DEH阀门流量特性曲线校正

DEH阀门流量特性曲线校正
DEH阀门流量特性曲线校正

调节阀的特性及选择

调节阀的特性及选择 调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。 电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。 本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。 1.调节阀工作原理 从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为 ()()212 212 42 P P D P P A Q -=-= ρ ζ πρζ 式中:Q——流体流经阀的流量,m 3 /s ; P1、P2——进口端和出口端的压力,MPa ; A——阀所连接管道的截面面积,m 2 ; D——阀的公称通径,mm ; ρ——流体的密度,kg/m 3 ; ζ——阀的阻力系数。 可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。阀开得越大,ζ将越小,则通过的流量将越大。 2.调节阀的流量特性 调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即 ?? ? ??=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。 一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。因此,流量特性有理想流量特性和工作流量特性之分。 2.1 调节阀的理想流量特性 调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。

阀门实际特性曲线与理想特性曲线的对比分析

阀门实际特性曲线与理想特性曲线的对比分析 组长:万昌正 组员:潘强广马华培王昱威张藤张鹏飞 实验目的 1.了解实验装置的结构,使用流程和使用方法 2.了解三种常用的阀门固有流量特性曲线:线性、快开、等百分比。并与 工作状态下实际流量特性曲线进行对比。 3.根据阀门对应的流量特性,对阀门进行优化筛选。 实验背景意义 众所周知,调节阀是自动控制中直接与流体相接触的执行器。对热工对象来说,其控制流体(往往是水)的流量和压力,关系着生产过程、空气调节等自动化的技术目标的实现。 随着生产技术的发展,调节阀的结构型式越来越多,调节阀结构型式的选择主要是根据工艺参数(温度、压力、流量)、介质性质(粘度、腐蚀性、毒性、杂质状况)以及调节系统的要求(可调节比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座阀和套筒阀。因为此类调节阀结构简单,阀芯形状易于加工,比较经济;或根据具体的特殊要求选择相应结构形式的调节阀。结构型确定以后,调节阀的具体规格关系到阀的流量特性是否与系统特性相匹配,关系到系统是否稳定性高、经济性好。因此正确选取调节阀的结构形式、流量特性和产品规格,对于自控系统的稳定性、经济合理性有着十分重要的作用。 实验任务分解 对实验内容的分析总结后,我组成员对实验任务进行了细化分解,将实验项目拆分成几个小的实验内容单元,具体任务可见下图。 表一:任务分解 实验原理 阀门的流量特性曲线:根据阀门两端的压降,阀门流量特性分固有流量特性和工作流量特性。固有流量特性是阀门两端压降恒定时的流量特性,亦称为理想流量特性。工作流量特性是在工作状态下(压降变化)阀门的流量特性,阀门出

阀门流量计算方法介绍

阀门流量计算方法 如何使用流量系数 How to use Cv 阀门流量系数(Cv)是表示阀门通过流体能力的数值。Cv越大,在给定压降下阀门能够通过的流体就越多。Cv值1表示当通过压降为1 PSI时,阀门每分钟流过1加仑15o C的水。Cv值350表示当通过压降为1 PSI时,阀门每分钟流过350加仑15o C的水。 Valve coefficient (Cv) is a number which represents a valve's ability to pass flow. The bigger the Cv, the more flow a valve can pass with a given pressure drop. A Cv of 1 means a valve will pass 1 gallon per minute (gpm) of 60o F water with a pressure drop (dp) of 1 PSI across the valve. A Cv of 350 means a valve will pass 350 gpm of 60o F water with a dp of 1 PSI. 公式1 FORMULA 1 流速:磅/小时(蒸汽或水) FLOW RATE LBS/HR (Steam or Water) 在此: Where:

dp = 压降,单位:PSI dp = pressure drop in PSI F = 流速,单位:磅/小时 F = flow rate in lbs./hr. = 比容积的平方根,单位:立方英尺/磅 (阀门下游) = square root of a specific volume in ft3/lb. (downstream of valve) 公式2 FORMULA 2 流速:加伦/分钟(水或其它液体) FLOW RATE GPM (Water or other liquids) 在此: Where: dp = 压降,单位:PSI dp = pressure drop in PSI Sg = 比重 Sg = specific gravity Q = 流速,单位:加伦/分钟 Q = flow rate in GPM 局限性 LIMITATIONS 上列公式在下列条件下无效: Above formulas are not valid under the following conditions: a.对于可压缩性流体,如果压降超过进口压力的一半。 For compressible fluids, where pressure drop exceeds half the inlet pressure.

