2019届中考数学总复习:分式与二次根式
2019年全国中考数学试卷分类汇编:分式与分式方程【含解析】

数学精品复习资料分式与分式方程一、选择题1. (2014•四川巴中,第4题3分)要使式子有意义,则m 的取值范围是( ) A .m >﹣1B . m ≥﹣1C . m >﹣1且m ≠1D . m ≥﹣1且m ≠1考点:二次根式及分式的意义.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 解答:根据题意得:,解得:m ≥﹣1且m ≠1.故选D .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 2. (2014•山东潍坊,第5题3分)若代数式2)3(1-+x x 有意义,则实数x 的取值范围是( ) A.x ≥一1 B .x ≥一1且x ≠3 C .x >-l D .x >-1且x ≠3 考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.解答:根据题意得:⎩⎨⎧≠-≥+0301x x 解得x ≥-1且x ≠3.故选B .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 3.(2014山东济南,第7题,3分)化简211mm m m -÷- 的结果是 A .m B .m 1 C .1-m D .11-m 【解析】m m m m m m m m m =-⨯-=-÷-111122,故选 A .4. (2014•浙江杭州,第7题,3分)若(+)•w=1,则w=( )W==0÷(﹣÷•,==C==由题意得,=.分)分式)))【分析】二、填空题1. (2014•上海,第8题4分)函数y=的定义域是x≠1.2. (2014•四川巴中,第12题3分)若分式方程﹣=2有增根,则这个增根是.考点:分式方程的增根.分析:分式方程变形后,去分母转化为整式方程,根据分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程即可求出m的值.解答:根据分式方程有增根,得到x﹣1=0,即x=1,则方程的增根为x=1.故答案为:x=1 点评:此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.3. (2014•山东烟台,第14题3分)在函数中,自变量x的取值范围是.考点:二次根式及分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.(2014•湖南怀化,第12题,3分)分式方程=的解为x=1.5. (2014山东济南,第19题,3分)若代数式21-x 和123+x 的值相等,则=x . 【解析】解方程12321+=-x x ,的7=x ,应填7. 6.(2014•遵义13.(4分))计算:+的结果是 ﹣1 .==.7. (2014•年山东东营,第15题4分)如果实数x ,y 满足方程组,那么代数式(+2)÷的值为 1 .考点: 分式的化简求值;解二元一次方程组. 专题: 计算题.分析: 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x 与y 的值,代入计算即可求出值. 解答: 解:原式=•(x+y )=xy+2x+2y ,方程组,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1. 故答案为:1点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8. (2014•江苏盐城,第13题3分)化简:﹣= 1 .9.(2014•四川宜宾,第10题,3分)分式方程﹣=1的解是x=﹣1.5 .10.(2014•四川南充,第11题,3分)分式方程=0的解是.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x+1+2=0,解得:x=﹣3经检验x=﹣3是分式方程的解.故答案为:x=﹣3点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.(2014•四川凉山州,第25题,5分)关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1 .解:=12.(2014•四川内江,第22题,6分)已知+=3,则代数式的值为﹣.=3+13.(2014•甘肃白银、临夏,第12题4分)化简:=.+﹣14.(2014•广州,第13题3分)代数式有意义时,应满足的条件为______.【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即,则【答案】三、解答题1. (2014•上海,第20题10分)解方程:﹣=.2. (2014•四川巴中,第23题5分)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.考点:分式的化简,一元二次的解法,分式的意义.分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.解答:原式=÷=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.点评:本题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法.在代入求值时,要使分式的值有意义.3. (2014•山东威海,第21题9分)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子由题意得,+=260则买甲粽子为:个,乙粽子为:4. (2014•山东枣庄,第19题4分)(2)化简:(﹣)÷.•(. 5. (2014•山东烟台,第19题6分)先化简,再求值:÷(x ﹣),其中x 为数据0,﹣1,﹣3,1,2的极差.考点:分式的化简,极差.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出数据的极差确定出x ,代入计算即可求出值. 解答:原式=÷=•=,当x =2﹣(﹣3)=5时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.6. (2014•山东烟台,第23题8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A 型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多? A ,B考点:分式方程的应用,一次函数的应用.分析: (1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A 行车a 辆,则B 型车(60﹣x )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值. 解答:(1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由题意,得,解得:x =1600.经检验,x =1600是元方程的根.答:今年A 型车每辆售价1600元;(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.点评:本题考查了列分式方程解实际问题的运,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.7.(2014•湖南张家界,第18题,6分)先化简,再求值:(1﹣)+,其中a=.÷•,时,原式.8.(2014•湖南张家界,第22题,8分)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?×,9. (2014•江西抚州,第16题,5分)先化简:34211x xxx x---÷--(),再任选一个你喜欢的数x代入求值.解析:原式=x x x xx x x⎛⎫----⎪---⎝⎭2341112=x x xx x-+-⋅--244112=()xx--222=x-2取x=10代入,原式=8(注:x不能取1和2)10.(2014•山东聊城,第18题,7分)解分式方程:+=﹣1.11. (2014年贵州黔东南18.(8分))先化简,再求值:÷﹣,其中x=﹣4.考点:分式的化简求值.专题:计算题.分析:原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•﹣=﹣=,当x=﹣4时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.(2014•十堰17.(6分))化简:(x2﹣2x)÷.•完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?+=114.(2014•娄底21.(8分))先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.=÷=•=15.(2014•娄底24.(8分))娄底到长沙的距离约为180km ,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答) (2)当小刘出发时,求小张离长沙还有多远? ﹣=116. (2014年湖北咸宁17.(8分))(1)计算:(﹣2)2+4×2﹣1﹣|﹣8|; (2)化简:﹣.考点: 实数的运算;分式的加减法;负整数指数幂.分析: (1)本题涉及负整指数幂、乘方、绝对值化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据分式的性质,可化成同分母的分式,根据分式的加减,可得答案. 解答: 解:(1)原式=4+2﹣8=﹣2;(2)原式=.点评: 本题考查了实数的运算,本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.17. ( ( 2014年河南) 16.8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x -1解:原式=()()()2x 1x 12x x 1x x 1x+-++÷-…………………4分 =()2x 1xx x 1++ =1x 1+…………………………………………………………………6分当x -1时,原式=2……………………………8分18.(2014•江苏苏州,第21题5分)先化简,再求值:,其中.统一为乘法运算,注意化简后,将解:÷()÷×,=19.(2014•江苏苏州,第22题6分)解分式方程:+=3.20. (2014•山东淄博,第18题5分)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.21. (2014•江苏徐州,第24题8分)几个小伙伴打算去音乐厅观看演出,他们准备用360元购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.考点:分式方程的应用.分析:设票价为x元,根据图中所给的信息可得小伙伴的人数为:,根据小伙伴的人数不变,列方程求解.解答:解:设票价为x元,由题意得,=+2,解得:x=60,则小伙伴的人数为:=8.答:小伙伴们的人数为8人.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.22. (2014•江苏盐城,第19题4分)(2)解方程:=.23. (2014•年山东东营,第23题8分)为顺利通过“国家文明城市”验收,东营市政府拟对称取部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.考点:一次函数的应用;分式方程的应用.分析:(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.解答:解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)方案一:由甲工程队单独完成需要4.5×15=67.5万元;方案二:由乙工程队单独完成需要2.5×30=75万元;方案三:由甲乙两队合作完成4.5×10+2.5×10=70万元.所以选择甲工程队,既能按时完工,又能使工程费用最少.点评:本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24. (2014•江苏徐州,第19题5分)(2)计算:(a+)÷(1+).考点:分式的混合运算.专题:计算题.分析:(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(2)原式=÷=•=a﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则解本题的关键.25.(2014•四川遂宁,第18题,7分)先化简,再求值:(+)÷,其中x=﹣1.•=•,﹣.26.(2014•四川宜宾,第17题,10分)(1)计算:|﹣2|﹣(﹣)0+()﹣1(2)化简:(﹣)•.•••27.(2014•四川凉山州,第19题,6分)先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.÷•= 28.(2014•四川泸州,第18题,6分)计算(﹣)÷.﹣•﹣)•,.普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?30、(2014•广州,第22题12分)从广州某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】行程问题的应用【分析】路程=速度×时间,分式方程的实际应用考察【解析】(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)(2)设普通列车的平均速度为千米/时,则高铁平均速度为千米/时.依题意有:可得:答:高铁平均速度为2.5×120=300千米/时.31.(2014•广东梅州,第20题8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?﹣×0.25≤8。
