1.1命题及其关系

合集下载

1.1命题及其关系

1.1命题及其关系

命题及其关系【学习目标】1、掌握命题、真命题及假命题的概念;2.四种命题的内在联系,能根据一个命题来构造它的逆命题、否命题和逆否命题.【重点难点】重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假。

【学法指导】自主探究,小组合作。

【导学流程】一、基础感知导入:阅读课本第2页(1)若直线//a b,则直线a和直线b无公共点;(2)247+=(3)垂直于同一条直线的两个平面平行;(4)若21x=,则1x=;(5)两个全等三角形的面积相等;(6)3能被2整除.二、深入学习探究1.命题的概念:定义:在数学中,我们把用、、或表达的,可以的叫做命题.分类:的语句叫做真命题,的语句叫做假命题探究2.命题的数学形式:形式:“若p,则q”命题中的p叫做命题的,q叫做命题的.探究三.四种命题:(1)对两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做,其中一个命题叫做其中一个命题叫做原命题,那么另一个命题叫做原命题的原命题为:“若p,则q”,则逆命题为:“”.(2)一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做,其中一个命题叫做原命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”(3)一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做,其中一个命题叫做原命题,那么另一个命题叫做原命题的.若原命题为:“若p ,则q ”,则逆否命题为:“” 相互关系:真假关系:否命题三、迁移运用例1.下列语句中哪些是命题是真命题还是假命题(1)空集是任何集合的子集;(2)若整数a 是素数,则a 是奇数;(3)指数函数是增函数吗(4)若空间有两条直线不相交,则这两条直线平行;(52=;(6)15x >.命题有,真命题有 假命题有.例2.指出下列命题中的条件p 和结论q :(1)若整数a 能被2整除,则a 是偶数;(2)若四边形是菱形,则它的对角线互相垂直平分.练习:把下列命题写成“若P ,则q ”的形式,并判断各命题的真假 (1)面积相等的两个三角形全等.(2)负数的立方是负数.(3)对顶角相等.例3.命题:“已知a 、b 、c 、d 是实数,若,a b c d ==,则a c b d +=+”.写出逆命题、否命题、逆否命题.例4.以“若2320xx -+=,则2x =”为原命题,写出它的逆命题、否命题、逆否命题,并判断这些命题的真假并总结其规律性.练习:判断下列命题的真假:(1)命题“在ABC ∆中,若AB AC >,则C B ∠>∠”的逆命题;(2)命题“若0ab ≠,则0a ≠且0b ≠”的否命题;(3)命题“若0a ≠且0b ≠,则0ab ≠”的逆否命题; (4)命题“若0a ≠且0b ≠,则220ab +>”的逆命题. 例5、证明:若p 2+q 2=2,则p +q ≤2.四.当堂检测1.把下列命题改写成“若p,则q”的形式,并判断它们的真假: (1)等腰三角形两腰的中线相等;(2)偶函数的图象关于y 轴对称;(3)垂直于同一个平面的两个平面平行.2.如果x 2=1,则x =1的否命题为3.命题“若x 2<1,则-1<x <1”的逆否命题是4.已知命题:“若m>0,则方程2+-=x x m o 有实根”,写出该命题的逆命题、否命题、逆否命题并判断其真假.五.课堂小结六.课外作业:优化设计。

016:选修2-1 1.1 命题及其关系、命题及其真假、四种命题的关系1

016:选修2-1  1.1 命题及其关系、命题及其真假、四种命题的关系1

选修2-1 第一章 常用逻辑用语§1.1 命题及其关系、命题及其真假、四种命题的关系班级 姓名一、目标导引1.了解命题的概念和分类,能判断命题的真假;2.了解命题的构成形式,能将命题改写为“若p ,则q ”的形式;3.会写出所给命题的逆命题、否命题和逆否命题以及真假性之间的联系; 4.会利用命题的等价性解决问题.二、教学过程 (一)命题1.用 表达的,可以判断真假的 叫做命题.判断为真的语句叫做 命题.判断为假的语句叫做 命题.2.命题定义的 , ,判断的结果可真可假,但真假必居其一。

