二极管和三极管的结构与基本性能

合集下载

电子元器件——二极管、三极管、集成电路介绍

电子元器件——二极管、三极管、集成电路介绍

电感
电感器的图形如上面所示。在电子制作中虽然使用得不是很多,但它们 在电路中同样重要。电感器和电容器一样,也是一种储能元件,它能把 电能转变为磁场能,并在磁场中储存能量。电感器用符号L表示,它的基 本单位是亨利(H),常用毫亨(mH)为单位。它经常和电容器一起工作,构 成LC滤波器、LC振荡器等。另外,人们还利用电感的特性,制造了扼流 圈、变压器、继电器等。 电感器的特性恰恰与电容的特性相反, 它具有阻止交流电通过而让直流电通过的特性。 小小的收音机上就有不少电感线圈,几乎都 是用漆包线绕成的空心线圈或在骨架磁芯、铁 芯上绕制而成的。有天线线圈(它是用漆包线在 磁棒上绕制而成的)、中频变压器(俗称中周)、 输入输出变压器等等。
第三课 电子元器件—二极管、三级管、集成电路
根据二极管正向电阻小,反向电阻大的特点,将万用表拨到 电阻挡(一般用R×100或R×1k挡。不要用R×1或R×10k挡, 因为R× 1挡使用的电流太大,容易烧坏管子,而 R×10k挡 使用的电压太高,可能击穿管子 ) 。用表笔分别与二极管的 两极相接,测出两个阻值。在所测得阻值较小的一次,与黑 表笔相接的一端为二极管的正极。同理,在所测得较大阻值 的一次,与黑表笔相接的一端为二极管的负极。如果测得的 正、反向电阻均很小,说明管子内部短路;若正、反向电阻 均很大,则说明管子内部开路。在这两种情况下,管子就不 能使用了。
第三课 电子元器件—二极管、三级管、集成电路
2、开关元件
二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接 通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断 开的开关。利用二极管的开关特性,可以组成各种逻辑电路。
3、限幅元件
二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗 管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度 限制在一定范围内。

晶体二极管和三极管

晶体二极管和三极管
i id
正半周波形正常 低频调 制信号 加一小偏压
t
O O
u ui
O 负半周波形压扁 (b)检波后的电流波形
D
ui
C 偏 压 R
uo
t
(a)检波前调幅波形
(c)小信号检波电路
图 26 小信号检波原理图解
信号。实际电路中的负载可以是耳机,也可以是下一级低频放 大器,由于直流信号对耳机或低频放大器的隔直流电容不起作 用,只有低频调制信号被送到耳机中发出声音或被下一级放大 器放大。小信号检波的原理图解如图 26 所示,图中( a)是 检波前的高频调幅波形, 经二极管检波后的电流波形如图 (b), (c)是小信号检波的实际电路。 二极管的另一个重要的用途就是整流。 整流是把 50 赫兹的 交流电变成直流,这在本丛书的上一册中作过介绍,这里就不
玻壳 引线 金属电极 引线
晶片
金属细丝
PN 结 (b)面接触型
支架
(a)点接触型 图 28 二极管的内部结构
硅管和锗管。这两种管子在起始导通电压上差别较大,所谓起
始导通电压就是二极管正向伏安特性非线性区域中的拐弯点所 对应的电压。一般硅管的起始导通电压约为 0.6V,锗管约为 0.2V。由于硅管的导通电压较高,用它作小信号检波时灵敏度 低, 线性差。 但硅管的反向耐压较高 , 允许的工作温度也较高, 因此适用于 整流和开关等大电流的场合。 锗管的 起始导通电压较小,反向耐压低,允 许的工作温度也较低, 因此适用于小 信号的检波电路。 晶体二极管有玻璃管壳、 金属管 壳、 塑料管壳和环氧树脂管壳等多种 封装形式。 (参见图 29)体积较小 的检波管一般都采用玻璃管壳(图 2 9 中最上面的那种) ,整流管多采用 图 29 几种常见的晶体二极管 塑料或环氧树脂管壳, 一些电流较大 的整流二极管采用金属管壳, 而且管壳的一端还做成螺杆状 (图 29 中最下面的那种) ,以便于在散热板上安装。 晶体二极管的种类和型号很多。 即使是同一型号的二极管, 因制造工艺等方面的原因,它们的实际性能也略有差别。用来 表明二极管性能的数据,叫作二极管的参数。二极管的主要参 数有下列几个: ⒈最大整流电流(IOM) : 是指二极管长期安全工作时允许通过的正向平均电流的最 大值。因为电流流过 PN 结时要耗散一定的功率,使结温升高。 当电流过大,结温超过一定的限度时就会把 PN 结烧坏。为了 保证安全,二极管整流时的工作电流不能超过此值。 ⒉最高 反向工作电压(VRM) : 这个参数又叫最大允许反向电压。是指允许加在二极管两 端反向电压的最大值, 它反映了二极管对反向电压的承受能力。