中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。
2019年中考数学《二次根式》复习教案

二次根式复习复习目标:1.了解二次根式的定义,掌握二次根式有意义的条件和性质。
2.会根据公式2)(a =a (a ≥0)∣a ∣进行计算。
3.熟练进行二次根式的乘除法运算。
4.了解最简二次根式的定义,能运用相关性质化简二次根式。
复习重点:二次根式有意义的条件和性质,二次根式的计算和化简。
复习难点:正确依据二次根式相关性质计算和化简。
复习过程:一.知识结构:三个概念:二次根式 最简二次根式 同类二次根式三个性质:二次根式的双重非负性 2)(a =a (a ≥∣a ∣ 四种运算:加.减.乘.除 二.复习过程1.二次根式的概念(1).二次根式的定义: 形如a (a ≥0)的式子叫做二次根式 2.二次根式的识别: (1).被开方数a ≥0 (2).根指数是2例.下列各式中哪些是二次根式?哪些不是?为什么?①②③④⑤⑥⑦⑧3.二次根式的性质 (1).双重非负性:a ≥0(a ≥0)(2).2)(a =a (a ≥0)(3)∣a ∣题型1:确定二次根式中被开方数所含字母的取值范围 (1).当X_____时,x-3有意义。
(2).求下列二次根式中字母的取值范围x315x --+说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组) 题型2.求下列各式的值(1)2(3)2(4)4.二次根式的乘除(1).二次根式的乘法法则)0,0(≥≥=⋅b a ab b a例1.化简8116)1(⨯ 2000)2(例2.计算 721)1(⋅15253)2(⋅)521(154)3(-⋅-xy x 11010)4(-⋅ (2).二次根式的除法法则)0,0(>≥=b a b aba例3、计算4540)1(245653)2(n m n m ÷5.最简二次根式的两个条件: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;抢答:判断下列二次根式是否是最简二次根式,并说明理由。
中考数学考前满分计划:整式、分式、二次根式、因式分解(含解析)

○热○点○考○点○解○读一、整式1.单项式与多项式单独的一个数或一个字母也是单项式.2.合并同类项合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变,例如:合并同类项3x 2y 和4x 2y 为3x 2y +4x 2y =(3+4)x 2y =7x 2y .3.整式的运算(1)整式的加减运算实际就是合并同类项.(2)整式的乘法:()()a b m n am an bm bn ++=+++.(3)整式的除法:单项式除以单项式时,把系数、相同字母的幂分别相除,作为商的因式,对于只在被除式中含有的字母,则照抄下来;多项式除以单项式时,用多项式的每一项分别除以单项式,再把所得的商相加.(4)乘法公式①平方差公式:22()()a b a b a b +-=-.②完全平方公式:222()2a b a ab b ±=±+.4.幂的运算性质(1)同底数幂相乘法则:m n m n a a a +⋅=(,m n 为整数,0a ≠)(2)幂的乘方法则:()m n mn a a =(,m n 为整数,0a ≠)(3)积的乘方法则:()n n n ab a b =(n 为整数,0ab ≠)整式、分式、二次根式、因式分解常识必背语言叙述:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.5.用十字相乘法分解因式利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式(2)对于二次项系数不是1的二次三项式(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数,使,,且,那么.一个式子是分式需满足的三个条件:q px x ++2))(()(2b x a x ab x b a x ++=+++c bx ax ++22121,,,c c a a a a a =⋅21c c c =⋅21b c a c a =+1221c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=易错易混2.约分(1)分式约分时,要注意不注意符号导致的错误.(2)要注意约分不彻底导致的错误.(3)约分时需注意分式的分子、分母都是乘积形式时才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,再约分.(4)约分的结果是整式或最简分式.(5)分式的约分是恒等变形,约分前后分式的值不变.3.分解因式要彻底.方法必知1.同类项(1)几个项是不是同类项,一看所含字母是否完全相同.二看相同字母的指数是否相同.“二同”缺一不可.(2)同类项与单项式的系数无关,与字母顺序无关,几个常数项也是同类项.(3)同类项不一定是两项,也可以是三项,四项……但至少为两项.2.合并同类项(1)合并同类项时,注意合并的只是系数,字母部分不变,不要漏掉.(2)合并同类项时,注意各项系数的符号,尤其系数为负数时,不要遗漏负号,同时不要丢项.(3)如果两个同类项的系数互为相反数,合并同类项的结果为0.3.整式的加减的最后结果的要求:(1)不能含有同类项,即要合并到不能再合并为止;(2)一般按照某一字母的降幂或升幂排列;(3)不能出现带分数,带分数必须要化为假分数.4.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来5.约分时需要注意的问题:(1)如果分子、分母中至少有一个是多顶式,就应先分解因式,然后找出分子、分母的公因式,再约分.(2)注意发现分式的分子和分母的一些隐含的公因式,如a﹣5与5﹣a表面虽不相同,但通过提取“﹣”可发现含有公因式(a﹣5).(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面.通分时确定了分母乘什么,分子也必须随之乘什么,要防止只对分母变形而忽略了分子,导致变形前后分式的值发生变化而出错.6.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.7.因式分解(1)因式分解是针对多项式而言的,一个单项式本身就是数与字母的积,不需要再分解因式;(2)因式分解的结果是整式的积的形式,积中几个相同因式的积要写成幂的形式;(3)因式分解必须分解到每一个因式都不能再分解为止;(4)因式分解与整式乘法是方向相反的变形,二者不是互为逆运算.因式分解是一种恒等变形,而整式乘法是一种运算.8.提公因式法(1)多项式的公因式提取要彻底,当一个多项式提取公因式后,剩下的另一个因式中不能再有公因式.(2)提公因式后括号内的项数应与原多项式的项数一样.(3)若多项式首项系数为负数时,通常要提出负因数.9.十字相乘法这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.◇以◇练◇带◇学1.(鞍山)下列运算正确的是( )A .222(4)8ab a b =B .22423a a a +=C .642a a a ÷=D .222()a b a b +=+2.(攀枝花)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:其中,图形的面积关系能正确解释相应的代数恒等式的有( )A .1个B .2个C .3个D .4个3.(邵阳)下列计算正确的是( )A .623a a a =B .235()a a =C .22()()a ba ba b a b +=+++D .01()13-=4.(内蒙古)下列运算正确的是( )A+=B .236()a a -=C .11223a a a+=D .21133b ab a b÷=5.(成都)若23320ab b --=,则代数式2222(1)ab b a ba a b---÷的值为 .6.x 的取值范围是 .7.(扬州)分解因式:24xy x -= .8.(内蒙古)分解因式:34x x -= .9.(盐城)先化简,再求值:2(3)(3)(3)a b a b a b +++-,其中2a =,1b =-.10.(滨州)先化简,再求值:22421()244a a a a a a a a -+-÷---+,其中a 满足211(6cos6004a a --⋅+︒=.1.(官渡区校级模拟)按一定规律排列的式子:a ,32a ,54a ,78a ,916a ,⋯,则第2024个式子为( )A .202320252a B .20244047(21)a -C .202340472a D .202440492a 2.(济南一模)下列运算正确的是( )A .22a b ab+=B .2222a b a b a b-=C .238()a a =D .84222a a a ÷=3.(金山区二模)单项式22a b -的系数和次数分别是( )A .2-和2B .2-和3C .2和2D .2和34.(龙岗区模拟)下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .2234(3)218ab ab a b -⋅=-D .326(2)3ab ab b ÷-=-5.(中山市校级一模)下列各式从左到右的变形,因式分解正确的是( )A .2()a a b a ab+=+B .23()3a ab a a b +-=+-C .22282(4)ab a a b -=-D .228(2)(4)a a a a --=+-6.(钱塘区一模)下列因式分解正确的是( )A .241(41)(41)a a a -=+-B .225(5)(5)a a a -+=+-C .22269(3)a ab b a b --=-D .22816(8)a a a -+=-7.(新乡一模)化简2422a a a ---的结果是( )A .2a +B .2a -C .12a +D .12a -8.(东莞市校级模拟)分式23x x --的值为0时,x 的值是( )A .0x =B .2x =C .3x =D .2x =或3x =9.(碑林区校级一模)先化简,再求值:2[(2)(2)(2)](4)a b b a b a a --+-÷,其中12a =,2b =.10.(龙湖区校级一模)先化简,再求值:2344(111x x x x -+-÷++,其中3x =.1.按一定规律排列的单项式:3x ,54x -,79x ,916x -,⋯,第n 个单项式是( )A .1221(1)n n n x ---B .1221(1)n n n x ++-C .1221(1)(1)n n n x ---+D .1221(1)(1)n n n x ++-+2.下列运算正确的是( )A .22(4)16x x -=-B .325x y xy +=C .432x x x ÷=D .2224()xy x y =3.下列语句正确的是( )A .5-不是单项式B .a 可以表示负数C .25a b -的系数是5,次数是2D .221a ab ++是四次三项式4.下列因式分解正确的一项是( )A .222()x y x y +=+B .24(2)(2)x x x -=+-C .2221(1)x x x --=-D .242(2)xy x xy x +=+5.要使分式11x x -+有意义,则x 应满足的条件是( )A .1x ≠-B .1x ≠C .1x <-D .1x >-6.下列二次根式中,属于最简二次根式的是( )AB C D7.计算:0|1tan 60|(2024-︒+.8.先化简,再求值:2344(111x x x x -+-÷++,其中3x =.9.先化简,再求值:2(2)(4)a a a -++,其中a =.10.先化简,再求值:(2)(2)4()a b a b a a b -+--,其中2a =-,1b =.1.【答案】C【分析】根据积的乘方,合并同类项,同底数幂的除法法则,完全平方公式进行计算,逐一判断即可解答.【解答】解:A 、222(4)16ab a b =,故A 不符合题意;B 、22223a a a +=,故B 不符合题意;C 、642a a a ÷=,故C 符合题意;D 、222()2a b a ab b +=++,故D 不符合题意;故选:C .2.【答案】D【分析】观察各个图形及相应的代数恒等式即可得到答案.【解答】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .3.【答案】D【分析】分别根据分式的加减法则、幂的乘方与积的乘方法则、零指数幂的运算法则对各选项进行逐一计算即可.