判断一个语句是不是命题,关键看这语句是否符合“ ”和“ ”这两个条件.3.有些语句中 ,这样的语句叫开语句,不构成是命题. 例1:判断下面的语句是否为命题?若是命题,指出它的真假.(1)空集是任何集合的子集 ( ) (2)若整数a 是素数,则a 是奇数( )(3)指数函数是增函数吗? ( )(4)2(2)2-=- ( ) (5)x +3>15 ( ) (6)求证3是无理数( ) (7)并非所有的人都喜欢苹果( )(二) “若p ,则q ”形式的命题1.在“若p ,则q”这种形式的命题中,p 叫做命题的条件,q 叫做命题的结论.2.“若p ,则q”中的p 和q 可以是命题也可以不是命题.3.“若p ,则q”形式的命题的优点是条件与结论容易辨别,缺点是太格式化且不灵活. 4.“若p ,则q”形式的命题是命题的一种形式而不是唯一的形式. 命题也可写成“如果p ,那么q”,“只要p ,就有q”等形式.5.“若p 则q”形式的命题的书写:对于一些条件与结论不明显的命题,一般采取先添补一些命题中省略的词句,确定条件与结论.如命题:“垂直于同一条直线的两个平面平行” .写成“若p ,则q”的形式为:“若两个平面垂直于同一条直线,则这两个平面平行.”例2:把下列命题改写成“若p ,则q ”的形式,并判定命题的真假. (1)对顶角相等.(2)偶函数的图像关于y 轴对称.(3)垂直于同一条直线的两条直线平行. (4)垂直于同一个平面的两个平面互相平行.(三)四种命题1.互逆命题:如果第一个命题的 是第二个命题的 ,且第一个命题的 是第二个命题的 ,那么这两个命题叫 .如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.2.互否命题:如果第一个命题的 是第二个命题的 ,那么这两个命题叫做互否命题。

1.1《命题及其关系(三)充要条件》课件

1.1《命题及其关系(三)充要条件》课件
ks5u精品课件
复习 1、充分条件,必要条件的定义:

充分 p q,则p是q成立的____条件 必要 q是p成立的____条件
ks5u精品课件
如果既有p q,又有q p就记做p q么q也是p的充要条件
p与q互为充要条件 (也可以说成”p与q等价”)
ks5u精品课件
判别步骤: ① 认清条件和结论。 ② 考察p 判别技巧: ① 可先简化命题。 q和q
判别充要条 件问题的
p的真假。
② 否定一个命题只要举出一个反例即可。 ③ 将命题转化为等价的逆否命题后再判断。 ④充要性包括:充分性p q和必要性q p两个方面。
ks5u精品课件
例1:两条不重合的直线l1、l2(共同前提). l1与l2的斜率分别为k1、k2,且k1=k2是l1∥l2 的什么条件?
ks5u精品课件
各种条件的可能情况 1、充分且必要条件 2、充分非必要条件 3、必要非充分条件 4、既不充分也不必要条件
ks5u精品课件
问题、探讨下列生活中名言名句的充要关系。
(1) 水滴石穿。 (2)有志者事竟成。 (3)春回大地,万物复苏。 (4)玉不琢,不成器。
ks5u精品课件
以下命题 的逆命题成立吗?
(1)若a是无理数,则a+5是无理数; (2)若a>b,则a+c>b+c; (3)若一元二次方程ax2+bx+c=0有两 个不等的实根,则判别式Δ>0.
ks5u精品课件
指出下列命题中,p是q的什么条 件,q是p的什么条件。
(1)p:x>2,q:x>1; (2)p:x>1,q:x>2; (3)p:x>0 ,y>0,q:x+y<0; (4)p:x=0,y=0,q:x2+y2=0.