二极管和三极管的导通条件

二极管和三极管的导通条件

二极管和三极管的导通条件二极管和三极管是电子元器件中常见的两种器件,它们在电路中起着重要的作用。

在了解二极管和三极管的导通条件之前,我们先来了解一下它们的基本结构和工作原理。

1. 二极管的导通条件二极管是一种只能允许电流在一个方向上通过的器件。

它由P型半导体和N型半导体组成,中间有一个P-N结。

当P端的电压高于N 端时,二极管处于正向偏置状态,此时二极管导通。

反之,当P端的电压低于N端时,二极管处于反向偏置状态,此时二极管截止。

具体来说,二极管的导通条件是:当正向电压大于二极管的正向压降(一般为0.6-0.7V)时,二极管导通。

这是因为当正向电压作用于二极管时,会使得P端的空穴和N端的电子向P-N结扩散,形成电流。

2. 三极管的导通条件三极管是一种具有放大功能的电子元器件,它由三个掺杂不同的半导体构成,分别是发射极(Emitter)、基极(Base)和集电极(Collector)。

三极管具有两个PN结,即发射结和集电结。

三极管的导通条件是:当基极与发射极之间的电压大于0.6-0.7V,并且发射极与集电极之间的电压大于0.2-0.3V时,三极管处于导通状态。

这是因为当基极电压大于0.6-0.7V时,会将电子注入到基区,形成电流。

而当发射极与集电极之间的电压大于0.2-0.3V时,该电流会被放大并输出到集电极。

3. 二极管和三极管的应用二极管和三极管广泛应用于各种电子设备和电路中。

二极管常用于整流电路中,用于将交流电转换为直流电。

此外,二极管还可用于电压限制、电压调节等电路中。

而三极管则常用于放大电路和开关电路中。

在放大电路中,三极管可以将微弱的信号放大成较大的信号,以便驱动负载。

在开关电路中,三极管可以控制电流的通断,实现开关的功能。

总结:二极管和三极管的导通条件分别是:二极管的导通条件是正向电压大于正向压降;三极管的导通条件是基极与发射极之间的电压大于0.6-0.7V,并且发射极与集电极之间的电压大于0.2-0.3V。