【解答】解:A 、633a a a=,原计算错误,不符合题意;B 、236()a a =,原计算错误,不符合题意;C 、221()()a b a b a b a b+=+++,原计算错误,不符合题意;D 、01()13-=,正确,符合题意.故选:D .4.【答案】D【分析】根据二次根式的加法、幂的乘法与积的乘方以及分式的运算的计算方法解题即可.【解答】解:A +=≠B .2366()a a a -=-≠,故该选项不正确,不符合题意;C .11123222223a a a a a a+=+=≠,故该选项不正确,不符合题意;21131.333b a D ab a ab b b ÷=⨯=,故该选项正确,符合题意;故选:D .5.【答案】23.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:2222(1ab b a b a a b---÷2222(2)a ab b a b a a b--=⋅-222()a b a b a a b-=⋅-()b a b =-2ab b =-,23320ab b --= ,2332ab b ∴-=,223ab b ∴-=,∴原式23=.故答案为:23.6.【答案】3x >.【分析】根据记二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:30x ->,解得:3x >,故答案为:3x >.7.【分析】原式提取x ,再利用平方差公式分解即可.【解答】解:原式2(4)(2)(2)x y x y y =-=+-,故答案为:(2)(2)x y y +-8.【分析】应先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【解答】解:34x x -,2(4)x x =-,(2)(2)x x x =+-.故答案为:(2)(2)x x x +-.9.【分析】依据题意,利用平方差公式和完全平方公式将原式进行化简,再将a ,b 的值代入计算即可求解.【解答】解:2(3)(3)(3)a b a b a b +++-2222699a ab b a b =+++-226a ab =+.当2a =,1b =-时,原式22262(1)=⨯+⨯⨯-812=-4=-.10.【答案】244a a -+,1.【分析】将括号里面通分运算,再利用分式的混合运算法则计算,结合负整数指数幂的性质、特殊角的三角函数值化简,整体代入得出答案.【解答】解:原式2421[(2)(2)a a a a a a a -+-=÷---224(2)(2)(1)[](2)(2)a a a a a a a a a a -+--=÷---22244(2)a a a a a a a ---+=÷-24(2)4a a a a a --=⋅-2(2)a =-244a a =-+, 211()6cos6004a a --⋅+︒=,2430a a ∴-+=,243a a ∴-=-,∴原式341=-+=.1.【答案】C【分析】由题目可得式子的一般性规律:第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,即可得出答案.【解答】解:式子的系数为1,2,4,8,16, ,则第n 个式子的系数为:12n -;式子的指数为1,3,5,7,9, ,则第n 个式子的指数为:21n -,∴第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,故选:C .2.【答案】B【分析】根据合并同类项法则、幂的乘方法则、单项式除以单项式法则分别判断即可.【解答】解:A 、2a 与b 不是同类项,不能合并,故此选项不符合题意;B 、2222a b a b a b -=,故此选项符合题意;C 、236()a a =,故此选项不符合题意;D 、84422a a a ÷=,故此选项不符合题意;故选:B.3.【答案】B【分析】数字与字母的积叫做单项式,其中数字因数叫做单项式的系数,所有字母的指数之和叫做单项式的次数;由此计算即可.【解答】解:单项式22a b -的系数和次数分别是2-和3,故选:B .4.【答案】D【分析】根据整式相关运算法则逐项判断即可.【解答】解:235a a a ⋅=,故A 错误,不符合题意;a 与22a 不能合并,故B 错误,不符合题意;2234(3)218ab ab a b -⋅=,故C 错误,不符合题意;326(2)3ab ab b ÷-=-,故D 正确,符合题意;故选:D .5.【答案】D【分析】根据因式分解的定义逐个判断即可.【解答】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形不属于因式分解,故本选项不符合题意;C .22282(4)2(2)(2)ab a a b a b b -=-=+-,分解不彻底,从左到右的变形不属于因式分解,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意.故选:D .6.【答案】B【分析】根据平方差公式和完全平方公式逐个判断即可.【解答】解:A .241(21)(21)a a a -=+-,故本选项不符合题意;B .225(5)(5)a a a -+=+-,故本选项符合题意;C .22269(3)a ab b a b -+=-,故本选项不符合题意;D .22816(4)a a a -+=-,故本选项不符合题意;故选:B .7.【答案】A【分析】根据分式的加减法运算法则计算即可.【解答】解:2244(2)(2)22222a a a a a a a a a --+-===+----,故选:A .8.【分析】分式的值为零时:分子等于零且分母不为零.据此求得x 的值.【解答】解:依题意得:20x -=,解得2x =.经检验当2x =时,分母30x -≠,符合题意.故选:B .9.【答案】2a b -,1-.【分析】先利用平方差公式和完全平方公式进行计算,再根据多项式除以单项式的法则进行计算,最后把12a =,2b =代入计算即可.【解答】解:原式2222[44(4)](4)a ab b b a a =-+--÷2222(444)(4)a ab b b a a =-+-+÷2(84)(4)a ab a =-÷2a b =-,当12a =,2b =时,原式12212=⨯-=-.10.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.1.【答案】B【分析】根据单项式的数字系数的符号,数字系数和指数的变化规律即可得出结果.【解答】解:在上述单项式中,可以发现:奇数项的数字系数的符号为正,偶数项的数字系数的符号为负,∴可得:第n 个单项式的数字系数的符号为:1(1)n --或1(1)n +-,单项式的数字系数为:1,4,9,16, ,∴第n 个单项式的数字系数为:2n ,单项式的指数为:3,5,7,9, ,∴第n 个单项式的指数为:21n +,∴第n 个单项式是1221(1)n n n x ++-,故选:B .2.【答案】D【分析】根据整式的运算法则逐项分析判断即可.【解答】解:A 、22(4)816x x x -=-+,原计算错误,不符合题意;B 、3x 与2y 不是同类项,不能合并,故原计算错误,不符合题意;C 、43x x x ÷=,原计算错误不符合题意;D 、2224()xy x y =,正确,符合题意;故选:D .3.【答案】B【分析】根据单项式的定义可判断A ,根据字母表示数的意义可判断B ,根据单项式系数和次数的定义可判断C ,根据多项式的项和次数的定义可判断D ,进而可得答案.【解答】解:A 、5-是单项式,故本选项错误,不符合题意;B 、a可以表示负数,故本选项正确,符合题意;C 、25a b -的系数是5-,次数是3,故本选项错误,不符合题意;D 、221a ab ++是二次三项式,故本选项错误,不符合题意;故选:B .4.【答案】B【分析】根据因式分解的定义进行判断即可.【解答】解:A 、222()x y x y +≠+不符合因式分解的定义,故本选项不符合题意;B 、24(2)(2)x x x -=+-符合因式分解的定义,且因式分解正确,故本选项符合题意;C 、2221(1)x x x --≠-,不符合因式分解的定义,故本选项不符合题意;D 、242(2)xy x x y +=+,原因式分解错误,故本选项不符合题意;故选:B .5.【分析】先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【解答】解:由题意,得10x +≠,解得1x ≠-,故选:A .6.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式,进而得出答案.【解答】解:A =,不是最简二次根式,故此选项错误;B ,是最简二次根式,故此选项正确;C 2=,不是最简二次根式,故此选项错误;D =故选:B .7..【分析】根据二次根式的混合运算法则和零指数幂与特殊的三角函数值等知识点计算即可.【解答】解:原式11=---+11=-+=.8.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.9.【答案】224a +,原式8=.【分析】先利用完全平方公式,单项式乘多项式的法则进行计算,然后把a 的值代入化简后的式子进行计算,即可解答.【解答】解:2(2)(4)a a a -++22444a a a a=-+++224a =+,当a =224224448=⨯+=⨯+=+=.10.【答案】24ab b -,原式9=-.【分析】先利用平方差公式,单项式乘多项式的法则进行计算,然后把a ,b 的值代入化简后的式子进行计算,即可解答.【解答】解:(2)(2)4()a b a b a a b -+--222444a b a ab=--+24ab b =-,当2a =-,1b =时,原式24(2)11819=⨯-⨯-=--=-.。
(中考考点梳理)分式与二次根式-中考数学一遍过

考点03 分式与二次根式一、分式 1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称AB为分式.(2)分式AB中,A 叫做分子,B 叫做分母. 【注意】①若B ≠0,则AB有意义;②若B =0,则AB无意义;③若A =0且B ≠0,则AB=0.学=科网2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C⋅=≠⋅或(0)A A CC B B C ÷=≠÷,其中A ,B ,C 均为整式. 3.约分及约分法则 (1)约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. (2)约分法则把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.【注意】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式. 4.最简分式分子、分母没有公因式的分式叫做最简分式.【注意】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 5.通分及通分法则(1)通分根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分.(2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;③若分母是多项式,则先分解因式,再通分.【注意】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.最简公分母几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.7.分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:((nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的. 二、根式1.二次根式的有关概念 (1)二次根式的概念形如)0(≥a a 的式子叫做二次根式.其中符号叫做二次根号,二次根号下的数叫做被开方数.【注意】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0. (2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式. 2.二次根式的性质 (1)a ≥ 0(a ≥0); (2))0()(2≥=a a a ;(3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)a b =≥≥;(50,0)a b ≥>. 3.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2)二次根式的乘除0,0)a b =≥≥;0,0)a b ≥>. (3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.考向一 分式的有关概念1.分式的三要素: (1)形如AB的式子; (2),A B 均为整式;学科!网 (3)分母B 中含有字母. 2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即0B ≠. (2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.