1.1命题及其关系用

1.1命题及其关系用

命题及其关系
1.1.3 四种命题的相互关系
问题:
主人邀请张三,李四、王五三人吃饭,时间 到了,只有张三李四准时赴约,王五打电话 说:“有急事不能来了”,主人听了随口说 了句:"你看看,该来的没有来”张三听了, 脸色一沉,起来一声不吭地走了.主人塄了片 刻又道了一句:哎,不该走的又走了.李四 听了大怒,拂袖而去. 你能用逻辑原理解释二人离去的原因吗?
命题及其关系
1.1.2 四种命题
下列四个命题中,命题(1)与命题(2)(3)(4) 的条件和结论之间分别有什么关系?
1. 2. 3. 4.
若f(x)是正弦函数,则f(x)是周期函数; 若f(x)是周期函数,则f(x)是正弦函数; 若f(x)不是正弦函数,则f(x)不是周期函数; 若f(x)不是周期函数,则f(x)不是正弦函数。
解:逆命题:当c >0 时,若ac >bc ,则a >b. 逆命题为真. 否命题:当c >0 时,若a ≤b ,则ac ≤ bc 否命题为真. 逆否命题:当c >0 时,若ac ≤ bc ,则a ≤b . 逆否命题为真.
准确地作出反设(即否定结论)是非常重要的, 下面是一些常见的结论的否定形式.
原结论 是 都是 大于 小于 反设词 不是 不都是 原结论 至少有一个 至多有一个 反设词 一个也没有 至少有两个
练习:若a2能被2整除,a是整数, 求证:a也能被2整除.
证:假设a不能被2整除,则a必为奇数, 故可令a=2m+1(m为整数), 由此得 a2=(2m+1)2=4m2+4m+1=4m(m+1)+1, 此结果表明a2是奇数, 这与题中的已知条件(a2能被2整除)相矛盾, ∴a能被2整除.

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 逆否命题素材 新人教A版选修2-1

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 逆否命题素材 新人教A版选修2-1

逆否命题原命题为:若a,则b。

逆否命题为:若非b,则非a如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。

命题的否定只否结论。

一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。

原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立.逆命题和否命题为等价命题,如果逆命题成立,否命题成立.名称定义命题:可以判断真假的语句叫做命题。

原命题为:若a,则b逆命题为:若b,则a否命题为:若非a,则非b逆否命题为:若非b,则非a互为逆否命题:如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。

命题的否定只否结论。

性质一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。

原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立.逆命题和否命题为等价命题,如果逆命题成立,否命题成立.逻辑学认为命题与逆否命题是等价的,也就是命题真,则逆否命题也真。

命题同它的逆否命题等价是作为公理存在的,你既不能证明它正确也不能证明它错误。

其实这个东西可以认为是公理。

它和公理“排中律”是等价的。

我们数学的体系就是建立在这些公理之上。

2逆否命题的滥用现实生活中存在许多对逆否逻辑的滥用,使用时须注意以下几点:1、逆否命题、逆命题、否命题概念适用的前提是原命题为复合命题,而非简单命题。

复合命题是由简单命题通过逻辑连接词互相连接而组成的。

简单命题难以区分前提和结论,其真假只能通过生活经验和客观事实加以判断。

例如:“我爱你”。

这个句子不能算作命题。

因为是否“爱”的真假没有一个明确的判断标准。

如果“我爱你”是命题,那么它是一个简单命题。

我们可以把它等价转换为“若p,则q”的形式。

再谈论其逆否命题。

(”我爱你“不具有排他性)等价转换为:若我存在,则至少存在一个爱你的人(或”若我存在,则存在我爱你“)。

逆否命题为:若不存在一个爱你的人,则我不存在(如果所有人都不爱你了,那么我也不存在了)。

高中数学知识点精讲精析 命题及其关系

高中数学知识点精讲精析 命题及其关系

1.1 命题及其关系1.命题的构成――条件和结论定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.2.命题的分类――真命题、假命题的定义.真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.强调:(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。

3.定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.小结:(1)交换原命题的条件和结论,所得的命题就是它的逆命题:(2)同时否定原命题的条件和结论,所得的命题就是它的否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。

4.四种命题的形式原命题:若P,则q.则:逆命题:若q,则P.否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非p)逆否命题:若¬q,则¬P.5.①原命题为真,它的逆命题不一定为真。

高中数学选修1-1公式概念总结

高中数学选修1-1公式概念总结

选修1-1数学公式概念第一章 常用逻辑用语1.1 命题及其关系1.1.1 命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。

其中p 叫做命题的条件,q 叫做命题的结论。

1.1.2 四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。

其中一个命题叫做原命题,另一个叫做原命题的逆命题。

如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。

如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。

如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。

如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。

如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、以上总结概括:1.1.3 四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系: (1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。

原命题 若p ,则q 逆命题 若q ,则p 否命题 若p ⌝,则q ⌝ 逆否命题 若q ⌝,则p ⌝原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假假假假原命题逆命题否命题逆否命题互为 逆 否互为逆 否 互 逆 互否互否若p ⌝,则q ⌝ 若q ⌝,则p ⌝若p ,则q若q ,则p互逆1.2 充要条件与必要条件1.2.1 充分条件与必要条件1、充要条件与必要条件:一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q ⇒,并且说p 是q 的充分条件,q 是p 的必要条件。