光电二极管与光电三极管

光电二极管与光电三极管

光电二极管与光电三极管一、光电二极管(Photodiode)光电二极管是一种基于半导体材料的光电器件,它利用光电效应将光信号转化为电信号。

光电二极管的结构和正常的二极管类似,由P型和N型半导体材料构成,并且在P-N结附近形成一个细微的PN结。

当光照射到PN结处时,光子的能量会被电子吸收,从而激发电子-空穴对的产生。

光电二极管的工作原理是利用光电效应,该效应是指当光照射到半导体材料上时,光子的能量会激发材料中的电子跃迁到导带中,形成电子-空穴对。

当光照强度越大时,激发的电子-空穴对数量越多,产生的电流也越大。

因此,光电二极管可以通过测量电流大小来检测光照强度。

1.快速响应速度:光电二极管具有快速的响应速度,能够在纳秒级别内检测到光的变化。

2.高灵敏度:光电二极管对光信号非常敏感,能够检测到较低光强度下的光信号。

3.低噪声:光电二极管的噪声很低,能够准确地检测到微弱的光信号。

4.宽波长范围:光电二极管可以检测多种波长的光信号,通常在可见光和红外光范围内。

1.光通信:光电二极管作为光信号的接收器,在光通信中发挥重要作用。

2.光谱分析:光电二极管可以用于测量、分析和检测光谱信号,例如光谱仪,气体和液体分析等。

3.光电测量:光电二极管可以用于测量光强度的变化,例如光照度计、照度计等。

4.医疗设备:光电二极管可以用于心率监测、血氧测量、生物检测等医疗设备中。

5.光电控制:光电二极管可以用于光敏开关、光电电路等光电控制领域。

二、光电三极管(Phototransistor)光电三极管是光电传感器中另一种常见的光电器件,它是在光电二极管的基础上发展而来的。

光电三极管同样基于光电效应,将光信号转化为电信号,但是相较于光电二极管,光电三极管具有更高的灵敏度和增益。

光电三极管的结构和普通的三极管类似,由P型、N型和P型三个区域组成。

在光电三极管中,光照射到PN结处时会产生电子-空穴对,电子会从P区域注入到N区域,形成电流。

三极管和二极管

三极管和二极管

三极管和二极管一、介绍三极管和二极管二极管是一种电子元件,它有两个电极,分别为阳极和阴极。

在正向电压下,电流可以流过二极管,而在反向电压下,电流将被阻止。

因此,二极管通常用于整流器、稳压器和信号检测等应用中。

三极管是另一种电子元件,它由三个区域组成:发射区、基区和集电区。

基区控制从发射区到集电区的电流。

当正向偏置时,三极管可以工作在放大器模式下;当反向偏置时,它可以工作在开关模式下。

三极管通常用于放大器、开关和振荡器等应用中。

二、二极管的类型1. 硅二极管硅二极管是最常见的类型之一。

它有一个PN结,并且具有高的热稳定性和低的漏电流。

2. 锗二极管锗二极管比硅二极管更早被发明,并且具有较低的噪声水平和较高的灵敏度。

但是,锗材料对温度变化非常敏感。

3. 高速二极管高速二极管具有非常短的恢复时间,可以快速地从导通到截止转换。

它们通常用于高频应用中。

4. 肖特基二极管肖特基二极管是一种非常快速的二极管,它具有低的反向电流和较小的开关时间。

它们通常用于高频应用中。

三、三极管的类型1. NPN三极管NPN三极管是最常见的类型之一。

在正向偏置时,电流从发射区流向集电区。

当基区被注入电流时,它将控制从发射区到集电区的电流。

2. PNP三极管PNP三极管与NPN三极管相似,但是在正向偏置时,电流从集电区流向发射区。

当基区被注入电流时,它将控制从集电区到发射区的电流。

3. 功率三极管功率三极管可以处理大量功率并能够承受高压和高温度。

它们通常用于放大器、开关和变换器等应用中。

4. 双极性晶体管(BJT)BJT是一种双向传输器件,可以作为放大器或开关使用。

它由两个PN 结组成,其中一个是NPN结,另一个是PNP结。

四、应用1. 二极管的应用(1)整流器:二极管可以将交流电转换为直流电。

(2)稳压器:二极管可以用作稳压器的关键元件。

(3)信号检测:二极管可以检测并放大无线电频率信号。

2. 三极管的应用(1)放大器:三极管可以放大电路中的信号。

三极管

三极管

N
E EB
PNP VB<VE VC<VB
EC
第一章 半导体二极管、三极管
晶体管放大的条件
发射区掺杂浓度高 1.内部条件 基区薄且掺杂浓度低 I B
集电结面积大 2.外部条件 发射结正偏 集电结反偏
RB
mA A
IC
mA
C B
3DG6
E
IE
EC
晶体管的电流分配和 放大作用
电路条件: EC>EB 发射结正偏 集电结反偏
基极开路
第一章 半导体二极管、三极管
三、极限参数
1. 集电极最大允许电流 ICM
集电极电流 IC上升会导致三极管的值的下降,当值下降到正常值 的三分之二时的集电极电流即为 ICM。 2.反向击穿电压
(1) 集-射极反向击穿电压U(BR)CEO 当集—射极之间的电压UCE 超过一定的数值时,三极管就会被击穿。 手册上给出的数值是25C、基极开路时的击穿电压U(BR) CEO。基极开 路时 C、E极间反向击穿电压。 (2)集电极-基极反向击穿电压U(BR)CBO — 发射极开路时 C、B极间 反向击穿电压。 (3)发射极-基极反向击穿电压U(BR)EBO — 集电极开路时 E、B极间反 向击穿电压。
第一章 半导体二极管、三极管
一、输入特性
iC
iB f (uBE ) u
uCE 0
iB
RB + + uBE