典例1 x 的取值范围是 A .x ≠1B .x ≠0C .x >﹣1且≠0D .x ≥﹣1且x ≠0【答案】D【解析】根据题意得:100x x +≥⎧⎨≠⎩,解得:x ≥-1且x ≠0.故选:D .1.若分式21xx-在实数范围内无意义,则x 的取值范围是 A .x ≠1 B .x =1C .x =0D .x >1考向二 分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.典例2 分式233x yxy+中的x 、y 的值都扩大到原来的2倍,则分式的值为 A .扩大为原来2倍 B .缩小为原来的12倍 C .不变D .缩小为原来的14倍【答案】B【名师点睛】本题考查了分式的基本概念和性质的相关知识.这类题目的一个易错点是:在没有充分理解题意的情况下简单地通过分式的基本性质得出分式值不变的结论.对照分式的基本性质和本题的条件不难发现,本题不符合分式基本性质所描述的情况,不能直接利用其结论.因此,在解决这类问题时,要注意认真理解题意.2.不改变分式的值,下列变形正确的是A .2233a ab b -=-- B .33a ab b -=-- C .55a a b b=--D .7744a a b b=- 考向三 分式的化简与求值约分与通分的区别与联系:1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值; 2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.典例3 把分式x x y -,y x y +,222x y-的分母化为x 2-y 2后,各分式的分子之和是 A .x 2+y 2+2 B .x 2+y 2-x +y +2 C .x 2+2xy −y 2+2D .x 2−2xy +y 2+2【答案】C【解析】由平方差公式将x 2−y 2可化简为(x +y )(x −y ), 故将xx y-的分母化为x 2−y 2后可得()22x x y x y +-,将y x y+的分母化为x 2−y 2后可得()22y x y x y --, 所以分式的x x y -,y x y +,222x y-的分母化为x 2−y 2后,各分式的分子之和为 x (x +y )+y (x -y )+2,展开得x 2+xy +xy −y 2+2合并同类项,得x 2+2xy −y 2+2, 故选C.【名师点睛】本题考查了最简公分母,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.求最简公分母的方法是: (i )将各个分母分解因式; (ii )找各分母系数的最小公倍数;(iii )找出各分母中不同的因式,相同因式中取次数最高的. 满足(ii )(iii )的因式之积即为各分式的最简公分母.3.下列分式中,是最简分式的是A .2xyx B .222x y -C .22x yx y+- D .22xx + 考向四 分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.(2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.典例4 计算(1-1x)÷221x x x -+的结果是A .x -1B .11x - C .1xx -D .1x x-【答案】B【解析】原式=(x x −1x )÷()21x x -=1x x -. •()21x x -=11x -, 故选B .4.先化简,再求值:2221()211x x x x x x+÷--+-,其中x =4.考向五 二次根式的概念与性质1.二次根式的意义:首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.典例5 下列各式: ①;②;③;;;.其中一定是二次根式的有 A .4个 B .3个 C .2个D .1个【答案】B5的取值范围是 A . B. C .D .典例6 下列二次根式是最简二次根式的是 ABCD【答案】Cx 1x ≠1x ≥>1x 0x ≥6;.其中是最简二次根式的有 A .2个 B .3个C .4个D .5个考向六 二次根式的运算1.二次根式的运算(1)二次根式的加减法就是把同类二次根式进行合并.(2)二次根式的乘除法要注意运算的准确性;要熟练掌握被开方数是非负数.(3)二次根式混合运算先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号). 2.比较分式与二次根式的大小(1)分式:对于同分母分式,直接比较分子即可,异分母分式通常运用约分或通分法后作比较; (2)二次根式:可以直接比较被开方数的大小,也可以运用平方法来比较.典例7 下列计算正确的是A =B 6=C 5+=D 4=【答案】A【解析】A 、原式-B 、原式,错误;C 为最简结果,错误;D 、原式,错误, 故选:A .7.已知x =,y =,则y xx y +=_____________.典例8 比较大小:______5(填“>,<,=”). 【答案】>【解析】因为2228,525==,28>25,所以>5.【名师点睛】比较二次根式的大小,可以转化为比较被开方数的大小,也可以将两个数平方,计算出结果,再比较大小.8.设a ,b -1,c ,则a ,b ,c 之间的大小关系是 A .c >b >a B .a >c >b C .b >a >cD .a >b >c1.下列根式中属于最简二次根式的是A BCD 2.若分式24x x-的值为0,则x 的值是A .2或﹣2B .2C .﹣2D .03.如果把分式xyx y+中的x 和y 都扩大2倍,则分式的值 A .扩大4倍B .扩大2倍C .不变D .缩小2倍4A BCD5.下列关于分式的判断,正确的是A .当x =2时,12x x +-的值为零 B .当x ≠3时,3x x-有意义C .无论x 为何值,31x +不可能得整数值D .无论x 为何值,231x +的值总为正数6.若x 、y 为实数,且|2|0x +=,则2019x y ⎛⎫⎪⎝⎭的值为A .2B .−2C .1D .−17的被开方数相同,则a 的值为 A .1B .2C .23D .328.下列运算中,错误的是 A .x y y xx y y x--=-++ B .a ba b--+=−1C −1D a9.已知 1x <,则 化简的结果是A .1x -B .1x -C .1x --D .1x +10.下列分式是最简分式的是A BCD .22121x x x --+11.若分式11x x -+的值为0,则x 的值为 A .1 B .−1 C .±1D .无解12 A .2B .21x - C .23x -D .41x x --13.若x 、y ()2210y +-=,则x y +的值等于A .1B .32 C .2D .5214a =,则1x x +的值为A .22a - B .2a C .24a -D .不确定15=_____________. 16.当x =_____________时,分式323xx -+的值为零.17.比较大小:(填“>、<、或=”)18.当a =2_____________.19.已知a ,b 互为倒数,代数式222a ab b a b+++÷11a b ⎛⎫+⎪⎝⎭的值为_____________.20.已知::2:3:4x y z =,则23x y zx y z+--+的值为_____________.21.计算:(1)|1|+(2018−π)0;(2+((.22.先化简,再求值:221a b a b a b⎛⎫-÷ ⎪--⎝⎭,其中1a =+,1b =-.23.先化简,再求值:2-,其中,.24.先化简,再求值:2212111121m m m m m -⎛⎫-÷- ⎪+--+⎝⎭,其中m 为一元二次方程230x x +-=的根.1.(2018·德阳市)下列计算或运算中,正确的是A .=B =C .÷=D .-=2.(2018·兰州市)下列二次根式中,是最简二次根式的是A BCD3.(2018·绥化市)若y =x 的取值范围是 A .12x ≤且0x ≠ B .12x ≠C .12x ≤D .0x ≠4.(2018·绥化市)下列运算正确的是A .2235a a a +=B 5=-C .3412a a a ⋅=D .0(π3)1-=5.(2018·曲靖市)下列二次根式中能与合并的是ABCD6.(2018·上海市)的结果是A.4 B.3C.D7.(2018·日照市)计算:(12)−1+tan30°•sin60°=A.﹣32B.2C.52D.728.(2018·莱芜市)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是A.2xx y+-B.22yxC.3223yxD.()222yx y-9.(2018·陇南市)有意义的x的取值范围是____________.10.(2018·毕节市)观察下列运算过程:1========-……请运用上面的运算方法计算:+=____________.11.(2018____________.12.(2018·莱芜市)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是和2,则图中阴影部分的面积是____________.13.(2018·镇江市)=____________.14.(2018·梧州市)在实数范围内有意义,则 x 的取值范围是____________.15.(2018·巴彦淖尔市)化简3m m ++269m -÷23m -的结果是____________. 16.(2018·绥化市)当2x =时,代数式211()x x x x x+++÷的值是____________.17.(2018·大连市)计算:+2)2+22-.18.(2018·百色市)已知a 2=19,求22211118a a a --+-的值.19.(2018·福建省b 卷)先化简,再求值:2211(1)m m m m+--÷,其中m .20.(2018·锦州市)先化简,再求值: 233212,322x x x x x x +-+-÷=++(其中.21.(2018·毕节市)先化简,再求值:22214244aa a a a a ⎛⎫-÷⎪--++⎝⎭,其中a 是方程a 2+a ﹣6=0的解.22.(2018·兰州市)计算:101()(π3)1tan452--+-+-.23.(2018·甘孜州)(1()03.144cos45--π- ;(2)化简:2211x xx x x ÷---.24.(2018·益阳市)化简:2()y x y x y x y x+-+⋅+.25.(2018·莱芜市)先化简,再求值:233(111a aa a a -+÷--+,其中a +1.26.(2018·曲靖市)先化简,再求值(1a b -﹣22b a b -)÷2222+a ab a ab b --,其中a ,b 满足a +b ﹣12=0.27.(2018·梧州市)解不等式组36451102x xx x -≤⎧⎪++⎨<⎪⎩,并求出它的整数解,再化简代数式2321x x x +-+•(3x x +﹣239x x --),从上述整数解中选择一个合适的数,求此代数式的值.28.(2018·抚顺市)先化简,再求值:(1﹣x +31x +)÷2441x x x +++,其中x =tan45°+(12)−1.1.【答案】B 【解析】∵分式21xx-在实数范围内无意义, ∴1﹣x =0,即x =1, 故选:B .3.【答案】D 【解析】A 、2xy x =yx,错误; B 、222x y -=1x y -,错误;C 、22x y x y +-=1x y -,错误;D 、22xx +是最简分式,正确. 故选D .4.【答案】21x x -;163.【解析】2221()211x x x x x x+÷--+- =2(+1)2(111)()()x x x x x x x --÷-- =2()(+1)111)(x x x x x x -⋅-+ =21x x -, 当x =4时,原式=2416413=-. 5.【答案】B【解析】根据二次根式被开方数必须是非负数的条件知,要使.故选B .6.【答案】B= =, =,∴. 故选:B .8.【答案】D【解析】a −1),b ,c ), >1,∴a >b >c .故选D . 101x x -≥⇒≥【解析】A、该二次根式符合最简二次根式的定义,故本选项正确;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项错误;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项错误;D、该二次根式的被开方数中含有能开得尽方的因数9,所以它不是最简二次根式,故本选项错误;故选A.【名师点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.【答案】A【解析】∵分式24xx-的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.3.【答案】B【解析】把分式xyx y+中的x和y都扩大2倍,则22222x y xyx y x y⋅=++,故选B.5.【答案】D【解析】A选项:当x=2时,该分式的分母20x-=,该分式无意义,故A选项错误.B选项:当x=0时,该分式的分母为零,该分式无意义.显然,x=0满足x≠3.