高一数学教案:对数及其运算1
教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。
〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。
〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。
教学重难点:指、对数式的互化。
教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。
这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。
能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。
二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。
其中a 叫做对数的底数,N 叫做真数。
根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。
对数的运算高中数学教案

对数的运算高中数学教案主题:对数的运算教学目标:1. 了解对数的定义和性质。
2. 掌握对数的运算规则。
3. 能够在实际问题中应用对数进行计算。
教学重点:1. 对数的定义和性质。
2. 对数的运算规则。
教学难点:1. 在实际问题中应用对数进行计算。
教学准备:1. 教材:高中数学教材相关章节。
2. 教具:黑板、白板、粉笔/马克笔、教学PPT等。
教学步骤:Step 1:引入教师向学生介绍对数的概念,并提出对数的运算在我们日常生活和科学研究中的重要性。
Step 2:对数的定义教师讲解对数的定义:如果$a^x=y$,那么$x=log_{a}y$。
强调底数、真数和指数的概念。
Step 3:对数的性质教师讲解对数的性质:对数运算的三个基本性质(对数乘积、对数商、对数幂)。
Step 4:对数的运算规则教师讲解对数的运算规则:同底数的对数运算规则(对数乘积等于对数相加、对数商等于对数相减、对数的幂等于指数乘以对数)。
Step 5:练习与讨论教师提供一些对数的练习题,让学生在黑板上展示解题过程,并对错题进行讨论。
Step 6:应用实例教师提供一些实际问题,让学生应用对数的运算规则进行计算,并解释答案的含义。
Step 7:作业布置教师布置对数的相关作业,让学生在课后进一步巩固所学知识。
教学反思:通过本节课的教学,学生应该能够理解对数的定义和性质,熟练掌握对数的运算规则,并能够在实际问题中应用对数进行计算。
同时,通过练习和讨论,学生也能够培养自己的逻辑思维和解决问题的能力。
人教版数学高一教案对数及其运算(一)