1.1 命题及其关系

1.1 命题及其关系

[思路探索] 解答本题应先看是否是陈述句,再严格按命题的定义判断. 解析 ①不是命题,因为它不是陈述句;
②是命题,是假命题,因为负数没有平方根;
③是命题,是假命题,例如- 2+ 2= 0, 0 不是无理数;
④不是命题,因为它不是陈述句;
⑤是命题,是假命题,直线l与平面α可以相交. 答案 ②③⑤ 规律方法 判断一个语句是否是命题的步骤: 第一步:语句格式是否为陈述句,只有陈述句才有可能是 命题,而疑问句、祈使句、感叹句等一般都不是命题. 第二步:该语句能否判断真假,语句叙述的内容是否与客 观实际相符,是否符合已学过的公理、定理,内容应是明 确的,不能模棱两可.
是负数”是假命题,因为当x=0时,-x2=0不是负数.
(3)数学中的公理、定理、公式等都是真命题.
题型一
【例1】 下列语句:
命题的判断
①垂直于同一条直线的两条直线平行吗? ②一个数的算术平方根一定是非负数; ③x,y都是无理数,则x+y是无理数; ④请完成第九题; ⑤若直线l不在平面α内,则直线l与平面α平行.其中是命题的是________.
(1)已知a,b,c,d∈R,若a≠c,b≠d,则a+b≠c+d;
(2)对任意的x∈N,都有x3>x2成立; (3)若m>1,则方程x2-2x+m=0无实数根; (4)存在一个三角形没有外接圆. [思路探索] 根据命题真假的定义判断. 解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2.
(2)假命题.反例:当x=0时,x3>x2不பைடு நூலகம்立. (3)真命题:∵m>1⇒Δ=4-4m<0,∴方程x2-2x+m=0无实数根.
化而变化,有时成立,有时不成立,无法判断其真假,因而它不是命 题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题2: 判断下列命题的真假,你能发现 各命题之间有什么关系?
• ①如果两个三角形全等,那么它们的面积相等; • ②如果两个三角形的面积相等,那么它们全等; • ③如果两个三角形不全等,那么它们的面积不相等; • ④如果两个三角形的面积不相等,那么它们不全等。
数学建构
1.在两个命题中,如果第一个命题的条件(或 题设)是第二个命题的结论,且第一个命题的 结论是第二个命题的条件,那么这两个命题叫 做互逆命题;如果把其中一个命题叫做原命题 ,那么另一个叫做原命题的逆命题.
逆否命题:若ab 0,则a 0”是真命题;
原命题为真,它的否命题不一定为真; 原命题为真,它的逆否命题一定为真.
课堂练习
1、把下列命题改写成“若P则q”的形式: (1)末位是0的整数,可以被5整除;
若一个整数的末位是0,则它可以被5整除。 (2)线段的垂直平分线上的点与这条线段两端点的距离相等;
若一个点在线段的垂直平分线上,则它到这条线段两端 点的距离相等。 (3)对顶角相等。 若两个角是对顶角,则这两个角相等。 (4)到圆心的距离不等于半径的直线不是圆的切线; 若一条直线到圆心的距离不等于半径,则它不是圆的切线。
逆命题:
若X2-3X+2=0, 则X=1或X=2 。
否命题:
若X1且X2, 则X2-3X+2 0。
逆否命题:
若X2-3X+2 0, 则X1且X 2 。
数学应用
例2.写出命题“若a=0,则ab=0”的逆命题、否命题、 逆否命题,并判断各命题的真假。
解 原命题:若a=0,则ab=0是真命题; 逆命题:若ab=0,则a=0是假命题; 否命题:若a 0,则ab 0”是假命题;
(6)3不能被2整除.
我们把能够判断真假的语句叫做命题.
其中判断为真的语句称为真命题,判 断为假的语句称为假命题.
命题(1)(4)(5),具有 “若P, 则q” 的形式
也可写成 “如果P,那么q” 的形式 还可写成 “只要P,就有q” 的形式
通常,我们把这种形式的命题中的P叫做命 题的条件,q叫做结论.
数学建构