由此可见,当x≠3时,该分式不一定有意义,故B选项错误.C选项:当x=0时,该分式的值为3,即当x=0时该分式的值为整数,故C选项错误.D选项:无论x为何值,该分式的分母x2+1>0,该分式的分子3>0.由此可知,无论x为何值,该分式的值总为正数,故D选项正确.故本题应选D.【名师点睛】本题考查了与分式概念相关的知识.分式有意义的条件是分式的分母不等于零,并不是分母中的x的值不等于零.分式的值为零的条件是分式的分母不等于零且分式的分子等于零.在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.【解析】由非负数的性质可得:x+2=0,y−2=0,即x=−2,y=2,∴2019xy⎛⎫⎪⎝⎭=(−1)2019=−1.故选C.7.【答案】D【解析】31+4,2a a a=-=解得,故选D.8.【答案】D【解析】A.x y y xx y y x--=-++,正确,故不符合题意;B.a ba b--+=−1,正确,故不符合题意;C−1,正确,故不符合题意;D=|a|,错误,故符合题意.故选D.9.【答案】B【解析】∵x<1,∴x-1<0x-1|=1-x.故选:B.10.【答案】C【解析】A选项:化简该分式,得()222a ba ab bam am m+++==,故A选项不符合题意.B选项:化简该分式,得623xy xya a=,故B选项不符合题意.C选项:对该分式的分子进行因式分解,得()()222111x xxx x+--=.由此可见,该分式的分子与分母没有公因式,符合最简分式的定义,故C选项符合题意.D选项:化简该分式,得()()()22211112111x xx xx x xx+--+==-+--,故D选项不符合题意.故本题应选C.11.【答案】A【解析】∵分式11x x -+的值为0,∴|x |−1=0,且x +1≠0,解得:x =1.故选A . 12.【答案】B(13x -−11x -)•(x −3)=13x -•(x −3)−11x -•(x −3)=1−31x x --=21x -.故选B . 15==. 16.【答案】3【解析】依题意得:3﹣x =0且2x +3≠0.解得x =3,故答案为:3.17.【答案】<【解析】将两式进行平方可得:(2=12,(2=18,因为12<18,所以<18.【答案】3- 【解析】∵()()2121214122121a a a a a a +--==-++,∴当a =2时,原式=1223-⨯=-.故本题应填写:3-.19.【答案】1 【解析】对待求值的代数式进行化简,得22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭()2a b a b a b ab ++⎛⎫=÷ ⎪+⎝⎭()ab a b a b =+⋅+ab =, ∵a ,b 互为倒数,∴ab =1,∴原式=1.故本题应填写:1.20.【答案】411【解析】根据分式的性质(分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变)解答.∵::2:3:4x y z =,∴可设234x k y k z k ===、、,∴226444323121111x y z k k k k x y z k k k k +-+-===-+-+, 故答案为:411.21.【答案】(1);(2)【解析】(1)原式−1−+1=.(2)原式=3−−5=2−.22.【答案】化简见解析,结果为. 【解析】221a b a b a b ⎛⎫-÷ ⎪--⎝⎭ ()()a b a b a a b a b b+--+=⋅- ()()a b a b b a b b+-=⋅- a b =+,当1a =+,1b =时,原式11++-=23.【答案】8-+.【解析】原式2(2)x y x y =---+22x y x y =--+-2y =-.当34x y ==,时,原式=2−2×4=4 −8. 24.【答案】化简见解析,结果为13. 【解析】原式=()()()22122111111m m m m m m m --+--÷++-- =()()()()21121112m m m m m m m ---⋅++-- =()1111m m m m --++=()()11m m m m --+ =()11m m + =21m m +. 由m 是方程230x x +-=的根,得到23m m +=,所以原式=13. 【名师点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.1.【答案】B【解析】A 、=,此选项错误; B =,此选项正确;C 、÷=D 、-=,此选项错误;故选:B .2.【答案】B【解析】A =不是最简二次根式,错误;B 是最简二次根式,正确;C =不是最简二次根式,错误;D =不是最简二次根式,错误,故选B .3.【答案】A【解析】由题意可知:1200x x -≥⎧⎨≠⎩,解得:12x ≤且0x ≠, 故选A .4.【答案】D 【解析】A. 23a a +=5a ,故A 选项错误;B. =5,故B 选项错误;C. 347a a a ⋅=,故C 选项错误;D. 0(π3)1-=,故D 选项正确,故选D.5.【答案】B【解析】A =,不能与B 合并,故该选项正确;C =不能与D 3不能与故选B .6.【答案】C【解析】,故选C .7.【答案】C【解析】(12)−1+tan30°•sin60°=2+12 =52, 故选C .9.【答案】x >3有意义, ∴x ﹣3>0,∴x >3, ∴x 的取值范围是x >3,故答案为:x >3.10.【解析】原式=12﹣1)+12+12+ (12)+12=12…). 11.【答案】6【解析】原式.故答案为:6.12.【答案】2【解析】设正三角形的边长为a ,则12a 2解得a .则图中阴影部分的面积.故答案是2.13.【答案】2,故答案为2. 14.【答案】x ≥3【解析】由题意可得:x ﹣3≥0,解得:x ≥3,故答案为:x ≥3.15.【答案】1 【解析】3m m ++269m -÷23m - =()()63·3332m m m m m -+++- =333m m m +++ =1,故答案为1.16.【答案】3【解析】原式221()1x x x x x x +=+⋅+ =2(1)1x x x x +⋅+ 1x =+,当2x =时,原式213=+=,故答案为:3.17.【答案】294【解析】原式﹣14=294. 18.【答案】16- 【解析】原式=22121a a a ---()﹣118 =221a ---118, ∵a 2=19,∴原式=2191--﹣118=﹣318=﹣16.19.【解析】2211(1)m m m m+--÷ =()()2111m m m m m m +-⋅+- =()()111m m m m m +⋅+- =11m -,当m +1时,原式==. 20.【答案】11;12x -- 【解析】原式=()23322)21x x x x ++-⨯+-( , ()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x =3时,原式=113-=12-. 21.【答案】13 【解析】22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭ =()()()()222222a a a a a a -++⋅+-=2222a a a a a--+⋅- =222a a a a-+⋅-, =2a a +,由a 2+a ﹣6=0,得a =﹣3或a =2,∵a ﹣2≠0,∴a ≠2,∴a =﹣3,当a =﹣3时,原式=32133-+=-. 22.1.【解析】101()(π3)1tan 2--+-+-45°=2111-++1=.(2)2211x x x x x ÷--- =()()211·1x x x x x+---x =x (x +1)-x=x 2.24.【答案】x 【解析】原式=222x y y x y x y x-++⋅+ =2x x y x y x+⋅+ =x .25.【答案】【解析】当a +1时,原式=()()333111a a a a a a++-+⨯-+=()()4111a a a a a+⨯-+ =41a -. 26.【答案】原式=1a b+=2 【解析】(1a b -﹣22b a b -)÷2222+a ab a ab b -- =()()()()2•a b a b b a b a b a a b -+-+-- =1a b+, 由a +b ﹣12=0,得到a +b =12, 则原式=112=2. 27.【答案】原式=11x -,当x =2,原式=1. 【解析】解不等式 3x ﹣6≤x ,得:x ≤3, 解不等式4510x +<12x +,得:x >0, 则不等式组的解集为 0<x ≤3,所以不等式组的整数解为 1、2、3, 原式=()231x x +-•[()()2333x x x x --+- ()()333x x x -+-] =()231x x +-•()()()()1333x x x x --+- =11x -, ∵x ≠±3、1,∴x =2, 则原式=1.28.【答案】-1 5【解析】原式=(21311xx x-+++)÷()221xx++=()()()2 221·12x x xx x +-+++=22xx -+,当x=tan45°+(12)−1=1+2=3时,原式=231235-=-+。
中考数学总复习知识点总结:第二章 代数式

第二章代数式考点一、整式的有关概念(3分)1.代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2.单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如是6次单项式。
考点二、多项式(11分)1.多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数, 叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母, 按照代数式指明的运算, 计算出结果, 叫做代数式的值。
注意: (1)求代数式的值, 一般是先将代数式化简, 然后再将字母的取值代入。
(2)求代数式的值, 有时求不出其字母的值, 需要利用技巧, “整体”代入。
2.同类项所有字母相同, 并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3.去括号法则(1)括号前是“+”, 把括号和它前面的“+”号一起去掉, 括号里各项都不变号。
(2)括号前是“﹣”, 把括号和它前面的“﹣”号一起去掉, 括号里各项都变号。
4.整式的运算法则整式的加减法: (1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数)(n m a a mn n m = )()(都是正整数n b a ab n n n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:注意: (1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘, 结果是一个多项式, 其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题, 多项式的每一项都包括它前面的符号, 同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中, 有同类项的要合并同类项。
二次根式-中考数学一轮复习考点专题复习大全(全国通用)

考向08 二次根式【考点梳理】1、二次根式:一般地,形如a (a ≥0)的代数式叫做二次根式。
当a >0时,a 表示a 的算术平方根,其中0=02、 理解并掌握下列结论:(1))0(≥a a 是非负数(双重非负性); (2))0()2≥=a a a (; (3)⎩⎨⎧≤->=⎩⎨⎧<-≥=⎪⎩⎪⎨⎧<-=>==)0()0()0()0()0()0(0)0(2a a a a a a a a a a a a a a a ;口诀:平方再开方,出来带“框框” 3、二次根式的乘法:)0,0(≥≥=•b a ab b a ,反之亦成立4、二次根式的除法:)0,0(>≥=b a b a ba ,反之亦成立5、满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数不含分母,(2)被开方数不含开得尽方的因数或因式。
6、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式。