CE常数
与二极管特性相似
RB +

B + RC + 输出 RB E uCE 输入 回路 + uBE + EC 回路 EB IE

iB
C

二极管和三极管、晶振

二极管和三极管、晶振

五、晶振
由于在电脑中的晶振频率普遍都比较由于在电脑中的晶振频率普遍都比较高环境温度又相对较高所以晶振的故高环境温度又相对较高所以晶振的故障率并不是很低通常在更换晶振时都要障率并不是很低通常在更换晶振时都要用相同型号的新品原因是有相当一部分用相同型号的新品原因是有相当一部分电路对晶振的要求是非常严格的这些电电路对晶振的要求是非常严格的这些电路不但要求新晶振的频率要和原晶振一致路不但要求新晶振的频率要和原晶振一致甚至连后缀字母都要一模一样甚至连后缀字母都要一模一样晶振是有串并联之分的并联之分的否则就无法正常工作所以否则就无法正常工作所以大家在更换晶振时要多留一下心尽量用大家在更换晶振时要多留一下心尽量用完全一样的新品来代换故障晶振
四、二极管和三极管
(二)三极管 1.作用 1.作用 放大、开关或调节,它在电脑主机中为数 不多,但在显示器以及一些外设中的数量 不少。 2.可按半导体基片材料的不同分为PNP型 2.可按半导体基片材料的不同分为PNP型 和NPN型,三极管就是二个二极管结合到 NPN型,三极管就是二个二极管结合到 了一起而已。但是在这里P 了一起而已。但是在这里P和N已经不是单 纯的正或负极的关系了,而是分为B 纯的正或负极的关系了,而是分为B极(基 极)、C极(集电极)、E 极)、C极(集电极)、E极(发射极)。
四、二极管和三极管
晶体二极管 晶体二极管在电路中常用“D”加数字表 晶体二极管在电路中常用“D”加数字表 示,如:D5表示编号为5 示,如:D5表示编号为5的二极管。 电话机里使用的晶体二极管按作用可分 为:整流二极管(如1N4004)、隔离二极 为:整流二极管(如1N4004)、隔离二极 管(如1N4148)、肖特基二极管(如 管(如1N4148)、肖特基二极管(如 BAT85)、发光二极管、稳压二极管等。 BAT85)、发光二极管、稳压二极管等。

二极管和三极管的结构与基本性能

二极管和三极管的结构与基本性能

第一节 三极管的结构与基本性能一、理想二极管的正向导通特性二极管对电流具有单向导通的特性,硅材料二极管的正向导通电流与正向电压之间的关系曲线如图1.1.1所示。

图1.1.1 理想二极管的正向导通特性(一)导通电压与导通通电流之间的对应关系二极管在正向电压为0.4V 左右时微弱导通,0.7V 左右时明显导通。

导通电压与导通电流之间的变化关系是,导通电压每变化9mV ,导通电流会变化倍。

(二)二极管正向导通电压与导通电流之间的对应关系)9(002mVU U n n I I -⨯= (1.1.1)或)18(002mVU U n n I I -⨯= (1.1.2)或)(log 29020I I mV U U nn ⨯+= (1.1.3) U 0为二极管正向导通时的某静态电压,U n 为二极管在U 0的基础上变化后的电压。

I 0为二极管加上正向导通电压U 0时的正向导通电流,I n 为二极管与U n 相对应的正向导通电流。

例如:某二极管的在导通电压U 0=0.700V 时,导通电流为I 0=1mA ,求导通电压分别变化到U n1=0.682V 、U n2=0.691V 、U n3=0.709V 、U n4=0.718V 时的导通电流I n1、I n2、I n3、I n4。

解:根据)9(002mVU U n n I I -⨯=mA mA I mVVV n 5.021)97.0682.0(1=⨯=-mA mA I mV VV n 707.021)97.0691.0(2=⨯=- mA mA I mV VV n 414.121)97.0709.0(3=⨯=- mA mA I mVVV n 221)97.0718.0(4=⨯=-由此可见,只要知道二极管的某个导通电压和相对应的导通电流,就可以计算出二极管的正向导通曲线上任何一点的参数。