关于逆命题、否命题与逆否命题,也可以这样表述
• 交换原命题的条件和结论,所得的命题是逆 命题;
• 同时否定原命题的条件和结论,所得的命题 是否命题;
• 交换原命题的条件和结论,并且同时否定, 所得的命题是逆否命题.
集体探究学习活动二:
1.探求四种命题之间的关系,为什 么存在这种关系?
2.为什么互为逆否关系的两个命题 同真假?
RTX讨论三:
四种命题之间相互关系怎样?
数学建构
四种命题间的相互关系:
原命题 若p则q
互 否
互逆
逆命题 若q则p
互 否
否命题 若非p则非q
互逆
逆否命题 若非q则非p
说明:四种命题的关系相对的
数学应用
例1:分别写出下列各命 题的逆命命题: 如果一个四边
• 你想一想这个时候你的妈妈还会不 会补充说:“你是她的孩子”吗?
问题:怎样才能做到平时说话精炼,少讲废话?
集体探究学习活动一:
命题、逆命题、否命题及逆否命 题定义的理解
RTX讨论一:
举例说明命题是什么?一个 命题的逆命题、否命题及逆否 命题又是什么?
数学建构
问题1:下面的语句的表述形式有什么特点? 你能判断它们的真假吗? (1)若xy=1,则x、y互为倒数 ; (2)相似三角形的周长相等; (3)2+4=5 ; (4)如果b≤-1,那么x2-2bx+b2+b=0方程有实根; (5)若A∪B=B,则 A B
课堂练习
2、填空:
(1)命题“末位是0的整数,可以被5整除”的逆命题 是:若一个整数可以被5整除,则它的末位是0。 (2)命题“线段的垂直平分线上的点与这条线段两端点 的距离相等”的否命题是:
若一个点不在线段的垂直平分线上,则它到这条线段 两端点的距离不相等。
(3)命题“对顶角相等”的逆否命题是: 若两个角不相等,则它们不是对顶角。
记做: p q
指出下列命题中的条件p和结论q: (1)若整数a能被2整除,则a是偶数; (2)若四边形是菱形,则它的对角线互相垂直 且平分.
表面上不是“若P, 则q” 的形式,但可以改变 为“若P, 则q” 形式的命题.
思考 “垂直于同一条直线的两个平面平行”。 可以写成“若P, 则q” 的形式吗?
数学建构
3.在两个命题中,一个命题的条件和结论分 别是另一个命题的结论的否定和条件的否定, 这样的两个命题就叫做互为逆否命题,若把其 中一个命题叫做原命题,则另一个就叫做原命 题的逆否命题.
例如:
逆否命题 是:两直线不平行,同位角不相等。
RTX讨论二:
互逆命题、互否命题、互为逆 否命题分别是对几个命题而言的?
例如: 原命题是:同位角相等,两直线平行。 逆命题就是:两直线平行,同位角相等。
数学建构
2.在两个命题中,一个命题的条件和结论 分别是另一个命题的条件的否定和结论的否 定,这样的两个命题就叫做互否命题,若把 其中一个命题叫做原命题,则另一个就叫做 原命题的否命题.
例如:
否命题是:同位角不相等,两直线不平行。
形是正方形,那么 它的四条边相等。
逆命题:如果一个四边形四边
相等,那么它是正方形。
否命题:如果一个四边形
不是正方形,那么它的四 条边不相等。
逆否命题:如果一个
四边形四边不相等,那 么它不是正方形。
数学应用
例1:分别写出下列各命 题的逆命题、否命题和 逆否命题: (1)正方形的四边相等。
(2)若X=1或X=2,则 X2-3X+2=0。
(4)命题“到圆心的距离不等于半径的直线不是圆的切线” 的逆否命题是:
若一条直线是圆的切线,则它到圆心的距离等于半径。
RTX讨论四:
为什么互为逆否关系的两个 命题同真假?此结论对你解题 有何启示?

……
………………
选修1-1第一章《常用逻辑用语》知识架构
- … 常用逻辑用语 - … 命题及其关系 + … 四种命题 + … 充分条件与必要条件 + … 简单的逻辑联结词 - … 全称量词与存在量词 + … 量词
+ … 含有一个量词的命题的否定

……
高中数学 选修1-1
导入:
• 当某一天你和你的妈妈在街上遇到 老师的时候,你向老师介绍你的妈 妈说:“这是我的妈妈”.
相关文档
最新文档