【题型探究】题型一:二次根式的概念和性质1.(2022·湖北黄石·统考中考真题)函数11y x =+-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠2.(2022·广东广州·广东番禺中学校考三模)若3y =,则2022()x y +等于( ) A .1B .5C .5-D .1-3.(2022·湖北黄石·校联考模拟预测)函数y 中,自变量x 的取值范围是( ) A .5x >B .35x ≤<C .5x <D .35x ≤≤题型二:二次函数的化简4.(2022·河北·统考中考真题)下列正确的是( )A 23+B 23=⨯C D 0.75.(2023·河北·b a 的值是( ) A .6B .9C .12D .276.(2022·四川绵阳·统考三模)已知y =,则xy =( )A .3B .-6C .±6D .±3题型三:二次根式的乘除7.(2022·广东广州· )A B C D .8.(2022·天津南开·二模)计算3)的结果等于______.9.(2022·河北唐山·=a =______;b =__.题型四:二次根式的加减10.(2022·黑龙江哈尔滨·=_____. 11.(2022·黑龙江绥化·统考中考真题)设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________.12.(2022·黑龙江哈尔滨·______.题型五:分母的有理化13.(2022·河北保定·统考一模)已知x =2y = (1)22x y +=________; (2)2()x y xy --=________.14.(2022·广东中山·统考二模)小明喜欢构建几何图形,利用“数形结合”的思想解决代数问题.在计算tan 22.5︒时,如图,在Rt ACB 中,9045C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,得22.5D ∠=︒,所以tan 22.51AC CD ︒===,类比小明的方法,计算tan15︒的值为________.15.(2020·四川成都·四川省成都列五中学校考三模)3的整数部分是m ,小数部分是n ,则mn+3=_____.题型六:二次根式的比较大小16.(2021·四川成都·766517.(2020·陕西西安·西安市铁一中学校考二模)比较大小:1013-(填“>”、“=”、“<”)18.(2021·陕西宝鸡·17﹣5(填“>”或“<”)题型七:二次根式的化简求值问题19.(2023·江西·九年级专题练习)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中53x =. 20.(2022·四川广元·统考一模)先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中32a =+32b = 21.(2022·辽宁抚顺·模拟预测)先化简,再求值:22124()(1)442x x x x x x x-+-÷--+-,其中x =2+tan30°.【必刷基础】一、单选题22.(2023·广西玉林·一模)下列运算正确的是( ) A 257B .22525=+C 532=D .233323.(2022·福建泉州·校考三模)在函数32y x =+中,自变量x 的取值范围是( ) A .23x ≠-B .23x >-C .23x -D .23x -24.(2022·上海松江·校考三模)下列式子属于同类二次根式的是( ) A .2与22B .3与24C .5与25D .6与1225.(2022春·河北保定·九年级保定市第十七中学校考期中)如图,把一张矩形纸片ABCD 按如图所示方法进行两次折叠后,BEF △恰好是等腰直角三角形,若2BE =,则CD 的长度为( )A .22B .22+C .222+D .224+26.(2021·广西百色·统考二模)将一组数2,2,6,22,10,…,210,按下列方式进行排列: 2,2,6,22,10; 23,14,4,32,25;…若2的位置记为()1,2,23的位置记为()2,1,则36这个数的位置记为( )A .()54,B .()44,C .()43,D .()35,27.(2022·山东青岛·统考中考真题)计算1(2712)3-⨯的结果是( ) A .33B .1C .5D .328.(2022·河北廊坊·统考二模)一次函数()32y k x k =++-的图象如图所示,则使式子()011k k ++-有意义的k 的值可能为( )A .-3B .-1C .-2D .229.(2021·北京·统考中考真题)若7x -在实数范围内有意义,则实数x 的取值范围是_______________. 30.(2018·江苏苏州·校联考中考模拟)若x 满足|2017-x|+-2018x =x , 则x-20172=________31.(2021·辽宁鞍山·统考中考真题)先化简,再求值:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭,其中62a =+. 32.(2022春·福建泉州·九年级福建省安溪第一中学校考阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简:222||()()a a c c a b -++--.【必刷培优】一、单选题33.(2021·广东·统考中考真题)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是( ) A .6B .210C .12D .91034.(2021·湖南娄底·统考中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m -B .102m -C .10D .435.(2021·内蒙古·统考中考真题)若21x =+,则代数式222x x -+的值为( ) A .7 B .4C .3D .322-36.(2020·河北·统考中考真题)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题37.(2019·广西柳州·中考模拟)如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.38.(2021·四川眉山·统考中考真题)观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++==+⨯; 3221113111341234x =++==+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.39.(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______. 40.(2021·河南信阳·河南省淮滨县第一中学校考三模)已知625x =-为一元二次方程20x ax b ++=的一个根,且a ,b 为有理数,则=a ______,b =______.41.(2019·江苏·校考中考模拟)若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为_____. 42.(2022·四川遂宁·统考中考真题)实数a ,b 在数轴上的位置如图所示,化简()()2211a b a b +--+-=______.三、解答题43.(2021·四川成都·统考中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .44.(2022·安徽·统考二模)阅读下列解题过程: 21+21(21)(21)-+-2-1; 32+32(32)(32)-+-32; 43+434343-+-()()433 …解答下列各题: (1109+= ;(2= .(3)利用这一规律计算:)×).45.(2019·福建泉州·统考中考模拟)先化简,再求值:2443(1)11m m m m m -+÷----,其中2m .46.(2013·贵州黔西·中考真题)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+(,善于思考的小明进行了以下探索:设(2a m ++(其中a 、b 、m 、n 均为整数),则有2222a m n +++∴2222a m n b mn =+=,.这样小明就找到了一种把部分a + 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b ,得a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空: + =( +2;(3)若(2a m ++,且a 、b 、m 、n 均为正整数,求a 的值.参考答案:1.B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【详解】解:依题意,3010 xx+>⎧⎨-≠⎩∴3x>-且1x≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.2.A【分析】直接利用二次根式中被开方数是非负数,得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算即可.【详解】解:由题意可得:20 420xx-≥⎧⎨-≥⎩,解得:x=2,故y=-3,∴20222022()(213)=x y+=-.故选:A.【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.3.C【分析】根据二次根式、立方根、分式的性质分析,即可得到答案.【详解】根据题意,得50x->∴5x<故选:C.【点睛】本题考查了二次根式、立方根、分式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解.4.B【分析】根据二次根式的性质判断即可.【详解】解:23+,故错误;23=⨯,故正确;=≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5.D【分析】由二次根式的性质、二次根式的减法运算法则进行计算,即可得到答案.∴3a =,3b =, ∴3327=, 故选:D【点睛】本题考查了二次根式的性质、二次根式的减法运算,解题的关键是掌握运算法则,正确的进行解题. 6.B【分析】利用二次根式的被开方数具有非负性求出x 的值后,再求出y 的值,即可求解. 【详解】解:∵229090x x -+≥-≥,, ∴29x =, 又∵30x +≠, ∴3x =, ∴0012233y --==-+,∴()326xy =⨯-=-, 故选:B .【点睛】本题考查了二次根式有意义的条件以及性质,解题关键是求出x 的值与y 的值. 7.A【分析】根据二次根式的乘除运算法则进行计算,最后根据二次根式的性质化简即可.=== 故选:A .【点睛】)0,0a b ≥≥)0,0a b ≥>,熟练掌握相关运算法则是解题的关键. 8.4【分析】根据平方差公式计算即可.【详解】解:3)=223-=13-9 =4,故答案为:4.【点睛】本题考查二次式的混合运算,熟练掌握平方差公式是解题的关键. 9. 2 6化为最简二次根式,再利用二次根式的乘法法则解题.=2,6a b ∴==故答案为:2,6.【点睛】本题考查利用二次根式的性质化简计算,涉及最简二次根式、二次根式的乘法等知识,是基础考点,掌握相关知识是解题关键.10.-【分析】先把各二次根式化为最简二次根式,然后合并即可.【详解】解:原式==-故答案为:-【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 11.20【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++=△=9-4=5>0,∴13x =-23x =-,∴()212x x -=((223320-==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 12【分析】根据二次根式的性质和二次根式的减法法则,即可求解.3==【点睛】本题主要考查二次根式的化简,掌握二次根式的性质和运算法则,是解题的关键. 13. 14 11【分析】根据分母有理化得到2x =x 和y 分别代入(1)(2)中根据二次根式的混合运算法则计算求解.【详解】解:∵123x =+, ∴()()12323232323x ===+-+--, ∴(1)22x y +()()222323=-++ 44334433=-++++14=,故答案为:14;(2)()2x y xy -- ()()()223232323⎡⎤=--+--+⎣⎦()()22343=---121=-11=,故答案为:11.【点睛】本题主要考查了分母有理化、二次根式的混合运算法则,理解相关知识是解答关键.14.23-【分析】仿照题意构造含15度角的直角三角形进行求解即可.【详解】解:如图,在Rt ACB 中,9030C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,∴∠BAD =∠D ,2AB BD AC ==,∴cos =3BC AC ABC AC =⋅∠,∴()23CD BC BD AC =+=+,∵∠ABC =∠BAD +∠D ,∴=15D ︒∠,∴1tan =tan15===2323AC D CD ︒-+∠, 故答案为:23-.【点睛】本题主要考查了解直角三角形,三角形外角的性质,等腰三角形的性质,正确理解题意构造出含15度角的直角三角形是解题的关键.15.2m 的值,小数部分n m ,把m 、n 代入分式m n+3中,应用分母有理化的方法进行化简,即可得到答案.【详解】解:∵12,∴m =1,n 1, ∴=n+3m=2.故答案为:2.【点睛】本题主要考查二次根式的分母有理化,熟练掌握分母有理化的方法是解题的关键.16.<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.==<故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.17.> 【分析】先将这两个数分别平方,通过比较两个数的平方的大小即可得解.