(三)二极管的正向导通时的动态电阻 1、动态电阻的概念动态电阻r d 的概念指的是电压的变化量与对相应的电流变化量之比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 三极管的结构与基本性能
一、理想二极管的正向导通特性
二极管对电流具有单向导通的特性,硅材料二极管的正向导通电流与正向电压之间的关系曲线如图1.1.1所示。

图1.1.1 理想二极管的正向导通特性
(一)导通电压与导通通电流之间的对应关系
二极管在正向电压为0.4V 左右时微弱导通,0.7V 左右时明显导通。

导通电压与导通电流之间的变化关系是,导通电压每变化9mV ,导通电流会变化倍。

(二)二极管正向导通电压与导通电流之间的对应关系
)9(002
mV U U n n I I -⨯= (1.1.1) 或)18(002mV U U n n I I -⨯= (1.1.2) 或)(log 290
20I I mV U U n n ⨯+= (1.1.3) U 0为二极管正向导通时的某静态电压,U n 为二极管在U 0的基础上变化后的电压。

I 0为二极管加上正向导通电压U 0时的正向导通电流,I n 为二极管与U n 相对应的正向导通电流。

例如:某二极管的在导通电压U 0=0.700V 时,导通电流为I 0=1mA ,求导通电压分别变化到U n1=0.682V 、U n2=0.691V 、U n3=0.709V 、U n4=0.718V 时的导通电流I n1、I n2、I n3、I n4。

解:根据)9(002mV U U n n I I -⨯=
mA
mA I mV V V n 5.021)97.0682.0(1=⨯=-
mA mA I mV
V V n 707.021)97.0691.0(2=⨯=- mA mA I mV
V V n 414.121)97.0709.0(3=⨯=- mA mA I mV V V n 221)97.0718.0(
4=⨯=- 由此可见,只要知道二极管的某个导通电压和相对应的导通电流,就可以计算出二极管的正向导通曲线上任何一点的参数。

(三)二极管的正向导通时的动态电阻
1、动态电阻的概念
动态电阻r d 的概念指的是电压的变化量与对相应的电流变化量之比。

I
U r d ∆∆= (1.1.4)
二极管正向导通之后,既有导通电压的参数,又有相应的导通电流的参数,但正向导通电阻却不能简单地等于导通电压与导通电流之比。

例如:假设二极管的正向导通电压U 0=0.7V 、静态电流I 0=1mA ,如果认为二极管正向导通电阻就等于导通电压与导通电流之比的话,此时的电阻应当为U 0/I 0=0.7V/1mA=700Ω。

照此推论,当导通电压U n =1.4V 时,相应的导通电流应当是I n =2mA 。

而实际的结果是,当正向导通电压U n 达到0.718V 时(增加18mV),电流I n 就已经增加到2mA 了。

由此可见,二极管正向导通后有两种电阻:
一是直流电阻,就是正向导通电压与相对应的正向导通电流之比。

二是动态电阻,就是二极管正向导通曲线中某一点的电压微变量与相应的电流微变量之比,即该点斜率的倒数,见图1.1.1中各Q 点的不同斜率。

2、二极管正向导通后的动态电阻的粗略计算
已知Q 0点U 0=0.7V 、I 0=1mA ,Q 4点U 4=0.718V 、I 4=2mA ,
则Q 0点的动态电阻:Ω≈--≈∆∆=46.25707.0414.1691.0709.000
0mA
mA V V I U r Q Q dQ Q 4点的动态电阻:Ω≈--≈∆∆=73.12414.1828.2709.0727.044
4mA
mA V V I U r Q Q dQ 3、二极管正向导通后的动态电阻的微分计算 由于二极管导通电压与电流变化是非线性关系,所以上述计算不够精确,若对)18(002mV U U n n I I -⨯=进行微分,可以求得n I 的导数:
根据动态电阻的定义,可知二极管动态电阻)(Ωd r 为'n I 的倒数,故有:
)18(0'
02182ln mV U U n
n mV I I -⨯⨯= (1.1.5) )18(0'02182ln 11)(mV U
U n d n mV I I r -⨯⨯==Ω
而)18(002mV U U n n I I -=,则0
)18(02I I n mV U U n =-,代入上式 )()(262ln 18182ln 1)(0
0mA I mV I mV I I mV I r n n n d ≈⨯=⨯⨯=Ω 得)
()(26)(mA I mV r d =Ω (1.1.6) 故:Q 0点的电阻Ω===Ω26126)(26)(00mA
mV mA I mV r Q dQ Q 4点的电阻Ω===
Ω13226)(26)(44mA mV mA I mV r Q dQ 4、二极管正向导通动态电阻的粗略计算法与微分计算法之比较
从两种计算法的数据区别可以看出,粗略计算法比微分计算法所得的二极管正向导通动态电阻值要略小一些,这是因为粗略计算法所取的电压和电流的变量较大,二极管正向导通动态电阻的非线性不能被忽略,从而导致计算数据不够精确。