§3.2 对数与对数函数3.2.1 对数及其运算(一)一.教学目标:1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.二.重点与难点:(1)重点:对数式与指数式的互化及对数的性质(2)难点:对数性质的推导三.学法与教具:(1)学法:讲授法、讨论法、类比分析与发现(2)教具:投影仪教学过程[问题情境] 对数,延长了天文学家的生命.“给我空间、时间和对数,我可以创造一个宇宙”,这是16世纪意大利著名学者伽利略的一段话.从这段话可以看到,伽利略把对数与最宝贵的空间和时间相提并论.那么,“对数”到底是什么呢?本节就来探讨这个问题.探究点一 对数的概念问题1 若24=M ,则M 等于多少?若2-2=N ,则N 等于多少?答: M =16,N =14. 问题2 若2x =16,则x 等于多少?若2x =14,则x 等于多少? 答: x 的值分别为4,-2.问题3 满足2x =3的x 的值,我们用log 23表示,即x =log 23,并叫做“以2为底3的对数”.那么满足2x =16,2x =14,4x =8的x 的值如何表示? 答: 分别表示为log 216,log 214,log 48. 小结: 1.在指数函数f (x )=a x (a >0,且a ≠1)中,对于实数集R 内的每一个值x ,在正实数集内都有唯一确定的值y 和它对应;反之,对于正实数集内的每一个确定的值y ,在R 内都有唯一确定的值x 和它对应.幂指数x ,又叫做以a 为底y 的对数.一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”.2.对数log a N (a >0,且a ≠1)的性质(1)0和负数没有对数,即N >0;(2)1的对数为0,即log a 1=0;(3)底的对数等于1,即log a a =1.3.常用对数以10为底的对数叫做常用对数.为了简便起见,对数log 10N 简记作lg N .探究点二 对数与指数的关系问题1 当a >0,且a ≠1时,若a x =N ,则x =log a N ,反之成立吗?为什么?答:反之也成立,因为对数表达式x =log a N 不过是指数式a x =N 的另一种表达形式,它们是同一关系的两种表达形式.问题2 在指数式a x =N 和对数式x =log a N 中,a ,x ,N 各自的地位有什么不同?答问题3 若a b =N ,则b =log a N ,二者组合可得什么等式?答:对数恒等式:a =N .问题4 当a >0,且a ≠1时,log a (-2),log a 0存在吗?为什么?由此能得到什么结论? 答:不存在,因为log a (-2),log a 0对应的指数式分别为a x =-2,a x =0,x 的值不存在,由此能得到的结论是:0和负数没有对数.问题5 根据对数定义,log a 1和log a a (a >0,a ≠1)的值分别是多少?答:log a 1=0,log a a =1.∵对任意a >0且a ≠1,都有a 0=1, ∴化成对数式为log a 1=0; ∵a 1=a ,∴化成对数式为log a a =1.小结: 对数log a N (a >0,且a ≠1)具有下列性质:(1)0和负数没有对数,即N >0;(2)1的对数为0,即log a 1=0;(3)底的对数等于1,即log a a =1.例1 求log 22, log 21, log 216, log 212. 解: 因为21=2,所以log 22=1;因为20=1,所以log 21=0;因为24=16,所以log 216=4;因为2-1=12,所以log 212=-1. 小结: log a N =x 与a x =N (a >0,且a ≠1,N >0)是等价的,表示a ,x ,N 三者之间的同一种关系,可以利用其中两个量表示第三个量.因此,已知a ,x ,N 中的任意两个量,就能求出另一个量. 跟踪训练1 将下列指数式写成对数式:(1)54=625; (2)2-6=164; (3)3a =27; (4)⎝⎛⎭⎫13m =5.73. 解: (1)log 5625=4;(2)log 2164=-6;(3)log 327=a ;(4)log 135.73=m . 例2 计算:(1)log 927; (2)log 4381; (3)log 354625.解:(1)设x =log 927,则9x =27,32x =33,∴x =32. (2)设x =log 4381,则⎝⎛⎭⎫43x =81,3=34,∴x =16.(3)令x =log 354625,∴⎝⎛⎭⎫354x =625,5=54,∴x =3.小结:要求对数的值,设对数为某一未知数,将对数式化为指数式,再利用指数幂的运算性质求解.跟踪训练2 求下列各式中的x 的值:(1)log 64x =-23; (2)log x 8=6; (3)lg 100=x . 解: (1)x =(64) -23=(43) -23=4-2=116.(2)x 6=8,所以x =(x 6) 16=816=(23) 16=212= 2.(3)10x =100=102,于是x =2.探究点三 常用对数问题 阅读教材96页下半页,说出什么叫常用对数?常用对数如何表示?答:以10为底的对数叫做常用对数.通常把底10略去不写,并把“log”写成“lg”,并把log 10N 记做lg N .如果以后没有指出对数的底,都是指常用对数.如“100的对数是2”就是“100的常用对数是2”.例3 求lg 10,lg 100,lg 0.01.解:因为101=10,所以lg 10=1;因为102=100,所以lg 100=2;因为10-2=0.01,所以lg 0.01=-2.小结:由本例题可以看出,对于常用对数,当真数为10n (n ∈Z )时,lg 10n =n ;当真数不是10的整数次方时,常用对数的值可通过查对数表或使用科学计算器求得.跟踪训练3 求下列各式中的x 的值:(1)log 2(log 5x )=0;(2)log 3(lg x )=1; (3)log (2-1)13+22=x .解: (1)∵log 2(log 5x )=0. ∴log 5x =20=1,∴x =51=5.(2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1 000.(3)∵log (2-1)13+22=x ,∴(2-1)x =13+22=1(2+1)2=12+1=2-1, ∴x =1.当堂检测1.若log (x +1)(x +1)=1,则x 的取值范围是( B ) A.x >-1B.x >-1且x ≠0C.x ≠0D.x ∈R 解析:由对数函数的定义可知x +1≠1,x +1>0即x >-1且x ≠0.2.已知log 12x =3,则x 13=__12______.解析:∵log 12x =3,∴x =(12)3, ∴x 13=12. 3.已知a 12=49(a >0),则log 23a =__4______.解析:由a 12=49(a >0),得a =(49)2=(23)4, 所以log 23a =log 23(23)4=4. 4.将下列对数式写成指数式:(1)log 16=-4;(2)log 2128=7;(3)lg 0.01=-2.解:(1)⎝⎛⎭⎫12-4=16;(2)27=128; (3)10-2=0.01.课堂小结:1.掌握指数式与对数式的互化a b =N ⇔log a N =b .2.对数的常用性质有:负数和0没有对数,log a 1=0,log a a =1.3.对数恒等式有:a log a N =N ,log a a n =n .4.常用对数:底数为10的对数称为常用对数,记为lg N .。
高中数学必修一《对数与对数运算》教学设计

高中数学必修一《对数与对数运算》教学设计一、教学背景分析:(一)教材地位与作用我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.(二)学情分析学生刚开始接触对数,从指数函数到对数函数的过渡,学生在学习上可能会有些困难,转化能力有待提高。
而且学生学习的主动意识不强,自主探究能力也有待提高。
(三)设计思想教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.注重引导学生通过自己观察、操作交流、讨论、有条理的思考和推理,让学生通过自主探索、合作交流,进一步认识和掌握对数式与指数式的互化,积累数学活动的经验。
(四)教法分析和学法指导掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握在本课的教学设计中,注重“引、思、探、练”的结合。
引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。
在学习方法上,指导学生:通过实例启发学生产生主动运用的意识;通过解题思路的脉络分析,对学生进行解题思路的指导;通过对学生发言的点评,规范语言表达,指导学生进行交流和讨论。
(五)教具设备:多媒体课件.二、教学目标(一)知识与能力1.理解对数的概念,了解对数与指数的关系;2.理解和掌握对数的性质;3.掌握对数式与指数式的关系。
高一数学对数及其运算教学