【详解】解:∵21(10=,211()39-=且11109<,1<,∴13>- 故答案为:>【点睛】此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.18.>【分析】首先利用二次根式的性质可得【详解】解:∵∴>﹣故答案为:>.【点睛】本题主要考查了二次根式的大小比较,准确计算是解题的关键.19.13x x -+【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭ ()()()23221111x x x x x x ++-+=÷++- ()()()211313x x x x x +-+=⨯++13x x -=+.当3x =时,原式=. 【点睛】此题主要考查了分式的化简以及二次根式混合运算,正确化简分式是解题关键.20.ab ;7【分析】根据分式的混合运算法则化简,再代入3a =3b = 【详解】解:原式222a ab b a b a b ab-+-=÷- ()2a b ab ab a b a b-=⋅=--.当3a =3b =原式(33927==-=.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式、二次根式及乘法公式的运用.21.()212x -;3【分析】先根据异分母分式的加减化简括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据特殊角的三角函数值求得x 的值,代入化简结果进行计算即可. 【详解】解:22124()(1)442x x x x x x x -+-÷--+- ()()()()()22122422x x x x x x x x x x ⎡⎤-+-=-⨯⎢⎥---⎢⎥⎣⎦()2224=42x x x x x x x --+⨯-- ()241=42x x x -⋅-- ()212x =-2tan 302x =+︒=∴原式21322==⎛⎫ ⎪⎝⎭【点睛】本题考查了分式的化简求值,特殊角的三角函数值,实数的混合运算,二次根式的混合运算,正确的计算是解题的关键.22.D【分析】利用二次根式的加减运算法则进行计算,然后作出判断.【详解】解:AB、= CD、=故选:D .【点睛】本题考查二次根式的加减运算,掌握运算法则是解题关键.23.C【分析】根据被开方数大于等于0,列式求解即可.【详解】解:根据题意得:320x +,解得23x -.【点睛】本题主要考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.24.A【分析】根据同类二次根式的概念判断即可.【详解】解:A 、2与22是同类二次根式,符合题意;B 、3与26不是同类二次根式,不符合题意;C 、5与5不是同类二次根式,不符合题意;D 、6与23不是同类二次根式,不符合题意;故选A .【点睛】本题考查了同类二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.25.D【分析】根据翻折过程补全图形,然后根据矩形的性质和勾股定理即可解决问题.【详解】解:由折叠补全图形如图所示,四边形ABCD 是矩形,'90ADA B C A ∴∠=∠=∠=∠=︒,AD BC =,CD AB =,由第一次折叠得:'90DA E A ∠=∠=︒,1452ADE ADC ∠=∠=︒, 45AED ADE ∴∠=∠=︒,AE AD ∴=,在Rt ADE △中,根据勾股定理得,2DE AD =,由第二次折叠知,CD DE AB ==,222DE AE ∴=,2222()2(2)CD AB BE CD ∴=-=-,422CD ∴=+【点睛】本题考查了翻折变换,矩形的性质,等腰直角三角形,解决本题的关键是掌握翻折的性质.26.C∵36218÷=,18533÷=4行,第3个数字.故选:C .【点睛】此题考查的是数字的变化规律以及二次根式的化简,找出其中的规律是解题的关键.27.B再合并即可.【详解】解:94321 故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.28.B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠ ∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底29.7x ≥【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x -≥,解得:7x ≥;故答案:为7x ≥.【点睛】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件.30.2018【分析】根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题.【详解】解:由条件知,x-2018≥0, 所以x≥2018,|2017-x|=x-2017.所以x-2017+ =x ,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018.【点睛】本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.31.2a a -,1+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值. 【详解】解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭ ()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+-- 2a a =-.当2a 时,原式1==== 【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 32.a b -【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.33.Aa 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.34.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+, 解得:37x ,374m m -+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.35.C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.36.B【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大正方形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,222A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512 C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.37.2【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】解:由数轴可得:0<a <2,则a=a =a +(2﹣a )=2.故答案为:2.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a 的取值范围.38.12021-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可.11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021=12021-. 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 39.2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.40. 2; 4-;【分析】将x =1x =,则20x ax b ++=)()260a b a -+-+=,根据a ,b 为有理数,可得2a -,6b a -+)()260a b a -+-+=时候,只有20a -=,60b a -+=,据此求解即可.【详解】解:∵x ====1∴20x ax b ++=∴))2110a b ++= ∴60a b --+=60a b -++=)()260a b a -+-+=∵a ,b 为有理数,∴2a -,6b a -+也为有理数,∴2a =,4b =-,故答案是:2,4-;【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.41.4【分析】直接利用二次根式有意义的条件得出a 的值,进而利用负指数幂的性质得出答案.【详解】解:∵b 2,∴120210a a -≥⎧⎨-≥⎩∴1-2a=0,解得:a=12,则b=-2, 故ab=(12)-2=4. 故答案为4.【点睛】此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a 的值是解题关键. 42.2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.43.13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式= 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.44.(13;(2(3)2020【分析】(1,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.【详解】(133;(2==(3)×)1+)×)1)×) =20211-=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.45.22m m-+ 1. 【详解】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m 2时,原式===﹣=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 46.(1)223m n +,2mn ;(2)13,4,2,1(答案不唯一);(3)7或13.【分析】根据题意进行探索即可.【详解】(1)∵2(a m +=+,∴2232a m n +=++∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.【点睛】本题考查二次根式的运算.根据题意找出规律是解决本题的关键.。
复习初中数学揭秘二次根式与分式的计算方法

复习初中数学揭秘二次根式与分式的计算方法复习初中数学揭秘二次根式与分式的计算方法初中数学是我们基础教育中不可或缺的一门学科,而在初中数学中,二次根式与分式是常见的数学概念和计算方法。
了解和掌握二次根式与分式的计算方法对于正确理解和解决数学问题至关重要。
本文将揭秘二次根式与分式的计算方法,帮助大家复习初中数学知识。
一、二次根式的计算方法二次根式是一个数学表达式,其中包含有平方根的形式。
要计算二次根式,需要掌握以下几个基本方法。
1. 二次根式的化简当二次根式中含有分式、复数时,我们需要进行化简,以方便进行计算。
化简的方法主要有:(1)利用平方根的性质将二次根式中的分式转化为有理数,例如:$\sqrt{\dfrac{9}{4}}=\dfrac{3}{2}$。
(2)将二次根式中的复数部分分离出来,例如:$\sqrt{-4}=\sqrt{4} \cdot \sqrt{-1} = 2i$,其中$i$为虚数单位。
2. 二次根式的加减法二次根式的加减法需要满足根号内的数值和分母相同的情况下,才能进行计算。
例如:$\sqrt{2}+\sqrt{2}=2\sqrt{2}$。
3. 二次根式的乘法二次根式的乘法可以通过将根号内的数相乘,然后合并同类项得到最简形式。
例如:$\sqrt{3} \cdot \sqrt{5}=\sqrt{15}$。
4. 二次根式的除法二次根式的除法可以通过将根号内数的比值相除,然后将分子和分母进行化简。
例如:$\dfrac{\sqrt{12}}{\sqrt{2}}=\sqrt{6}$。
二、分式的计算方法分式是由分子和分母组成的有理数。
在初中数学中,分式的计算方法主要包括四则运算和简化。
1. 分式的加减法分式的加减法需要满足分母相同的情况下,才能进行计算。
例如:$\dfrac{1}{2}+\dfrac{3}{2}=\dfrac{4}{2}=2$。