各种流量调节阀工作原理及正确选型

暖通知识 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器臵于要求控温的房间,阀体臵于供暖系统上的

某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设臵温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10 mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一KV值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提高温控阀的调节性能。 二、电动调节阀 电动调节阀是适用于计算机监控系统中进行流量调节的设备。一般多在无人值守的热力站中采用。电动调节阀由阀体、驱动机构和变送器组成。温控阀是通过感温包进行自力式流量调节的设备,不需要外接电源;而电动调节阀一般需要单相220V电源,通常作为计算机监控系统的执行机构(调节流量)。电动调节阀或温控阀都是供热系统中流量调节的最主要的设备,其它都是其辅助设备。 三、平衡阀 平衡阀分手动平衡阀和自力式平衡阀。无论手动平衡阀还是自力式平衡阀,它们的作用都是使供热系统的近端增加阻力,

流量与阀门开度的关系

阀门的流量特性 不同的流量特性会有不同的阀门开度; ①快开流量特性,起初变化大,后面比较平缓; ②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到 50%,阀门的流量也达到50%; ③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。 阀门开度与流量、压力的关系,没有确定的计算公式。它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。 调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系 :Q/Qmax=f(L/Lmax) 调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系: Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。 调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。 阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin, 则直线流量特性的流量与开度的关系为: Q/Qmax=(1/R)[1+(R-1)L/Lmax] 开度一半时,Q/Qmax=51.7% 等百分比流量特性:Q/Qmax=R^(L/Lmax-1) 开度一半时,Q/Qmax=18.3% 快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)

开度一半时,Q/Qmax=75.8% 流量特性主要有直线、等百分比(对数)、抛物线及快开四种 ①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。 ②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。 ③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。 ④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。 隔膜阀的流量特性接近快开特性, 蝶阀的流量特性接近等百分比特性, 闸阀的流量特性为直线特性, 球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。

汽轮机阀门流量特性对电力系统的影响及其控制分析

汽轮机阀门流量特性对电力系统的影响及其控制分析 作者:焦敬东 来源:《科技创新导报》2012年第27期 摘要:对于整个电力系统产生稳定性因素的就是汽轮机阀门流量的特性,通过电网的建立以及相关的机械设备系统的模型,可以了解和研究关于汽轮机阀门流量特性对电力系统的影响。通过详细的数学分析和研究发现,汽轮机阀门流量特性不稳定的时候,将会导致原动机周期的波动。对于这种情况,要及时的调整并制定出新的汽轮机系统控制策略,新指定的策略必须要对于微分的控制器的进行合理的调节,这样对于系统的阻力有大幅度的增加。 关键词:汽轮机阀门流量特性调速系统控制策略 中图分类号:TK26 文献标识码:A 文章编号:1674-098X(2012)09(c)-0076-01 在当今发电厂里大多采用DEH系统对汽轮机进行控制,擅长管理和控制各种汽阀门是DEH系统中最优质的用途,在DEH系统中必须将指令由流量转化为阀门的开度,所以流量和阀门的开度有着相当密切的关系,也就是阀门流量的特性曲线。若汽轮机阀门实际流量和原来流量特性曲线并没达到一致时,就会出现大的控制偏差。将会对整个机组的安全及变负荷的能力产生一定的影响,最为严重的是使系统发生强烈的振荡,发生这样的现象对于正在高速运转的汽轮机来说是很不安全的。而事实上,因为制作安装的工艺都不一致、阀门长期的磨损,甚至是阀门设计行程和实际行程不一样,这些原因都可以使阀门流量和原来流量的特性曲线不一样,这就要去对阀门流量的特性曲线进行调整,使得汽轮机运行自身的稳定性和经济性有一定的提高和发展。 1汽轮机阀门流量特性的分析 汽轮机流通部分根据经济功率而设计的,机组用喷嘴配汽的方式进行顺阀的运行,汽轮机第一级为调节级,调节级为喷嘴组,当蒸汽经过主汽门以后才可以开启汽门慢慢的通向调节级。所以说,嘴配汽的特点就是部分负荷的时候自身的经济性能比较好较好。因为各个喷嘴之间都会存在一定的间壁,各个调节的汽门已开还是会有一部分进汽,即使在最大的功率下进行调节级还是会损失。假设调节级为四个喷嘴组,将一、二调节汽门打开。 当P0新的蒸汽经过主汽门以及全开门以后,压力就会由降为P0压力变为P2。当第Ⅰ、Ⅱ两组喷嘴与理比焓降相一致的时也就是ΔhtⅠ=ΔhtⅡ时,动叶比焓ht经过的部分是第Ⅲ调节的汽门它的蒸汽流相对比较大,当第Ⅲ喷嘴组的压力为P0时焓降变为ΔhtⅡ。因为调节级后的空间为通的,级后的压力P2一致,所以两股不同的汽流同样膨胀为P2,经过调节级的汽室中经过混合进入第一压力级。当两股气流混合后产生的比焓。

