EF (平行于同一直线的两条直线平行)
例题
例2、如图,直线EF交直线AB、CD于点M、N, ∠EMB= ∠END,MG平分∠EMB ,NH平分 ∠END,试问:图中哪两条直线互相平行? E 为什么? G
A N F M H C D
2、下列推理正确的是( C )
A、因为a // d,b // c,所以c // d; B、因为a // c,b // d,所以c // d; C、因为a // b,a // c,所以b // c; D、因为a // b,c // d,所以a // c。
3、完成下列推理,并在括号内注明理由。 (1)如图1所示,因为AB // DE,BC // DE(已知)。所以 在同一直线上 A,B,C三点___________( 经过直线外一点,有且只有一 ) 条直线与这条直线平行 (2)如图2所示,因为AB // CD,CD // EF(已知),所以 AB EF ________ // _________( 如果两条直线都和第三条直线平行, ) 那么这两条直线也互相平行 A B C A B
B
考考你
1、如图,AF、CE、BD交于点B,且BE平分 ∠DBF,且∠1= ∠C,问BD与AC平行吗? 为什么? A
D E 1 B F C
考考你 2、如图,BC、DE分别平分ABD和BDF, 且1=2,请找出平行线,并说明理由。
A 1 B E
C
D 2 F
考考你 3、如图,AB、CD被EF所截,MG平分 ∠BMN,NH平分∠DNM,已知∠GMN+ ∠HNM=90°,试问:AB∥CD吗?请说明 理由。 E M A B H C F G N D

七年级三线八角课件

七年级三线八角课件
教师可以通过观察学生的解题速度和用时情况,分析学生的解题技巧和熟练程度,为后续教学提供参考。
课堂练习效果评价
详细描述
知识点覆盖程度
做题时间与速度
题目难度评价
01
02
总结词
通过观察学生的问题回答情况,教师可以及时发现学生在知识掌握上的不足和问题,以便及时采取措施进行补救。
详细描述
在七年级数学教学中,学生问题回答情况反馈可以从以下几个方面展开
教学目标
教学目标与要求
三线八角的定义及性质
02
在同一个平面内,不相交的两条直线互相平行。
三线的定义
平行线
当两条直线相交所成的四个角中,有一个角是直角时,两条直线互相垂直。
垂线
既不平行于第一条直线,也不垂直于第二条直线。
第三条线
内错角
在两个平行直线被第三条直线所截的情况下,处于被截直线之间,且分别位于截线的两侧的两个角。
同位角
在两个平行直线被第三条直线所截的情况下,处于被截直线同侧,且分别位于截线的同侧或异侧的两个角。
同旁内角
在两个平行直线被第三条直线所截的情况下,处于被截直线之间,且位于截线的同侧的两个角。
八角的定义
三线八角的基本性质
对顶角相等;等腰三角形两底角相等;三角形三个内角之和等于180度。
等量代换;等角代换;全等三角形的对应边相等,对应角相等。
两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
三线八角的应用与判定
03
在道路交叉口设置三线八角,用于指示车辆和行人安全行驶和停靠。
指示路标
宣传工具
装饰照明
企业或组织在宣传活动中使用三线八角作为标志,以突出自己的形象和品牌。

七年级下册数学三线八角(优质课比赛课件)

七年级下册数学三线八角(优质课比赛课件)
10.2平行线的判定 (第2课时)
三线八角
如图,直线AB,CD相交所形成的四个角,在位 置上有什么关系?
A
3 4
O
2
D
1
C
B
如图,上面四个角与下面四个 角是不共顶点的,这节课我们要学 习其中没有公共顶点的两个角之间 的位置关系。 E
A C
2 3 6
1
4
B
5
7
8
F D
如图,∠4和∠8与截线及两条被截直线在位置 上有什么特点?
2 1 3
书 香
D
4
B
直线 AB 和 直线 AF被直线BC所截构成 (4)∠2与∠4是 _____ _____
F
C
同位 角。 的______
识别同位角、内错角、同旁内角步骤: 先抽取;看三线;找截线; 再判断。
知道了......
学会了 ...... ......
1.课本 P125 练习1、2。
2.同步练习10.2(一)
E A
2
1
3
6
4
B
5
F
C
7
8
D
∠3与∠7、 ∠1与∠5、 ∠2与∠6
如图,∠3和∠5与截线及两条被截直线在 位置上有什么特点? E
A
2 3
1
4 6 7 5 8
B
∠4与∠6
C
D
F
如图,∠4和∠5与截线及两条被截直线在 位置上有什么特点?
E A
2 1 4
∠3与∠6
C
3 6
B
5
7
8
D F
讨论:
你能用什么符号来表示这三类角?
则∠1与_____ ∠2 是同位角。