2. 分式的乘法分式的乘法可以通过将两个分式的分子和分母分别相乘,然后再将结果化简。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届中考总复习:分式与二次根式—知识讲解【考纲要求】1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.【知识网络】【考点梳理】考点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A = 0时,分式的值为零.考点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.要点诠释:约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.通分注意事项:(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.考点三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.要点诠释:解分式方程注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤:(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.考点四、二次根式的主要性质 1.0(0)a a ≥≥; 2.()2(0)a a a =≥; 3.2(0)||(0)a a a a a a ≥⎧==⎨-<⎩; 4. 积的算术平方根的性质:(00)ab a b a b =⋅≥≥,; 5. 商的算术平方根的性质:(00)a a a b b b=≥>,. 6.若0a b >≥,则a b >.要点诠释: 与的异同点:(1)不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数.但与都是非负数,即,.因而它的运算的结果是有差别的,,而(2)相同点:当被开方数都是非负数,即时,=;时,无意义,而. 考点五、二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理;2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.(1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简. 例如82627⎛⎫+⨯ ⎪ ⎪⎝,没有必要先对827进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,884266262327273⎛⎫+⨯=⨯+⨯=+ ⎪ ⎪⎝,通过约分达到化简目的; (2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用. 如:()()()()223232321+-=-=,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化.【典型例题】类型一、分式的意义1.使代数式12-x x 有意义的x 的取值范围是( ) A.0≥x B.21≠x C.0≥x 且21≠x D.一切实数 【答案】C ;【解析】解不等式组0210x x ≥⎧⎨-≠⎩得0≥x 且21≠x ,故选C . 【点评】代数式有意义,就是要使代数式中的分式的分母不为零;代数式中的二次根式的被开方数是非x x ≥0;分母中的2x-1≠0.举一反三:【高清课程名称:分式与二次根式 高清ID 号:399347关联的位置名称(播放点名称):例1】【变式】当x 取何值时,分式12922---x x x 有意义?值为零? 【答案】当2120x x --≠时,分式12922---x x x 有意义,即-34x x ≠≠且时,分式12922---x x x 有意义. 当29=0x -且2120x x --≠时,分式12922---x x x 值为零, 解得=3x ±,且-34x x ≠≠,,即=3x 时,分式12922---x x x 值为零. 类型二、分式的性质2.已知14x x+=,求下列各式的值. (1)221x x +; (2)2421x x x ++. 【答案与解析】(1)因为14x x +=,所以2214x x ⎛⎫+= ⎪⎝⎭. 即221216x x ++=.所以22114x x +=. (2)4242222222111114115x x x x x x x x x x++=++=++=+=, 所以2421115x x x =++. 【点评】观察(1)和已知条件可知,将已知等式两边分别平方再整理,即可求出(1)的值;对于(2),直接求值很困难,根据其特点和已知条件,能够求出其倒数的值,这样便可求出(2)的值.举一反三:【变式】已知111,a b a b+=+求b a a b +的值. 【答案】 由111,a b a b +=+得1,a b ab a b +=+ 所以2(),a b ab +=即22a b ab +=-.所以221b a a b ab a b ab ab+-+===-.类型三、分式的运算3.(2015•眉山)计算:.【答案与解析】解:=•= . 【点评】异分母分式相加减,先根据分式的基本性质进行通分,转化为同分母分式,再进行相加减.在通分时,先确定最简公分母,然后将各分式的分子、分母都乘以分母与最简公分母所差的因式.运算的结果应根据分式的基本性质化为最简形式.举一反三:【高清课程名称:分式与二次根式 高清ID 号:399347关联的位置名称(播放点名称):例2】【变式】(2015•宁德)化简:•. 【答案】解:原式=:•=.类型四、分式方程及应用4.如果方程 11322x x x-+=--有增根, 那么增根是 . 【答案与解析】因为增根是使分式的分母为零的根,由分母20x -=或20x -=可得2x =.所以增根是2x =. 答案: 2x =【点评】使分母为0的根是增根.5.为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.【答案与解析】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需(x+25)天. 根据题意得:303015x x =++2. 方程两边同乘以x (x+25),得30(x+25)+30x=x (x+25),即x 2﹣35x ﹣750=0.解之,得x 1=50,x 2=﹣15.经检验,x 1=50,x 2=﹣15都是原方程的解.但x 2=﹣15不符合题意,应舍去.∴当x=50时,x+25=75.答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天.(2)此问题只要设计出符合条件的一种方案即可.方案一:由甲工程队单独完成.(所需费用为:2500×50=125000(元).方案二:由甲乙两队合作完成.所需费用为:(2500+2000)×30=135000(元).【点评】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.工程问题的基本关系式:工作总量=工作效率×工作时间.(1)如果设甲工程队单独完成该工程需x 天,那么由“乙队单独完成此项工程的时间比甲队单独完成多用25天”,得出乙工程队单独完成该工程需(x+25)天.再根据“甲、乙两队合作完成工程需要30天”,可知等量关系为:甲工程队30天完成该工程的工作量+乙工程队30天完成该工程的工作量=1.(2)首先根据(1)中的结果,排除在60天内不能单独完成该工程的乙工程队,从而可知符合要求的施工方案有两种:方案一:由甲工程队单独完成;方案二:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.举一反三:【变式】莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.【答案】(1)设原计划零售平均每天售出x 吨. 根据题意,得5)2(62006200=++-+x x , 解得x 1=2,x 2=﹣16.经检验,x=2是原方程的根,x=﹣16不符合题意,舍去.答:原计划零售平均每天售出2吨.(2)()天20226200=++. 实际获得的总利润是:2000×6×20+2200×4×20=416000(元).类型五、二次根式的定义及性质6.当x 取何值时,913x ++的值最小?最小值是多少?【答案与解析】∵91x +≥0, ∴9133x ++≥,∴当9x +1=0,即19x =-时,913x ++有最小值,最小值为3. 【点评】解决此类问题一定要熟练掌握二次根式的非负性,即a ≥0(a ≥0).由二次根式的非负性可知9191x x ++≥0,即的最小值为0,因为3是常数,所以913x ++的最小值为3.类型六、二次根式的运算【高清课程名称:分式与二次根式 高清ID 号:399347关联的位置名称(播放点名称):例3】7.计算:1(46438)22+÷ 【答案与解析】原式22)262264(÷+-= .232+=【点评】本题主要考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.【巩固练习】一、选择题1. 下列各式与x y 相等的是( ) A .22x y B. 22y x ++ C. 2xy y D. 2x y x+ 2.(2015•泰安)化简:(a+)(1﹣)的结果等于( ) A .a ﹣2 B .a+2 C . D .3.若分式211x x -+的值是0,则x 为( ) A .0 B.1 C.-1 D.±14.下列计算正确的是 ( )2712A. 82 2 B.941362C. (2+5)(2-5) 1 D.3 2 2--==-=-== 5.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个 甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是( )A .x 10000-5010000+x =10 B .5010000-x -x10000=10 C .x 10000-5010000-x =10 D .5010000+x -x10000=10 6.函数123y x x =-+-中自变量x 的取值范围是( ) A. x ≤2 B. x =3 C. x <2且x ≠3 D. x ≤2且x ≠3二、填空题7.(2014春•张家港市校级期末)下列分式中,不属于最简分式的,请在括号内写出化简后的结果,否则请在括号内打“√”.① ② ③ ④ ⑤ .8.化简212293m m +-+的结果是__________. 9.某同学步行前往学校时的行进速度是6千米/时,从学校返回时行进速度为4千米/时,那么该同学往返学校的平均速度是____________千米/时.10.在223,,,,22x a ab a b x +中,是最简二次根式的有 个. 11. 若最简二次根式3235x x x ++与是同类二次根式,则x 的值为 .12.(1)把2225727-化简的结果是 . (2)估计的运算结果应在 之间.(填整数)三、解答题13.(2015•南京)计算:(﹣)÷.14.(1)已知:51a +=,求5361a a a a +++的值. (2)已知:2225-152x x --=,求2225-15x x +-的值.15.在“情系海啸”捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息.信息1:甲班共捐款300 元, 乙班共挡捐款232 元.信息2: 乙班平均每人捐款钱数是甲班平均每人捐款钱数的45. 信息3 : 甲班比乙班多2人.请根据以上三条信息,求出甲班平均每人捐款多少元.16.已知2228442142x x y x x x y y x x ++=-+-++-+,求的值.【答案与解析】一、选择题1.【答案】C ;【解析】化简2xy y =x y. 2.【答案】B ;【解析】•=•=a+2.故选B .3.【答案】B ;【解析】分式的值为0,则210,10,x x ⎧-=⎨+≠⎩解得1x =.4.【答案】A ;【解析】根据具体选项,应先进行化简,再计算. A 选项中,82222-=-=2, B 选若可化为33233--=,C 选项逆用平方差公式可求得255+()(2-)=4-5=-1,而D 选项应将分子、分母都乘2,得62232-12-=.故选A.5.【答案】B ;【解析】设每个甲型包装箱可装x 个鸡蛋,5010000-x -x 10000=10.故选B .6.【答案】A ;【解析】2-x ≥0,∴x ≤2,3不在x ≤2的范围内.二、填空题7.【答案】×,√,×,×,√;【解析】①=;②是最简分式;③==;④=﹣1;⑤是最简分式;只有②⑤是最简分式.故答案为:×,√,×,×,√.8.【答案】23m -;【解析】找到最简公分母为(m +3)(m -3),再通分.]9.【答案】4.8;【解析】平均速度=总路程÷总时间,设从学校到家的路程为s ,则2242424 4.8325546s s s s s s s s ====++. 10.【答案】3; 【解析】223,,ab a b +是最简二次根式. 11.【答案】-1; 【解析】根据题意得x +3=3x +5,解得x =-1.12.【答案】(1)83 ; (2)3和4; 【解析】(1) 22257(257)(257)32188 3.2727327-+-⨯=== (2)18323,132323 4.2⨯+=++因为<<,∴<< 三、解答题13.【答案与解析】解:(﹣)÷ =[﹣]× =[﹣]×=× =.14.【答案与解析】(1)∵25353,122a a ++=+= ∴a 2=a +1 原式=5326a a a a ++=526(1)a a a a ++=546a a a +=46(1)a a a +=66a a=1 (2)∵2222(25-15(25-15)10x x x x -•-= 221025-1552x x +-==.15.【答案与解析】设甲班平均每人捐款x元,则乙班平均每人捐款45x元.根据题意, 得300232245x x=+,解这个方程得5x=.经检验,5x=是原方程解.答:甲班平均每人捐款5元.16.【答案与解析】由二次根式的定义及分式性质,得2240,4,2, 20,xx xx⎧-⎪-∴=⎨⎪+⎩≥≥0≠22287,222 y++∴==+∴===。