最新调节阀流量系数计算公式和选择数据

1、流量系数计算公式 表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。 C-工程单位制(MKS制)的流量系数,在国内长期使用。其定义为:温度5-40℃的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。 Cv-英制单位的流量系数,其定义为:温度60℃F(15.6℃)的水,在IIb/in(7kpa)压降下,每分钟流过调节阀的美加仑数。 Kv-国际单位制(SI制)的流量系数,其定义为:温度5-40℃的水,在10Pa(0.1MPa)压降下,1小时流过调节阀的立方米数。 注:C、Cv、Kv之间的关系为Cv=1.17Kv,Kv=1.01C 国内调流量系数将由C系列变为Kv系列。 (1)Kv值计算公式(选自《调节阀口径计算指南》) ①不可压缩流体(液体)(表1-1) Kv值计算公式与判别式(液体) 低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用

雷诺数修正系数修正,修正后的流量系数为: 在求得雷诺数Rev值后可查曲线图得FR值。 计算调节阀雷诺数Rev公式如下: 对于只有一个流路的调节阀,如单座阀、 套筒阀,球阀等: 对于有五个平行流路调节阀,如双座阀、 蝶阀、偏心施转阀等 文字符号说明: P1--阀入口取压点测得的绝对压力,MPa; P2--阀出口取压点测得的绝对压力,MPa; △P--阀入口和出口间的压差,即(P1-P2),MPa; Pv--阀入口温度饱和蒸汽压(绝压),MPa;

Pc--热力学临界压力(绝压),MPa; F F--液体临界压力比系 数, F R--雷诺数系数,根据ReV值可计算出;F L--液体压力恢复系数 QL--液体体积流量,m3/h P L--液体密度,Kg/cm3 ν--运动粘度,10-5m2/s W L--液体质量流量,kg/h, ②可压缩流体(气体、蒸汽)(表1-2) Kv值计算公式与判别式(气体、蒸气)表1-2 文字符号说明: X-压差与入口绝对压力之比(△P/P1);X T-压差比系数; K-比热比;Qg-体积流量,Nm3/h Wg-质量流量,Kg/h;P1-密度(P1,T1条件), Kg/m3

阀门流量系数Cv值

阀门流量系数Cv 值 阀门流量系数Cv 值字体大小:大| 中| 小2014-08-03 12:53 阅读(839) 评论(0) 分类:流量系数即:C 值(欧美 标准称为Cv 值,国际标准称为:KV 值)是阀门、调节阀等值是保障管道流量控制系统正常工作的重要步骤。是指单位时间内、在测试条件中管道保持恒定的压力,管道介质流经阀门的体积流量,或是质量流量。即阀门的最大流通能力。 工业阀门的重要工艺参数和技术指标。正确计算和选择CV 流量系数值越大说明流体流过阀门时的压力损失越小。阀门的CV 值须通过测试和计算确定。阀门是流量系数是衡量阀门流通能力的指标,流量系数值越大说流体流过阀门时的压 力损失越小.上海申弘阀门有限公司主营阀门有:减压阀(气体减压阀,可调式减压阀,波纹管减压阀,活塞式减压阀,蒸汽 减压阀,先导式减压阀,空气减压阀,氮气减压阀,水用减压阀, 自力式减压阀,比例减压阀)、安全阀、保温阀、低温阀、球 阀、截止阀、闸阀、止回阀、蝶阀、过滤器、放料阀、隔膜阀、旋塞阀、柱塞阀、平衡阀、调节阀、疏水阀、管夹阀、排污阀、排气阀、排泥阀、气动阀门、电动阀门、高压阀门、中压阀门、低压阀门、水力控制阀、真空阀门、衬胶阀门、衬氟阀门。阀门系数的定义:流量系数表示流体流经阀门产生单位压力损失时流体的流量,由于单位的不同,流量系数