人教七年级数学下课件5.1.3三线八角

人教七年级数学下课件5.1.3三线八角

b
c
1
23
4
a
作业
1、课本P9页第11题
2、数学练习册P10-12页
初中数学课件
金戈铁骑整制作
小结
1、同位角、内错角、同旁内角都是两条直线被第三条直 线所截时产生的,究其实质,它们主要是反映了直线相 交产生的角中,相互位置所具有的特征:
(1)两个同位角就是与直线的位置关系而言具有“同上、 同右”、“同上、同左”“同下、同右”或“同下、同 左”的特征。
(2)内错角具有“同内、异侧”的特征。
(3)同旁内角具有“同内、同侧”的特征。 2、掌握辩别这些角的关键是看哪两条直线被哪一条直线 所截、分清哪一条直线截哪两条直线形成了哪些角,是 作出正确判定的前提,在截线的同旁找同位角,同旁内 角,在截线的不同旁,找内错角。
练习
找出下列图中所有的 同位角 内错角 同旁内角.

七年级三线八角课件

七年级三线八角课件
三线八角在实际生活和生产中也有广泛的应用,例如在建筑、机械等领域中都需 要了解直线的位置关系和角度的计算。
02
三线八角的定义和定理
三线八角的定义
七年级数学中,三线八角是常 见的几何概念。
三线八角是指在一个平面内, 有三条直线相交于一点,而每 两条相交的直线都会形成一对 邻补角。
这些角的大小可以用于描述和 证明一些几何关系和定理。
例题二:稍复杂的三线八角问题
总结词
这道例题将三线八角的概念引入到稍微复杂一些的情境中,通过观察和计算,学生可以进一步了解三线八角的 性质和应用。
详细描述
本题以一个稍复杂的图形为例,让学生找出图中所有的三线八角,并比较它们的大小。通过这种形式的题目, 学生可以进一步了解三线八角的性质和应用,为后续的学习打下基础。同时,通过让学生计算两条平行线之间 的距离,可以培养学生的计算能力。
05
三线八角的练习题
练习题一:基础题
总结词
简单基础,涉及知识点较少。
详细描述
本题主要考察学生对三线八角基本概念的理解,包括同位角 、内错角、同旁内角等。学生需根据这些概念判断哪些是同 位角、内错角或同旁内角。
练习题二:提高题
总结词
难度适中,涉及知识点较多。
VS
详细描述
本题不仅要求学生掌握三线八角的基本概 念,还需要理解角之间的位置关系,如平 行线的性质、垂直的定义等。学生需通过 分析图形中的角的位置关系,得出正确答 案。
举例
在三线八角中,如果我们已知两个角分别等于90度和45度,那么我们 可以直接推导出第三个角等于45度。
证明方法二:反证法
总结词
反证法是一种间接证明方法,通过假设相反的结论成立 ,然后推导出矛盾的结论,从而证明原命题的正确性。