高一数学对数及其运算教学一、教学任务及对象1、教学任务本节课的教学任务是向高一学生讲授数学中的对数及其运算。
对数是数学中一个重要的概念,它在解决复杂数学问题,尤其在自然科学、工程技术和经济学等领域有着广泛的应用。
通过本节课的学习,学生将掌握对数的定义、性质以及基本的对数运算,从而为后续学习指数函数、对数函数以及解决实际问题打下坚实基础。
2、教学对象本节课的教学对象是高中一年级的学生。
这一阶段的学生已经具备了一定的数学基础,掌握了实数的基本概念和运算规则,但对于对数这一较为抽象的概念可能还感到陌生。
因此,在教学过程中,需要将抽象的概念具体化、形象化,帮助学生理解并掌握对数的本质及其运算方法。
同时,针对不同学生的认知水平和学习风格,采用多样化的教学策略,使全体学生能够积极参与,提高学习兴趣和效果。
二、教学目标1、知识与技能(1)理解对数的定义,掌握对数的性质,能够准确区分自然对数与常用对数;(2)学会对数的运算方法,包括对数的加、减、乘、除以及幂运算,能够熟练进行对数计算;(3)了解对数在解决实际问题中的应用,例如在物理学、生物学、经济学等领域;(4)掌握对数函数的基本概念,为后续学习对数函数的性质和图像打下基础。
2、过程与方法(1)通过实际例子引出对数的概念,让学生在对数产生的背景中感受对数的意义;(2)采用师生互动、小组讨论的方式,引导学生发现并总结对数的性质和运算规律;(3)设计丰富的例题和练习,让学生在解决问题的过程中运用对数知识,培养分析问题和解决问题的能力;(4)利用数学软件或图形计算器等辅助工具,帮助学生直观地理解对数函数的图像和变化趋势。
3、情感,态度与价值观(1)培养学生对数学学科的兴趣,激发他们学习数学的热情;(2)鼓励学生主动参与课堂讨论,敢于提出问题,勇于挑战困难,形成积极向上的学习态度;(3)通过小组合作,培养学生团结协作、互相帮助的精神,增强集体荣誉感;(4)让学生体会数学在自然科学和社会科学中的应用价值,认识到学习数学的重要性,从而树立正确的价值观。
高一数学教案对数5篇

高一数学教案对数5篇高一数学教案对数1教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教法建议(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.高一数学教案对数2教学目标1.使学生了解反函数的概念;2.使学生会求一些简单函数的反函数;3.培养学生用辩证的观点观察、分析解决问题的能力。
《对数的运算》示范课教学设计【高中数学】

《对数的运算》教学设计 1.理解对数的运算性质,体会对数对简化运算的作用; 2.知道用换底公式能将一般对数转化为自然对数或常用对数;
3.能够利用对数的运算性质、换底公式解决问题,提升数学运算核心素养.
教学重点:对数的运算性质,换底公式.
教学难点:对数运算性质的得出,对数换底公式的推导.
PPT 课件,计算器.
(一)新知探究
1.对数的运算性质 问题1:因为运算,数的威力无限;没有运算,数就只是一个符号.在引入对数之后,自然应研究对数的运算性质.你认为可以怎样研究?
师生活动:学生分组讨论交流,教师引导学生从对数与指数间的关系思考.
预设的答案:通过上节课的学习,我们知道了对数是通过指数幂的形式定义出来的,因此对数运算是由指数幂运算衍生出来的.对数运算与指数幂运算是两类重要的运算,正像加法与减法、乘法与除法之间的关系一样,我们通过加法运算学习减法运算,通过乘法运算学习除法运算.对于对数运算,我们也可以通过指数幂运算推导对数运算的性质. 设计意图:明确研究的内容,新旧知识产生联系,激发学生的探究欲望. 追问1:请回忆指数幂的运算性质.
师生活动:个别提问回答.
预设的答案:对于任意实数r ,s ,均有下面的指数幂运算性质.
(1)()0,,r s r s a a a a r s +=>∈R ;
(2)()()0,,s r rs a a a r s =>∈R ;
◆教学目标 ◆教学重难点
◆ ◆课前准备
◆教学过程。
对数教学设计【优秀5篇】

对数教学设计【优秀5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计【优秀5篇】高中数学对数教学教案有哪些篇一教学目标1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.1对数及其运算(一)
教学目标:理解对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用
教学重点:理解对数的概念、常用对数的概念.
教学过程:
1、对数的概念:
复习已经学习过的运算
指出:加法、减法,乘法、除法均为互逆运算,指数运算与对数运算也为互逆运算:
若
,则 叫做以 为底 的对数。
记作:b N a =log (1,0≠>a a )
2、对数的性质
(1) 零和负数没有对数,即
中N 必须大于零; (2) 1的对数为0,即01log =
(3) 底数的对数为1,即1log =a a
3、对数恒等式:N a N a =log
4、常用对数:以10为底的对数叫做常用对数,记为:N N lg log 10=
5、例子:
(1) 将下列指数式写成对数式
62554=
64
126=- 373=a
73.5)3
1(=m
(2) 将下列对数式写成指数式 416log 2
1-=
7
=
log
128
2
27
log
a
=
3
lg-
=
01
.0
2
(3)用计算器求值
lg
2004
0168
lg
.0
lg
370
125
.
lg
732
.1
课堂练习:教材第104页练习A、B
小结:本节课学习了对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用
P习题3—2A,1
课后作业:
114。