有几种不同的代号和量值.一般式C=QVp/PC---流量系数 Q---体积流量p---流体密度P---阀门压力损失概述:流量特性是调节阀的一种重要技术指标和参数。在调节阀应用过程中做出正确的选型具有 非常重要的意义。固有特性(流量特 性):在经过阀门的压力降恒定时,随着截流元件(阀板)从关 闭位置运动到额定行程的过程中流量系数与截流元件(阀板) 行程之间的关系。典型地,这些特性可以绘制在曲线图上, 其水平轴用百分比行程表示,而垂直轴用百分比流量(或Cv 值)表示。由于阀门流量是阀门行程和通过阀门的压力降的函数,在恒定的压力降下进行流量特性测试提供了一种比较阀门特性类型的系统方法。用这种方法测得的典型的阀门特性 有线性、等百分比和快开(图2)。等百分比特性:一种固有流 量特性,额定行程的等量增加会理想地产生流量系数(Cv)的等百分比的改变(图2)。线性特性:一种固有流量特性,可以用一条直线在流量系数(Cv 值)相对于额定行程的长方形 图上表示出来。因此,行程的等量增加提供流量系数(Cv)的 等量增加。图2 快开特性:一种固有流量特性:在截流元件 很小的行程下可以获得很大的流量系数(图2)。额定流量下的 压力降:也是表示气动元件的流量特性之一。气动元件常常在额定流量下工作,故测定额定流量下气动元件上下游的压力降,作为该元件的流量特性指标。显然,此指标也只反映不可压缩流态下的浏览特性。阀门流量系数流量系数

【良心出品】各种阀门的特性

导读: 阀门的选型在化工管路设计中占有重要的地位,科学、合理地选择阀门既能保证生产安全运行,又能降低装置的建设费用。在化工设计中常用阀门的品种多、功能不同,为管路系统选择合适的阀门须了解常用阀门的特点、用途。 阀门是压力管道系统的重要组成部分,其主要功能是: 接通和截断介质; 防止介质倒流; 调节压力、流量;分离、混合或分配介质; 防止介质压力超过规定数值,以保证管道或设备安全运行等。只有了解常用阀门的特点及用途,才能在设计中给管道系统选定最适合的阀门。 常用阀门的特点、用途 工程上阀门种类很多,由于流体的压力、温度和物理化学性能的不同,所以对流体系统的控制要求也不相同,其中闸阀、截止阀、止回阀、旋塞阀、球阀、蝶阀和隔膜阀在化工装置中应用最广泛。 闸阀 闸阀是化工生产装置中用得最多的一种类型,流体流经闸阀时不改变流向,当闸阀全开时阻力系数小,适用的口径围、压力温度范围都很宽。与同口径的截止阀相比,其安装尺寸较小。在一般情况下,设计中首选闸阀。