新人教版七年级下册数学第五章完整ppt课件

新人教版七年级下册数学第五章完整ppt课件
∴ ∠AOD=90° (垂直的定义)
(∠AOC=∠BOC=∠BOD=90°)
.
例1:如图,直线AB,CD相交于点O,OE⊥CD于 O, ∠AOE:∠COE=1:3,求∠BOD的度数。
解:∵OE⊥CD ∴ ∠COE=90°
E
A
D
又∵∠AOE:∠COE=1:3
O B
∴ ∠AOE= 1 ∠COE=30°
.
学习目标
1 理解垂线的定义; 2 掌握垂线的性质并会应用; 3 会过一点画已知直线的垂线。
.
讲授新课
探究点一:垂线的概念
阅读教材第3页至4页,思考下列问题: 1.两条相交直线在什么情况下是垂直的?
什么叫垂线?什么叫垂足? 2.垂线是一条直线还是线段? 3.请举出生活中垂直的例子。
.
1.垂直定义:当两条直线相交所成的四个角中,有 一个角是直角时,这两条直线互相垂直,其中一条 直线叫另一条直线的垂线,它们的交点叫垂足。
B
l
1放:放直尺,直尺的一边要与已知直线重合;
02靠1:靠2三3 角4 板,把5三6 角7 板的8一9 直1 角0边1 1 靠在直尺上;
孝 感 市 文 昌 中 学 学 生 专 用 尺
C m
3移:移动三角板到已知点;
4画线:沿着三角板的另一直角边画出垂线.
.
垂线的性质(1)
问题:过已知直线 l 和l上(或外)的一点A ,作l 的垂线,可以作几条?
BC
E
.
4.如图,在线段AB、AC、AD、AE、AF中
AD最短.小明说垂线段最短, 因此线段AD的
长是点A到BF的距离,对小明的说法,你认为
对吗?
A
解:不对,因为AD 不一定与BF垂直。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③ ∠4与∠1是内错角;④ ∠1与∠3是同位角.其中正确的是( )
C 43 12 B
【点拨】先找截线,截线是组成两个角的公共的线,在截线的同旁找同位角 和同旁内角,在截线的两侧找内错角,利用图形结构特征(F、Z、U)判断, 问题就迎刃而解.
例3.(1)如果把图看作是直线AB截直线CD,EF,则: ∠1与∠5是一对 同旁内 角; ∠1与∠6是一对 同位 角; ∠4与∠5是一对 内错 角.
图对于中直还线有a几、b对来内说错,角∠?4和分∠别5 是夹什在么直?线a、b之间,
孟老师总结口诀:同位“F”内错“Z”,同旁内角像油(“U”)缸, 腾挪翻转都不怕,三线八角要记清.
能力提升
bc 12 a
a
2b c
1
d
(不是) ( 不是 )
a
a1 b
b
2c
c
1
d
2
( 是 ) (不是 )
ab 1
c
∠2和∠4是直线 AB 和直线 EF 被直线 CD 所截得的 同旁内角.
指点迷津
重点: 同位角
内错角 同旁 内角
位置关系
在两被截直线的同一方 在截线的同一侧 位置相同
在两被截直线的内部 在截线的两侧 内部交错
在两被截直线的内部 截线的同侧(内部同侧)
基本模型
F 同位角模型
Z 内错角模型
U 同旁内角模型
【注意】要成功寻找出以上三种特殊角的前提是必须准确判断出两条直 线与第三条截线.
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/112021/1/11Monday, January 11, 2021lຫໍສະໝຸດ 12b43
a
56 87
观位察于:直∠线3l的和两∠侧5 ,同时夹在直线a、b之间,这样 对的于一直对线角l是来内说错,角∠. 3和∠5位于 直线l的两侧 ,
3对图.于中同直还旁线有内a、几角b对来说内,错∠角3?和分∠别5位是于什位么于?直线a、b之间 ,
位观于察直:线∠l4的和两∠同5 侧,同时夹在直线a、b之间,这 样对的于一直对线角l来是说同,旁∠内4角和.∠5位于 直线l的同侧 ,
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
(2)如过把图看作是直线EF截直线AB,CD,则:
CA
1 4
E5 B6 7
23 F D
∠5与∠2是一对 同位 角;
∠2与∠7是一对 内错 角.
先找截线,
(3)∠3和∠4是直线 AB 和直线 EF 被直线 CD 所截得的内错角;
紧抓图形结构特 征(F、Z、U)
∠4和∠7是直线 CD 和直线 EF 被直线 AB 所截得的 同位 角;
• 10、人的志向通常和他们的能力成正比例。2021/1/112021/1/112021/1/111/11/2021 1:31:52 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/112021/1/112021/1/11Jan-2111-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/112021/1/112021/1/11Monday, January 11, 2021 • 13、志不立,天下无可成之事。2021/1/112021/1/112021/1/112021/1/111/11/2021
。2021年1月11日星期一2021/1/112021/1/112021/1/11
• 15、会当凌绝顶,一览众山小。2021年1月2021/1/112021/1/112021/1/111/11/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/112021/1/11January 11, 2021
d
a2
2
cb
1
(是 )
( 不是)
【点拨】先找截线,截线是组成两个角的公共的线,在截线的同旁找同位角和同 旁内角,在截线的两侧找内错角,利用图形结构特征(F、Z、U)判断,问题就 迎刃而解.
题型一:同位角、同旁内角、内错角的辨别
A
例2.如图,下列判断:①∠A与∠1是同位角;② ∠A与∠B是同旁内角;

THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/112021/1/112021/1/112021/1/11
谢谢观看
三线八角
课标引路
知识梳理
平面上两直线被一直 线所截,得到八个角, 称为“三线八角”.
1.同位角
观位察于:直∠线1l的和同∠侧5 ,同时位于直线a、b的同一方, 对这于样直的线一l对来角说是,同∠位1角和.∠5位于 直线l的同侧 , 对于直线a、b来说, ∠1和∠5位于 直线a、b的上方 ,
图2.中内还错有角几对同位角?分别是什么?
相关文档
最新文档