粗略计算法有着广泛的通用性,适用于所有动态电阻的计算。

微分计算法的公式)
()(26)(mA I mV r d =Ω仅适用于普通二极管的正向导通特性,不适用于其它动态电阻的计算。

二极管正向导通后的动态电阻随导通电流的不同而不同,导通电流越大,电阻越低。

即二极管正向导通后的动态电阻与导通电流成反比。

(四)失真问题
从图1.1.1中的电压波形u 1、u 2与电流波形i 1、i 2之间的对应关系可以看出,如果二极管在某个正向导通电压的基础上以正弦规律发生波动,所引起电流波动的波形却出现了失真,这是由于二极管的正向导通电压与正向导通电流之间的非线性关系所致。

正向导通电压的波动幅度越大,这种非线性就越严重。

相反,正向导通电压的波动幅度越小,这种非线性也就越小,当正向导通电压的波动幅度小到一定程度,正向导通电流的这种非线性也就小得可以忽略不计。

(五) 本章节所述二极管导通特性的应用范围
不同类型的二极管在导通特性方面有着很大差异,本章节所述的二极管导通特性专门用于描述硅材料普通三极管的极间导通特性。

二、理想三极管的基本特性
(一)三极管的结构与符号标识
(a) (b)
图1.1.2 三极管的结构与符号标识
如果用仪表进行对三极管各极之间的导通方向进行测量,NPN 型三极管和PNP 型三极管各极之间的电流导通关系,分别等同如图1.1.2(a)和图1.1.2(b)中的二极管结构,但三极管的内部结构与普通二极管连接的相应结构却有着本质的不同。

(二)理想硅材料三极管各极之间电流的系数关系
图1.1.3 理想三极管各极之间电流的系数关系
1、三极管的基极与发射极之间导通特性
普通硅材料三极管的基极与发射极之间,具有如图1.1.1所示普通硅材料二极管的特性。

2、集电极电流与基极电流之间的关系
如图1.1.3所示,NPN 型三极管在加上一个基极电流I B 的情况下,若在集电极c 和发射极e 之间加上大于零的正向电压U CE (E 2),就会产生一个集电极电流I C ,此时的集电极电流I C 就会是基极电流I B 的β倍:
B C I I ⨯=β (1.1.7)
β值是三极管所特有的电流放大倍数,每个三极管的β值都不一样,不同三极管β值的范围大约在50~400之间。

3、集电极电流与集电极电压之间的关系
三极管集电极电流的大小与集电极电压的大小无关,只要集电极电压大于零,即使集电极电压大小发生变化,也不会使集电极电流发生变化,体现出集电极电流受基极电流的β倍所控制的恒流源的性质。

4、发射极电流与集电极电流、基极电流之间的关系
发射极电流等于基极电流与集电极电流之和:
C B E I I I +=B B I I ⨯+=βB I ⨯+=)1(β (1.1.8)
5、集电极电流与发射极电流之间的关系
由于基极电流I B 只有集电极电流I C 的1/β,所以发射极电流I E 与集电极电流I C 很接近,通常情况下,我们视集电极电流等于发射极电流: E E C I I I ≈+⨯=1
ββ (1.1.9)
(三)三极管集电极与发射极之间的动态电阻
三极管的集电极与发射极之间的电阻,有直流电阻和动态电阻两个不同的概念。

1、三极管集电极的直流电阻
三极管的集电极与发射极之间的直流电阻,等于集电极与发射极之间的直流电压与集电极电流之比。

2、三极管的集电极与发射极之间的动态电阻
由于三极管的集电极电流是基极电流的β倍,与集电极电压的大小无关,也就是说,集电极电压的变化不能引起集电极电流的变化: C
CE ce I U r ∆∆= (1.1.10)
=∝∆=
0CE U 所以,三极管的集电极与发射极之间的动态电阻为无穷大。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档