闸阀的缺点: 高度大; 启闭时间长; 在启闭过程中,密封面容易被冲蚀; 修理比截止阀困难; 不适用于含悬浮物和析出结晶的介质; 也难于用非金属耐腐蚀材料来制造。 当闸阀部分开启时,介质会在闸板背面产生涡流,易引起闸板的冲蚀和振动,阀座的密封面也容易损坏,因此闸阀不适用于需要调节流量的场合,只适用于全开或全闭的情况,即一般用于控制流体的启闭。 闸阀按阀杆上螺纹位置分明杆式和暗杆式,明杆式闸阀适用于腐蚀介质,在化工工程上基本使用明杆式闸阀。暗杆闸阀主要用于水道上,多用于低压、无腐蚀性介质的场合,如一些铸铁和铜阀门。按闸板的结构形式分楔式闸板、平行式闸板。楔式闸板有单闸板,双闸板之分。 平行式闸板多用于油气输送系统,在化工装置中不常用。 闸阀的应用: 适用于蒸汽、高温油品及油气等介质及开关频繁的部位,不宜用于易结焦的介质。楔式单闸板闸阀适用于易结焦的高温介质。楔式双闸板闸阀适用于蒸汽、油品和对密封面磨损较大的介质,或开关频繁部位,不宜用于易结焦的介质。 截止阀 截止阀是化工装置广泛应用的阀型。一般多装在泵出口、调节阀旁路流量计上游等需调节流量之处。

水泵特性曲线的关系

主要是由三条特性曲线组成,分别是: H-qv曲线,表示泵的扬程与流量关系。曲线,表示泵的轴功率与流量的关系。 ηqv曲线,表示泵的效率与流量的关系。 扬程随流量的增加而减少,轴功率随流量的增加而增加; 流量为零时,效率为零; 流量增加,效率增加,但当流量增大到某一标准值时,流量在增大,效率反而下降 1、特性曲线主要是用于选泵使用,不同曲线会极大影响泵的效率,泵并联运行也需要性能曲线,合理配备水泵的台数。 2、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。 3、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 4、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过 度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。还有的调节方式就是增加变频装置,很好 用的。 5、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。 6、合理,主要就是检修,否则可以不用阀门。 7、这个问题的条件不充分,如果选用的是同一台水泵,同样的电机功率,外网不变的情况下,那么压力不会变化,轴功率会增加。 &问题的本身就是错误的,有效压头并不一定随着流量的增加而下降,这与叶轮安装角有 关,还有可能增加。但就通常使用的泵而言这个问题也是有问题的,扬程随着流量的增加可 以大幅度降低的,这与泵的种类,也就是泵的性能曲线有关。 离心泵的特性曲线是将由实验测定的Q、H、N、η等数据标绘而成的一组曲线。此图由泵 的制造厂家提供,供使用部门选泵和操作时参考。

流量调节阀的工作原理以及选型

流量调节阀的工作原理以及选型 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器置于要求控温的房间,阀阀体置于供暖系统上的某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设置温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一K V值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提

调节阀流通能力与流量特性

调节阀流通能力与流量特性 调节阀用于调节介质的流量、压力和液位。根据调节部位信号,自动控制阀门的开度,从而达到介质流量、压力和液位的调节。调节阀分电动调节阀、气动调节阀和液动调节阀等。 调节阀由电动执行机构或气动执行机构和调节阀两部分组成。调节阀通常分为直通单座式调节阀和直通双座式调节阀两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。 流通能力C V是选择调节阀的主要参数之一,调节阀的流通能力的定义为:当调节阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调节阀的流量数,称为流通能力,也称流量系数,以C V表示,单位为t/h,液体的C V值按下式计算。 根据流通能力C V值大小查表,就可以确定调节阀的公称通径DN。 调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调节阀的相对流量与它的开度之间关系。调节阀的流量特性有线性特性,等百分比特性及抛物线特性三种。三种注量特性的意义如下: (1) 等百分比特性(对数)等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调节精度。 (2) 线性特性(线性)线性特性的相对行程和相对流量成直线关系。单位行程的变化所引起的流量变化是不变的。流量大时,流量相对值变化小,流量小时,则流量相对值变化大。 (3) 抛物线特性流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。 从上述三种特性的分析可以看出,就其调节性能上讲,以等百分比特性为最优,其调节稳定,调节性能好。而抛物线特性又比线性特性的调节性能好,可根据使用场合的要求不同,挑选其中任何一种流量特性。

流量与阀门开度的关系

阀门得流量特性 不同得流量特性会有不同得阀门开度; ①快开流量特性,起初变化大,后面比较平缓; ②线性流量特性,就是阀门得开度跟流量成正比,也就就是说阀门开度达到50%, 阀门得流量也达到50%; ③等百流量特性,跟快开式得相反,就是起初变化小,后面比较大。 阀门开度与流量、压力得关系,没有确定得计算公式。它们得关系只能用笼统得函数式表示,具体得要查特定得试验曲线. 调节阀得相对流量Q/Qmax与相对开度L/Lmax得关系 :Q/Qmax=f(L/Lmax) 调节阀得相对流量Q/Qmax与相对开度L/Lmax、阀上压差得关系: Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。 调节阀自身所具有得固有得流量特性取决于阀芯形状,其中最简单就是直线流量特性:调节阀得相对流量与相对开度成直线关系,即单行程变化所引起得流量变化就是一个常数。阀能控制得最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin,则直线流量特性得流量与开度得关系为: Q/Qmax=(1/R)[1+(R-1)L/Lmax] 开度一半时,Q/Qmax=51、7% 等百分比流量特性:Q/Qmax=R^(L/Lmax—1) 开度一半时,Q/Qmax=18、3% 快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2) 开度一半时,Q/Qmax=75、8% 流量特性主要有直线、等百分比(对数)、抛物线及快开四种

①直线特性就是指阀门得相对流量与相对开度成直线关系,即单位开度变化引起得流量变化时常数。 ②对数特性就是指单位开度变化引起相对流量变化与该点得相对流量成正比,即调节阀得放大系数就是变化得,它随相对流量得增大而增大. ③抛物线特性就是指单位相对开度得变化所引起得相对流量变化与此点得相对流量值得平方根成正比关系。 ④快开流量特性就是指在开度较小时就有较大得流量,随开度得增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性. 隔膜阀得流量特性接近快开特性, 蝶阀得流量特性接近等百分比特性, 闸阀得流量特性为直线特性, 球阀得流量特性在启闭阶段为直线,在中间开度得时候为等百分比特性. 指数运算: X^y=exp(y*㏑(x)) 主要有快开、等百分比及线性三种型式。球阀与蝶阀在一般情况下不做调节之用,如做调节用,也就是在开度很小得情况下才起到调节作用,一般可以归为快开型,而真正作为调节用得大部分基本上就是截止阀,把阀头加工成如抛物线形锥形、球形等都会用不同得曲线特性,一般来说作为调节,基本上百分比得特性用得比较多.

实验二-电动调节阀的流量特性测试实验

实验二 电动调节阀的流量特性测试实验 任何一个最简单的控制系统也必须由检测环节、调节单元及执行单元组成。执行单元的作用就是根据调节器的输出,直接控制被控变量所对应的某些物理量,例如液位、温度、压力和流量等参数,从而实现对被控对象的控制目的。因此,完全可以说执行单元是用来代替人的操作的,是工业自动化的“手脚”。电动调节阀是本实验装置的执行单元之一。 一. 电动调节阀工作原理 执行器按照使用能源的种类,可分为气动、液动和电动三种,本装置采用的是智能型单座调节阀。顾名思义它是由电动执行器进行操作的,它接受调节器的输出电流4~20mA 信号,并转换为相应的输出轴直线位移,去控制调节机构以实现自动调节。电动调节器的优点则是能源采用方便,信号传输速度快,传输距离远等。 执行器由执行机构和调节机构两部分组成。执行机构是执行器的推动装置,它可以按照调节器的输出信号量,产生相应的推力,以带动智能调节阀的主推动轴产生直线位移,主推动杆总位移为16mm ,控制单座调节阀0~100%的开度连续变化。而调节机构(调节阀)是执行器的调节装置,它受执行机构的操纵,可以改变调节阀阀芯与阀座间的流通面积,以达到最终调节被控介质的目的。 本执行器的结构如图1所示,电动执行器首先接受来自调节器的输出信号,以作为执行器的输入信号即执行器的动作依据;该输入信号送入信号转换单元,转换信号制式后与反馈的执行机构位置信号进行比较,其差值作为执行机构的输入,以确定执行机构的作用方向和大小;执行机构的输出结果再控制调节器的动作,以实现对被控介质的调节作用;其中执行机构的输出通过位置发生器可以产生其反馈控制所需要的位置信号。 图1 电动执行器的工作原理 从上述描述和图1可知,电动调节阀执行机构的动作构成了负反馈控制回路,这是提高执行器调节精度、保证执行器工作稳定的重要手段。为保证电动执行器输出与输入之间呈现严格的比例关系,必须采用比例负反馈构成闭环控制回路,图2为本套装置的电动执行器的工作原理示意图: 图2 电动执行器原理图 其中I i 表示输入电流,θ表示输出轴转角,两者存在如下关系: i I K ?=θ (1) K 是比例系数。图2中伺服放大器由前置磁放大器、可控硅触发电路和可控硅交流开关组成,如图3

控制阀流量特性解析

控制阀流量特性解析 控制阀的流量特性是控制阀重要技术指标之一,流量特性的偏差大小直接影响自动控制系统的稳定性。使用单位希望所选用的控制阀具有标准的固有流量特性,而控制阀生产企业要想制造出完全符合标准的固有流量特性控制阀是非常困难的,因直线流量特性相对简单,且应用较少,所以本文重点对等百分比流量特性进行讨论。 控制阀的流量特性是指介质流过阀门的相对流量与相对行程之间的关系,数学表达式为Q/Qmax = f(l/L), 式中:Q/Qmax—相对流量。指控制阀在某一开度时的流量Q与全开流量Qmax之比; l/L—相对行程。指控制阀在某一开度时的阀芯行程l与全开行程L之比 一般来讲,改变控制阀的流通面积便可以控制流量。但实际上由于多种因素的影响,在节流面积发生变化的同时,还会产生阀前、阀后压力的变化,而压差的变化又将引起流量的变化,为了便于分析,先假定阀前、阀后压差不变,此时的流量特性称为理想流量特性。 理想流量特性主要有等百分比(也称对数)、直线两种常用特性,理想等百分比流量特性定义为:相对行程的等值增量产生相对流量系数的等百分比增加的流量特性,数学表达式为Q/Qmax = R(l/L-1)。

理想直线流量特性定义为:相对行程的等值增量产生相对流量系数的等值增量的流量特性,数学表达式为 Q/Qmax=1/R[1+(R-1)l/L] 式中R—固有可调比,定义为在规定偏差内的最大流量系数与最小流量系数之比。 常见的控制阀固有可调比有30、50两种。 当可调比R=30和R=50时,直线、等百分比的流量特性在相对行程10%~100%时各流量值见表一 表一 由上表可以看出,直线流量特性在小开度时,流量相对变化大,调节作用强,容易产生超调,可引起震荡,在大开度时调节作用弱,及时性差。而等百分比流量特性小开度时流量小,流量变化也小,在大开度时流量大,流量变化也大,调节作用灵敏有效。由于上述原因,在实际工况中多数场合优选等百分比流量特性。

各种流量调节阀的工作原理及正确选型解读

各种流量调节阀的工作原理及正确选型 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器置于要求控温的房间,阀体置于供暖系统上的某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设置温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在

调节阀的流量特性、流量调节及调节范围问题解析

当前,调节阀被广泛的应用于电站行业,尤其是在锅炉系统中更为常见。例如:锅炉旁路系统、主给水系统、减温水系统等。并且调节阀性能的好坏直接影响着整个系统的运转,因此,合理的设计及选取调节阀对于整个系统的安全性、稳定性、经济性和可靠性有着十分重要的作用。随着电站行业的迅速发展,对调节阀的要求也越来越高,调节阀往往要在一个较大的流量范围内高度精确地调节或控制流体的流动,并且能根据阀杆的规定运动方式预计流量。因此,流量调节、调节范围及调节特性是设计及选取调节阀时所必须考虑的因素。 一、流量特性 调节阀的流量特性是指介质流过调节阀的流量与阀瓣升程值之间的关系。通常用流量与阀杆位置或升程的关系曲线表示。在实际工况中,由于多种因素的影响,通过阀门的流量可能随压降而变化。为了便于分析,我们先假定阀门的压降不变,然后再引申到真实情况进行分析,前者称为阀门固有流量特性,后者称为阀门工作流量特性。 1、固有流量特性 我们经常用到的固有流量特性主要有直线、等百分比(对数)、抛物线及快开特性。图3为这4种流量特性的关系曲线图,图4为不同流量特性的阀瓣形状。 图3 理想的固有流量特性 图4 不同流量特性的阀瓣形状

直线流量特性是指调节阀的相对流量与阀杆相对位移成直线关系,即单位位移变化所引起的流量变化是常数。具有此特性的阀门在开度小时流量相对变化大,灵敏度高,不易控制,甚至发生振荡;而在开度大时,流量相对变化值小,调节缓慢,不够及时。 等百分比流量特性也称为对数流量特性,它是指阀杆单位相对位移变化所引起的相对流量变化与此点的相对流量成正比关系。在小开度时,调节平稳缓和;在大开度时,调节灵敏有效,从图3可看出,等百分比特性在直线特性下方,因此,在同一位移时,直线阀通过的流量要比等百分比大。 抛物线流量特性是指阀杆单位位移的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系,它介于直线特性与等百分比特性之间,相对来说此特性应用较少。 快开特性在开度较小时就有较大的流量,随开度的增大,流量很快达到最大;此后再增加开度,流量变化很小。它的阀瓣形式是平板型的,如图4所示,它的有效位移一般为阀座直径的1/4,当位移在增大时,阀的流通面积不变,失去调节作用。 为特定功用选择阀门的一个主要问题是挑选适合于工况的特性。理论上,每一种情况都应做透彻的分析,并相应地挑选阀门调节元件。但是这样既费时、代价又高。对于无需精密调节的场合,可根据经验按表1选择。 表1 阀门特性的典型用途 2、工作流量特性 在实际生产过程中,阀门的压差总是变化的,这时流量特性称为工作流量特性,为了描述这一特性我们引进了压降比k(压降比被定义为通过阀门的压降除以总的系统动压降)。工作流量特性就是在恒定压降比下,流量与阀杆升程之间的关系。图5和图6为直线特性和等百分比特性的工作流量特性,从图可以看出当K 值越小时,工作流量特性与固有流量特性偏差越大,因此在设计系统时应把系统压降尽可能大的部分分配给调节阀。

调节阀的特点及流量特性

调节阀的特点及流量特性 调节阀(controlvalve)用于调节介质的流量、压力和液位。根据调节部位信号,自动控制阀门的开度,从而达到介质流量、压力和液位的调节。调节阀分电动调节阀、气动调节阀和液动调节阀等。 调节阀由电动执行机构或气动执行机构和调节阀两部分组成。调节并通常分为直通单座式和直通双座式两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。 流通能力Cv是选择调节阀的主要参数之一,调节阀的流通能力的定义为:当调节阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调节阀的流量数,称为流通能力,也称流量系数,以Cv表示,单位为t/h,液体的Cv值按下式计算。 根据流通能力Cv值大小查表,就可以确定调节阀的公称通径DN。 调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调节阀的相对流量与它的开度之间关系。调节阀的流量特性有线性特性,等百分比特性及抛物线特性三种。三种注量特性的意义如下: (1)等百分比特性(对数) 等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调节精度。 (2)线性特性(线性) 线性特性的相对行程和相对流量成直线关系。单位行程的变化所引起的流量变化是不变的。流量大时,流量相对值变化小,流量小时,则流量相对值变化大。 (3)抛物线特性 流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。 从上述三种特性的分析可以看出,就其调节性能上讲,以等百分比特性为最优,其调节稳定,调节性能好。而抛物线特性又比线性特性的调节性能好,可根据使用场合的要求不同,挑选其中任何一种流量特性。

调节阀选型计算

?调节阀计算与选型指导(一) ?2010-12-09 来源:互联网作者:未知点击数:588 ?热门关键词:行业资讯 【全球调节阀网】 人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。自动控制系统一切先进的控制理论、巧秒的控制思想、复杂的控制策略都是通过执行器对被控对象进行作用的。调节阀是生产过程自动化控制系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制。控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节。 正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征。选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。 二、调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒调节阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座调节阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座调节阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀内部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适用于压差大要求工作平稳、噪音低的场合。 (4)角形阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节范围宽,流通能力大,稳定性好的场合。 (6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。 (7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节范围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。 (8)隔膜调节阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。 (9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近似等百分比,适用于大口径、大流量含悬浮颗粒的流体控制。

相关文档
最新文档